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Abstract

Local spatiotemporal features or interest points provide
compact but descriptive representations for efficient video
analysis and motion recognition. Current local feature ex-
traction approaches involve either local filtering or entropy
computation which ignore global information (e.g. large
blobs of moving pixels) in video inputs. This paper presents
a novel extraction method which utilises global information
from each video input so that moving parts such as a moving
hand can be identified and are used to select relevant inter-
est points for a condensed representation. The proposed
method involves obtaining a small set of subspace images,
which can synthesise frames in the video input from their
corresponding coefficient vectors, and then detecting inter-
est points from the subspaces and the coefficient vectors.
Experimental results indicate that the proposed method can
yield a sparser set of interest points for motion recognition
than existing methods.

1. Introduction

Methods based on local features or interest points have
shown a promising result in motion recognition [14, 1, 6,
12, 11]. This part-based approach (see Figure 1 for an il-
lustration) uses only several ‘interesting’ parts of a whole
spatiotemporal (ST) volume for analysis and thus avoids
problems such as non-stationary backgrounds. In addi-
tion, unlike the holistic approach which analyses a whole
ST volume (e.g. [3, 15]), this approach is more tolerant to
large geometric variations between intra-class samples and
is more flexible. Recent works such as [1] also showed that
the part-based approach yields higher recognition accuracy
than the holistic approach.

Although this approach provides a good performance in
motion recognition, there is only a limited number of re-
ported works on spatiotemporal interest point (or cuboid)
detection. The most straight-forward way to detect cuboids
is to extend 2D interest point detection algorithms (e.g.
those in [13]) to 3D video analysis. In [7], Laptev extended

Figure 1. The top row shows superposition images of two walk-
ing sequences and a hand waving sequence. Spatiotemporal (ST)
interest points (detected by the method proposed in [1]) are also
displayed. The bottom row shows the 3D visualisation of those ST
points with colour indicating the similarity of their appearances.

2D Harris corner detector to a 3D Harris detector which de-
tects regions having high intensity variations in both spa-
tial and temporal dimensions (i.e. spatiotemporal corners).
However, it usually gives only a small amount of detections
which is insufficient for most part based classifiers.

Dollár et al. [1] improved the 3D Harris detector by re-
laxing its constraints so that a larger amount of detections
can be obtained. Their detector applies Gabor filtering (for
detecting intensity variations) on the temporal domain only
and selects regions which give high responses. By setting
appropriate spatial and temporal scales, the detector can
give a large amount of interest points correspond to regions
undergo complex motions.

An entropy approach [12, 4] has also been proposed to
obtain a large amount of detections. In these works, en-
tropy is first computed for each small ST volume or cuboid,
and cuboids with large entropy values are reported as salient
points. Their scales can be determined through maximising
the entropy values.

The above detection methods use solely local informa-
tion such as the distribution of pixel intensities within a
small region. The implication is that a certain number of
detections may be generated by video noises instead of the



motion being analysed. An interest point selection scheme
is required if there is a need to have a compact representa-
tion of the original ST volume.

Discriminative interest points can be selected using
boosting [6, 16]. Given a large number of training sam-
ples, boosting can select the most discriminative and rep-
resentative interest points from a set of randomly generated
cuboids. However, boosting usually requires a huge amount
of training samples, making it less applicable to small mo-
tion datasets.

In this paper, we present a novel method which uses
global information for detecting and selecting interest
points from a single video. It extracts structural informa-
tion (e.g. the location of moving parts) from the video input
and detects cuboids in regions having a larger probability of
containing the relevant motion.

This paper has 3 main contributions: we propose a novel
method which utilises global information for detecting in-
terest points in videos. In addition, we evaluated the perfor-
mance of several state-of-the-art detectors in motion recog-
nition tasks. Finally, we show that our method gives the
most compact representation for the motion recognition
tasks.

2. Approach

2.1. Latent structure

2.1.1 Dynamic Textures

Inspired by the work on extraction of dynamic textures [2]
where a video sample can be broken down into a latent rep-
resentation and a dynamic generation model, we can use a
similar approach for extracting global information from a
video input. In [2], given a sequence of images y(t)t=1..τ ,
the dynamic texture associated with the sequence can be
formulated as:

x(t + 1) = Ax(t) + Bv(t), (1)

y(t) = φ(x(t)) + w(t). (2)

In the equations, x(t) is a latent representation of an in-
put image y(t) and φ defines the transformation from the
latent representation to the image representation. The dy-
namic expressed in the images is represented by A which
describes the transition of the corresponding latent repre-
sentations. To achieve a compact representation of a video
input, φ can be approximated as a linear transformation
which converts x in a lower dimension space to y in a higher
dimension space. Thus, the original sequence y(t)t=1..τ can
now be compressed into a set of subspaces φ and a set of co-
efficients x(t)t=1..τ . If the motion involved is periodic, the
original sequence can be compressed further as an initial

state coefficient x(0), a set of subspaces φ, and transition
matrices A and B.

