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Abstract—This paper extends the use of statistical learning algorithms for object localization. It has been shown that object recognizers

using kernel-SVMs can be elegantly adapted to localization by means of spatial perturbation of the SVM.While this SVM applies to each

frame of a video independently of other frames, the benefits of temporal fusion of data are well-known. This is addressed here by using a

fully probabilistic Relevance Vector Machine (RVM) to generate observations with Gaussian distributions that can be fused over time.

Rather than adapting a recognizer, we build a displacement expert which directly estimates displacement from the target region. An

object detector is used in tandem, for object verification, providing the capability for automatic initialization and recovery. This approach is

demonstrated in real-time tracking systems where the sparsity of the RVMmeans that only a fraction of CPU time is required to track at

frame rate. An experimental evaluation compares this approach to the state of the art showing it to be a viable method for long-term

region tracking.

Index Terms—Probabilistic algorithms, robust regression, tracking, object recognition.

�

1 INTRODUCTION

REAL-TIME tracking is an important component of many
modern applications, including: human-computer inter-

action [5], surveillance [29], vehicle automation [1], and
augmented reality [26]. Systems for tracking moving objects
may be feature-based or model-based. Feature-based track-
ing can rely on persistence of image curves [16], [4] or image
appearance [6]. Likewise, model-based tracking can use
curves, either in 3D [19] or in 2D [30], or appearance [2].
Furthermore, statistically-based object detectors using sup-
port vector machines (SVMs) [20], [21] and boosting [28] are
now fast enough to run at video rate, despite having to search
every video frame.

Recently, the distinction between detection and tracking
has been broken down further by the introduction of support
vector tracking [1] inwhichtheoutputofanSVMobjectdetector
is locally optimized to locate a target (see Section 1.1). This
paper seeks to extend theuseof statistical learningalgorithms
for object localization. The relevance vector machine (RVM) [25]
is a sparse learning algorithm, similar to the SVM in many
respects but capable of delivering a fully probabilistic output
(see Section 2). Section 3 describes how an RVM is trained to
learn the relationship between the local motion of an object
and its appearance in an image. This displacement expert is
trained online and can then be used to infer unknownmotion
froman image and thereby track a single target object. Owing
to the sparsitypropertiesof theRVM, thedisplacement expert

makes estimates very efficientlymeaning the object is tracked
in real time using only a fraction of the processing power of a
desktop PC.

While it is highly desirable to have such fast local search,
there are circumstances in which it will not suffice, such as
initialization. Section 4 explains how an object detection
algorithm is used in tandemwith the displacement expert to
provide robustness on occasions that local search fails. The
result is a system that is not only efficient but highly robust in
the very long term. Section 5 describes an experimental
evaluation of this system including comparison to existing
methods. These experiments show that a system exploiting
the strengths of both tracking and detection is efficient,
accurate, and robust. Examples are given for the affine
tracking of faces, hands, and cars.

1.1 Previous Work

The SVM is a powerful algorithm for binary classification
[27], in which the class of a vectorized subimage, x is
determined according to the sign of a classification function

fðxÞ ¼
XN
i¼1

tiwikðx; ziÞ þ w0; ð1Þ

where zi, i 2 ½1; N � are vectors from a training set with
labels ti 2 f�1;þ1g; wi are real-valued coefficients which
must be determined by the learning algorithm, and kð�; �Þ is a
kernel function [22] which computes a generalized inner
product. A great attraction of the SVM is the sparsity
conferred by its training algorithm which typically sets most
of the wi to zero, leaving just a few active terms in (1); the
active subset of the zi are knownas support vectors. A classifier
such as this, trained to recognize a particular class of object,
can be used for detection by applying it to subimages
extracted in a tessellation over some state space (e.g.,
translation and scale) [20], [21].

Such a search is labor intensive and Avidan’s support
vector tracker [1] seeks to mitigate this by perturbing the
classification function f with respect to image translation.
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Given an object x, perturbation analysis allows the
translation Tux, by a vector u, to be found such that the
value fðTuxÞ of the classification function is maximized (see
Fig. 1). The perturbed classification function, Avidan shows,
is expressed in terms of the image gradient as:

fðTuxÞ � f xþ @x
@u

�u

� �
: ð2Þ

Using this to compute approximately the displacement �u
that maximizes the classification function can save compu-
tation by reducing the density of tessellation required to
achieve a given degree of tracking precision.