Through the above dynamic texture analysis, a set of
compact representations, which can synthesise a denoised
version of the original video, is obtained. Even if the mo-
tion involved is not periodic, it is still possible to represent
the sequence by a set of subspaces φ and a set of coeffi-
cients x(t)t=1..τ . In this paper, we will focus on this set of
representations which give the global information for inter-
est point detection.

In [2], the latent representation is obtained by singular
value decomposition (SVD) where the data matrix Y with
each image represented as a column vector is decomposed
to UΣV T . The set of subspaces C is then obtained as U and
the set of coefficients X is then obtained as ΣV T . This rep-
resentation, however, does not have much intuitive meaning
in identifying interest points.

2.1.2 Non-negative matrix factorisation

Instead of using SVD, we propose to use non-negative ma-
trix factorisation (NNMF) [8] to obtain the subspace repre-
sentation. Similar to SVD, the objective function involves
minimising the difference between the original data matrix
and the approximated matrix: ‖Y − CX‖2, where Y is the
data matrix, C is the subspaces and X is the coefficient ma-
trix. NNMF adds a non-negativity constraint to this objec-
tive function such that all entries in C and X are positive.
The decomposition can be done using an iterative algorithm
involving multiplicative update rules [9] in each iteration,
itr:

Citr+1
ia = Citr

ia

(Y (Xitr)T )ia

(CitrXitr(Xitr)T )ia
,∀i, a, (3)

Xitr+1
bj = Xitr

bj

((Citr+1)T Y )bj

((Citr+1)T Citr+1Xitr)bj
,∀b, j. (4)

According to [8], there are two interesting observations
in NNMF decomposition: (1) each subspace image contains
a sparse set of positive pixels, and (2) this decomposition
gives a large fraction of vanishing coefficients. Based on
these observations, an intuitive notion of this decomposition
is that each original image y(t) can be decomposed to a set
of small parts which correspond to the positive entries in the
subspace matrices. An example in [8] shows that given a set
of face images, the positive entries in the subspaces usually
correspond to facial components such as eyes, noses and
mouths.

Instead of obtaining facial components, we exploit
NNMF to extract a sparse set of ‘motion components’ from
the original image sequence in this work. Given a sequence
of images organised in a column matrix I = [I1..Iτ ], a
feature matrix is obtained from Y = I − I where I is
the mean matrix. The feature matrix is then decomposed



into Y + with positive entries only and Y − with negative
entries only. Each matrix is decomposed using NNMF:
Y + = C+X+ and −Y − = C−X−. The main idea is
simplified and summarised in Figure 2.

Figure 2. An overview of our proposed method which decomposes
a data matrix into a subspace matrix and a coefficient matrix for
interest point detection.

As shown in Figure 2, the subspaces or the ‘motion com-
ponents’ obtained usually correspond to the moving parts
such as moving hands. In addition, the coefficient matrices
are sparse (see also Figure 3). These imply (1) each input
image Yt (i.e. each column in the feature matrix Y ) can
be considered as a combination of these ‘motion compo-
nents’ which are shared by the whole image sequence and
(2) motion occurs when some of these ‘motion components’
appear or disappear (i.e. the transition from zero to positive
values or from positive to zero along rows in the coefficient
matrix).

These implications can be exploited in interest point de-
tection based on our intuitive understanding that interest re-
gions usually appear near the tip regions of these ‘motion
components’ (e.g. finger, shoulder and some joint regions)
and the appearance or disappearance of these tip regions
may be distinctive features for motion recognition. There-
fore, instead of analysing the raw image sequence, it is
possible to detect and select interest regions from the ‘mo-
tion components’ and their associated coefficients. In other
words, the original 3D interest point detection problem is
broken down into a problem on 2D interest point detection
in the subspace images and a problem on 1D interest point
detection along each coefficient vector as shown in Figure 2.

Figure 3. The coefficient matrices obtained from different motion
classes in KTH motion dataset.

2.2. Spatial Interest Points

In order to obtain a set of 2D interest points and their spa-
tial scales, Difference of Gaussian (DoG) detector [10] is
exploited. We chose DoG because it is relatively faster than
other commonly used spatial interest point detectors which
cannot improve the final recognition performance signifi-
cantly.

2.3. Temporal Interest Points

Difference of Gaussian (DoG) detector was modified to
detect interest points and report their scales in each coeffi-
cient vector. It is also possible to locate 1D interest points
by multi-scale non-maximum suppression and maxima de-
tection for better efficiency.

2.4. Ranking of Interest Points

Eventually, the spatial interest points from each subspace
image and the temporal interest points from the correspond-
ing coefficient vector can give a set of spatiotemporal inter-
est points which indicate the appearance or disappearance
of the ‘motion components’. However, not all reported in-
terest points are relevant. This is because the feature matrix
Y is given by subtracting the mean image from the input
image but not subtracting a background image from it and
the non-zero values in the feature image Yt do not imply
non-stationary or motion areas. To remove irrelevant inter-
est points, each reported interest point is evaluated to see
whether it contains motion. In this work, a saliency mea-
sure is chosen for ranking interest points so that points with
homogeneous textures are removed. As in [5], the saliency
measure is defined as:

R = −
∑
l∈L

p(l) log p(l), (5)

where l is one of a set of L possible intensity values (e.g.
255 if the input is a greyscale image) and p(l) gives the
probability of observing the intensity value l within the re-
ported interest region. A finite number of the most salient
points are selected eventually.

3. Implementation details

Various state-of-the-art spatiotemporal interest point de-
tectors were compared with ours in the experiments. A brief



review of these detectors and the setting used will be pre-
sented in the following sub-sections.

3.1. Laptev Detector

Laptev [7] extends the Harris corner detector to analyse
videos by modifying the Harris corner function to:

R = det(µ) − ktrace3(µ), (6)

µ = g(·;σ2, τ2) ∗



L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t


 , (7)

where g(·;σ2, τ2) is a 3D Gaussian smoothing kernel with
a spatial scale σ and a temporal scale τ and Lx,y,z are the
gradient functions along x, y, z directions. The points with
large R are detected. In the experiments, σ and τ were set
to 2 and 4 respectively and k was set to 0.005.

3.2. Dollár et al. Detector

Dollár et al. [1] detector applies Gabor filtering on tem-
poral domain and select regions which give high responses,
R:

R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2, (8)

hev(t; τ, ω) = −cos(2πtω)e−t2/τ2
, (9)

hod(t; τ, ω) = −sin(2πtω)e−t2/τ2
, (10)

where g is a 2D Gaussian smoothing kernel g(x, y;σ), and
hev and hod are the quadrature pair of a 1D Gabor filter.
There are 2 main parameters in the detector, namely σ and
τ which correspond to spatial and temporal scales of the
detector, and we can set σ = 2, τ = 4, and ω = 4/τ as
recommended by Dollár et al. [1].

3.3. Saliency Detector

Saliency detectors [5, 12, 4] use the same response func-
tion in both spatial and spatiotemporal analysis. The re-
sponse given by a region under investigation is shown in
Equation 5. In the experiment, the default size of the re-
gions was σ = 2 and τ = 4.

3.4. NNMF Detector

The details of our proposed detector, NNMF detector,
can be found in Section 2. Although this method can select
spatial and temporal scale automatically, we fix it for a fair
comparison between different detectors. The scales used
are σ = 2 and τ = 4 (i.e. the same as the other detectors).
The number of subspaces used was 10.

3.5. Feature Encoding

The interest regions returned (i.e. cuboids) are encoded
into feature vectors for further analysis. The size of the

cuboid to be encoded is around three times the scales along
each dimension. According to our experiments and sugges-
tion from Dollár et al. [1], spatiotemporal gradient feature
was used to obtain the best recognition result.

4. Experiments

We conducted experiments in three different domains,
namely human activity, facial expression and hand gesture.
To obtain a fair judgement of the performance of our detec-
tor, we compare our result to those obtained using different
detectors mentioned in the previous section. The perfor-
mance of a detector is evaluated by measuring the accuracy
of motion classification using the interest points detected by
it. The algorithms for motion recognition and the datasets
used will be described in the following subsections.