Fig. 1 illustrates the difficulties of tracking via an
optimization: What is a suitable cost function and how
effectively or efficiently can it be optimized? This has been a
difficult question to answer andmethods suchas [10], [15], [7]
avoid it by inferring localmotiondirectly from imagesusinga
linear transformation of the image gradient. The work
described in the following sections extends these ideas by
using the relevance vector machine (RVM) [25] to learn a
nonlinear mapping from images x to displacements �u. The
resulting displacement expert requires neither the optimization
step of [1] nor the smooth image gradients of [10], [15].
Section 2 briefly describes the RVM and Section 3 explains
how the displacement expert is created. Support vector
tracking applies to each frame of a video independently of
other frames and a further benefit of the fully probabilistic
RVM is temporal fusion [9] (improved efficiency and
enhanced ability to deal with clutter in the background)
whichcanbeaccomplished inaneffectiveandprincipledway
in a probabilistic setting.

The price of eschewing optimization as a method of
tracking is that we relinquish a direct mechanism for
detecting loss of lock.1 To overcome this, the approach of
[13] is adopted. Tracker estimates are checked by a binary
classifier trained to detect the object of interest. A negative
result triggers a full-image search.Other approaches, capable

of recovering from failure, use a gating signal [4] to accept
only measurements with a high predicted accuracy and
particle filtering [11] to maintain multiple hypotheses. The
validation and restart mechanism is described in Section 4.

In summary, the system developed and demonstrated in
this paper has the following properties:

1. Fully probabilistic regression for displacement,
using RVMs.

2. Displacement is modeled as Euclidean and Affine
similarity transformations.

3. Tracker is trained online from labeled images.
4. Observations of displacement are fused temporally

with motion prediction.
5. Initialization and recovery are handled by an object

detector running in tandem.
6. Tracking is efficient—better than real-time (i.e.,

leaving processor cycles free for other processes)
—and this is demonstrated in a variety of scenarios
(Section 5).

2 SPARSE BAYESIAN REGRESSION

The SVM has several desirable properties, including:

1. It fits functions in high-dimensional feature spaces,
through the use of kernels.

2. Despite a possibly large space of functions available
in feature space, good generalization performance is
nevertheless achieved by margin maximization [22].

3. It is sparse: Only a subset of training examples is
retained at runtime, thereby improving computa-
tional efficiency (Section 1.1).

Its principal disadvantage is that estimates are made with no
measure of uncertainty, i.e., the output is not a probability
distribution, hence, precluding the use of a statistical filter on
estimates made as part of a temporal sequence.

The Relevance VectorMachine, or RVM,was proposed by
Tipping [24] as a Bayesian treatment of the sparse learning
problem. The RVMpreserves the generalization and sparsity
properties of the SVM, yet it also yields a probabilistic output,
as well as circumventing other limitations of the SVM.2

As proposed in Section 1.1, this machine learns a regression
from images (rather than classification) and, hence, the
training set will comprise N pairs of example vectors, zi 2
IRM and target values, ti 2 IR.

2.1 Relevance Vector Machine

The first consideration is the output functional, which is
almost identical to that of the SVM (1) [27]:

gðxÞ ¼
XN
i¼1

wikðx; ziÞ þ w0; ð3Þ

where x is an input vector and g : IRM ! IR is the scalar-
valued output function, modeled as a weighted sum of
kernel evaluations between the test vector and the training
examples. The kernel function, k : IRM � IRM ! IR can be
considered either as a similarity function between vectors,
or as a basis function centered at zi. Training determines the
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Fig. 1. Classification function of an SVM trained for recognition. An SVM
trained on a face database was used to classify four unseen examples,
misregistered by a given horizontal translation. A maximum is present at
the true position, though the function has additional local maxima. The
dip at zero-translation is due to the many training images showing a
small out-of-plane rotation to the left or right.

1. If an optimization method converges to an inadequate value of the
objective function, it can be inferred that the tracker has lost lock.