4.1. Algorithms for motion recognition

Quantised feature vector: Through interest point detec-
tion, each video sample gives a set of interest points which
are encoded as spatiotemporal gradient features. Interest
points from a certain amount of samples are used to form
an appearance codebook using k-mean clustering on the
gradient features. Similarly, a location codebook is formed
from clustering of the spatiotemporal locations of the inter-
est points. The interest point features are then vector quan-
tised into codewords according to the codebooks and each
video sample is eventually represented as a histogram of
codewords. This histogram represents both appearance and
location information of interest points and samples having
a similar set of interest points and a similar distribution of
them in spatiotemporal space will give similar histograms.

Probabilistic latent semantic analysis (pLSA): It is a
popular unsupervised method for learning object categories
from interest point features and it was implemented based
on Niebles et al. work [11]. Histogram features of training
or testing samples are concatenated to form a co-occurrence
matrix which is an input of the pLSA algorithm. The num-
ber of topics used was the same as the number of motion
classes in the datasets used. The number of iteration in the
EM algorithm was set to 100 and the algorithm was imple-
mented in Matlab running in a P4 1GB memory computer.

Support Vector Machines (SVM): The algorithm was
also implemented in Matlab. The input is a normalised his-
togram (i.e. a column vector in the co-occurrence matrix
used in the pLSA algorithm). The SVM kernel used is a
radial kernel. This implementation can be considered as a
simplified version of Schuldt et al. work [14].

Nearest Neighbour classifier (NNC): As in Dollár et al.
work [1], a NNC classifier based on χ2 distance was im-



plemented in Matlab. The input is a normalised histogram
which is the same as the one used in the above methods.

4.2. Datasets

4.2.1 Human activity dataset: KTH dataset

The human activity dataset used in the experiments were
collected by Schuldt et al. [14]. There are totally six hu-
man activities including boxing, hand clapping, hand wav-
ing, jogging, running and walking (see Figure 4). There are
25 subjects engaged in the above activities in totally 4 dif-
ferent scenarios including indoor, outdoor, changes in cloth-
ing and variations in scale. Each video sample contains one
subject engaged in a single activity in a certain condition
and there are totally 593 samples in the dataset.

The raw video samples were processed such that
each sample contains one iteration of the action and the
processed samples have an average size of (x : 80 × y :
80 × t : 15). The processed videos from 5 subjects were
used to generate the codebooks, and these videos were not
used in training and test stages. We performed leave-one-
out cross-validation to evaluate our algorithm. In other
words, videos from 19 subjects were used in training and
the remaining one was used in the test. The result is re-
ported as the average of 20 runs.

Figure 4. Superposition images of action classes in KTH dataset.

4.2.2 Facial expression dataset

The facial expression dataset used were collected by Dollár
et al. [1]. There are 2 subjects in the dataset and each of
them expresses six different emotions (anger, disgust, fear,
joy, sadness and surprise) for 8 times under 2 different light-
ing conditions (see Figure 5). Each video sample contains
one facial expression and the average size of the samples is
(x : 152× y : 194× t : 100). There are totally 192 samples
in the dataset. The codebook was generated from videos
captured from one lighting condition. We performed leave-
one-out cross-validation to evaluate our algorithm so that
samples from one subject in a certain lighting set-up were
used in the test and the remaining were used in training.

Anger Digust Fear

joy sadness surprise

Figure 5. Sample images from the facial expression dataset used.

4.2.3 Hand gesture dataset

The hand gesture dataset used were obtained by us. There
are nine different gestures (see Figure 6) signed by two sub-
jects under 5 lighting set-ups and each subject was asked to
sign for 10 times in each set-up so that the dataset contains
900 samples. Each video sample contains one gesture and
the average size of the samples is (x : 320 × y : 240 × t :
100). The codebook was generated from samples captured
in the normal lighting condition and we performed leave-
one-out cross-validation for evaluation where samples cap-
tured from any three of the remaining lighting conditions
were used in training.

Figure 6. Nine gesture classes in the gesture dataset used.

5. Results

5.1. Human Activity

We ran this experiment on KTH dataset for 20 times us-
ing leave-one-out cross-validation. In average, the training
set contained around 450 samples in each run, and each
video sample gave 30 interest points. The histogram fea-
tures had 200 entries. Table 1 summarises the recogni-
tion results obtained from various methods and Figure 7(a)
shows the confusion matrix obtained by our method.

5.2. Facial Expression

We ran this experiment on Dollár et al. dataset for 3
times. In each test, the training set contained around 96
samples and each sample gave 30 interest points. The his-
togram features had 100 entries. Table 1 summarises the re-
sults obtained from various methods and Figure 7(b) shows



the confusion matrix obtained by our method.