2. There is no necessity for Mercer kernels [22] and no error/margin
trade-off parameter: C.



weights, w ¼ ½w0; . . . ; wN � and the sparsity property will
arise if some of the wi are set to zero.

As this is Bayesian inference, a prior distribution is
specified over w and, to encourage sparsity, Tipping
stipulates a zero-mean Gaussian distribution [25]:

pðwÞ ¼ N ðw;0; AÞ; ð4Þ

whereNðd; e; F Þdenotes themultivariateGaussiandistribu-
tion of a random vector d with mean e and covariance
matrix F . The covariance A ¼ diagð�0; . . . ; �NÞ: There is an
individual and independent hyperparameter for every
weight.

For the likelihood term, it is assumed that the training
targets are sampled with additive noise [25]:

ti ¼ gðziÞ þ �i; ð5Þ

where �i � Nð�; 0; �2Þ. Thus,

pðtijfzigÞ ¼ N ti; gðzi; �2Þ
� �

: ð6Þ

�2 is another hyperparameter and global across the
training set.

Without considering hyperpriors (the general case is
discussed in [25]), the posterior is also Gaussian:

pðwjfzi; tig; ����; �2Þ ¼ N ðw; ŵw;�Þ; ð7Þ
with [25]

��1 ¼ ��2�T�þA
ŵw ¼ ��2��T t:

� is called the design matrix and contains the intratraining
set kernel values: �ij ¼ kðzi; zjÞ.

2.2 Training

As shown in (7), ŵw and � are determined by the
hyperparameters, ����; �2 which characterize different models
and training involves finding these values via Bayesian
model selection. Todo this, the evidence, pðfzi; tigj����; �2Þ [25] is
maximized using a variant of gradient ascent. The algorithm
begins optimizing over the entire training set, but examples
are pruned whenever the associated �i falls below a thresh-
old,3 leading to the final sparse solution. Those examples
remaining with wi 6¼ 0 are termed relevance vectors. Each
iteration of the training algorithm evaluates the posterior (7)
which involves matrix inversion: an OðN3Þ operation. The
RVM therefore takes longer to train than the SVM, although
faster training algorithms are being developed for large
training sets [23].

The kernel function used for the experiments described
in this paper was the Gaussian radial basis function [22]:

kðzi; zjÞ ¼ exp � 1

2M�2
kzi � zjk2

� �
; ð8Þ

which is defined here to compensate for the input
dimensionality M. The choice of the width parameter, �2

has a dramatic effect on the outcome of training: too small
and the RVM will overfit, too large and it will underfit
(large �2 and poor accuracy at runtime). The value used
here was set by experiment (see Section 5).

3 BUILDING A DISPLACEMENT EXPERT

The aim of the work described in this section is to train an
RVM such that it learns the relationship between images
and motion. Specifically, we want to convert an image
subregion into a vector, x and for an RVM expert to return
the displacement, �u 2 GEð2Þ of that subregion from the
target’s true location:

�u ¼ gðxÞ: ð9Þ

The RVM learns a mapping g from the high-dimensional
space of subimages to the low-dimensional motion state
space (see Fig. 2).

3.1 Sampling and normalization

A subimage is considered as a p� q rectangular region of a
complete gray-scale image, I. The following procedure is
used to sample from the image into a vector:

1. Sample the required pixels from the image into a
patch at the origin:

P ði; jÞ ¼ Ið    uði; jÞÞ i ¼ 1 . . . p j ¼ 1 . . . q; ð10Þ

where     u : IR� IR! IR2 is a warp function that
transforms a point by the transformation parameter-
ized by u.

2. Raster scan the transformed region into a vector:

riþðj�1Þp ¼ P ði; jÞ i ¼ 1 . . . p j ¼ 1 . . . q: ð11Þ

3. Finally, histograms equalize this vector to provide a
degree of illumination invariance [12]:

x ¼ hðrÞ; ð12Þ

wherehdenotes thehistogramequalizationoperation.

3.2 Creating a Training Set

Initially, the algorithm requires at least one seed image I
containing the labeled region of interest ����. Such images are
labeled either by hand or automatically. Fig. 3 shows how
multiple training examples, fzg, are excised from a single
seed image.