5.3. Gesture

We ran this experiment on our gesture dataset for 4 times.
In each test, the training set contained around 540 samples
and each sample gave 30 interest points. The histogram
features had 200 entries. Table 1 summarises the results
obtained from various methods and Figure 7(c) shows the
confusion matrix obtained by our method.

Laptev Dollár et al. Saliency NNMF
KTH:
- pLSA 20.57 64.08 61.97 73.24
- SVM 29.79 85.92 66.90 86.62
- NNC 26.95 75.67 64.79 80.06
Facial Expression:
- pLSA 23.96 60.33 40.63 68.50
- SVM 36.46 80.56 61.46 87.50
- NNC 31.25 75.00 44.79 78.13
Gesture:
- pLSA 15.24 64.44 60.56 78.33
- SVM 29.27 88.89 71.11 91.67
- NNC 25.61 79.44 64.44 87.22

Table 1. Comparison of recognition results (i.e. the accuracy in
percentage) obtained from various methods.
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Figure 7. Confusion matrices generated by applying our detector
and SVM on the three datasets used.

The experimental results indicate that our NNMF detec-
tor and Dollár et al. detector lead to a better recognition
accuracy than Laptev detector and saliency detector while
our detector’s performance is slightly better than Dollár et
al.’s. Figure 8 to 11 show the detection results obtained

from these detectors. It can be observed that Laptev detec-
tor gives insufficient interest points while saliency detector
reports a lot of points which is not discriminative enough.
Therefore, their performances are the worst. The figures
also show that our NNMF detector usually reports inter-
est points near the moving limbs and facial components. It
seems that these points are more discriminative than those
given by Dollár et al. detector and lead to a slightly bet-
ter recognition accuracy. This will be verified in the next
experiment.

Figure 11. Each row shows the 3D visualisation of interest points
obtained by applying various detectors on the samples illustrated
in Figure 8, 9, and 10.

5.4. Number of interest points

In this experiment, the maximum number of interest
points used for recognition was reduced in each run. By do-
ing so, we can roughly know about the minimum amount of
interest points required for achieving certain recognition ac-
curacy, say 70%. The recognition algorithm used was Near-
est Neighbour Classifier (NNC) which is the simplest clas-
sifiers among the others used in the previous experiment.
Table 2 summarises the results obtained using our detec-
tor and Figure 12 shows the confusion matrix obtained by
applying our detector and NNC which used only 5 interest
points for recognition.

Number of interest points used
Dataset 25 20 15 10 5
KTH 80.99 79.58 80.28 76.06 71.13
Facial Expression 77.08 80.21 76.04 77.08 65.63
Gesture 84.44 80.00 77.78 70.56 65.56

Table 2. The effect of reducing the number of interest points in
recognition tasks.

The experimental results show that relatively high recog-
nition accuracy (i.e. 80%) could be maintained if more
than 15 NNMF interest points were used and the minimum
amount of NNMF interest points required for achieving an



Figure 8. Interest point detection results on sample 1 (‘hand-waving’ class in KTH dataset). The first row shows the image sequence in the
sample. The second and third rows show the subspace images obtained by NNMF. The last four rows show the interest points detected by
various methods compared in the experiment.

Figure 9. Interest point detection results on sample 2 (‘walking’ class in KTH dataset). The first row shows the image sequence in the
sample. The second and third rows show the subspace images obtained by NNMF. The last four rows show the interest points detected by
various methods compared in the experiment.

accuracy rate of 70% is 10. Even if the number was re-
duced further to 5, the recognition accuracy is not too bad
(still over 65%) and the confusion matrices show that sev-
eral motion classes can still be recognised accurately (over
80%). Other detectors, on the other hand, lead to recogni-
tion accuracy below 50% if only 5 interest points were used.
These observations show that our NNMF detector can give

a sparse set of discriminative points.

6. Conclusion

This paper introduces a novel method for detecting
spatiotemporal interest points. Unlike recent works which
use local information only, our detector utilises global
information (i.e. the organisation of pixels in a whole



Figure 10. Interest point detection results on sample 3 (’joy’ class in Facial Expression dataset). The first row shows the image sequence in
the sample. The second and third rows show the subspace images obtained by NNMF. The last four rows show the interest points detected
by various methods compared in the experiment.
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Figure 12. Confusion matrices generated by applying our detector
and Nearest Neighbour classifier which compares 5 interest points.

video) to detect and select a sparse set of interest points.
Experimental results indicate that our detector can select a
compact and discriminative set of interest points for motion
recognition tasks.
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