For this paper, experimentsweremostly carried outwith a
motion state space of dimension D ¼ 4 (the Euclidean
similarities). The RVM, as described in Section 2, only learns
a scalar valued function, thus multiple RVMs are necessary,
eachmapping to adifferent state spacedimension. TheRVMs
are trained on an identical set of vectors, fzg, but different
targets, ftg. Each machine will see examples displaced along
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3. �i ¼ 0 implies that pðwij�iÞ is infinitely peaked at zero.

Fig. 2. Mapping from image space to state space. An RVM displacement
expert maps a high-dimensional vector, corresponding to an image
subregion, into a vector with dimensionality given by the degrees of
freedom of the motion being modeled. M is the number of pixels in an
image patch and D is the number of degrees of freedom of the motion
being learned.



state spacedimensions forwhich they are not experts and this
beneficially engenders insensitivity to the orthogonal
degrees of freedom. Examples are generated with random
displacements sampled from a uniform distribution

ti � Uð�����;þ����Þ; ð13Þ

where U is the multivariate uniform distribution between
limits�����. An example zi is then excised from the seed image
as described in Section 3.1 with warp parameters u ¼ ti þ ����.

Fig. 4 shows some subimages from a real training set for
a face tracking application. This highlights a problem with
generating examples from only one seed image: the back-
ground is being learned along with the foreground target.
Using more seed images showing the target against
different backgrounds mitigates this problem and also
provides some invariance to appearance changes in the
target (Section 5 shows some experiments assessing the
efficacy of using multiple seed images).

The choice of the range of displacements and the number
of examples affects three aspects of training and runtime
performance:

1, The Gaussian RBF kernel (8) employs the L2 norm
between vectors. If examples are more tightly spaced,

thewidthof thekernel� canbemade smaller resulting
in more sharply peaked basis functions capable of
more precise localization.

2, The range of displacements used in generating
training examples ���� dictates the range over which
the expert can be relied on at runtime (see Section 5)
and thereby the maximum interframe motion that
can be tracked.

3, RVM training time scales as OðN3Þ and both a larger
capture range and closer packed examples result in
more relevance vectors retained by the expert,
incurring more kernel evaluations and reduced
speed at runtime.

Section 5 contains experimental results showing the effects
of these settings on real tracking performance. Algorithm 1
summarizes the procedure for training a displacement
expert:

Algorithm 1 Learn displacement expert �u ¼ gðxÞ
Require: Seed images: : fIg
Require: Labels: f����g
Require: Displacement Range: ����
Require: Number of examples: N
for i ¼ 1 to N do
Generate random displacement
ti  Uniformð�����;þ����Þ
Sample from random seed image, Ir (Section 3.1)
zi  SampleðIr; ����r þ tiÞ

end for
Train an RVM for each state space dimension
for j ¼ 1 to D do
Select correct target data
f�g  jth dimension offtg
RVM training algorithm as described in [25]
ŵwj;�j  RVMTrainðfzg; f�gÞ

end for
Delete from memory all examples zi for which ŵwi ¼ 0

Once trained, what is special about the training examples
kept as “relevant” (i.e., wi 6¼ 0)? Fig. 5 shows the displace-
ments of training examples for an expert working with two
degrees of freedom (2D translation). Those chosen as
relevant appear to be the most extreme examples and as
such are prototypical of horizontal or vertical translation.

3.3 Tracking with a Displacement Expert

Fig. 6 shows the process by which the displacement of a
subimage from the true target position is estimated. The
displacement along state-space dimension i is calculated as

�ui ¼ giðxtÞ ¼ wT
i k; ð14Þ
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Fig. 3. Example Generation. From a labeled region of interest, many
training examples may be sampled and converted to vectors zi,
accompanied by target displacements ti. As a tutorial example this
expert is estimating horizontal translation only.

Fig. 4. Real training examples. (a) A labeled seed image. (b) Some typical examples used to train the relevance vector machines on displacements
in translation, rotation and scaling.



where kj ¼ kðxt; zjÞ forms a vector of kernel evaluations and
xt is the queried subregion at time t sampled into a vector
usingut. From (7),wi is Gaussian distributed asNðwijŵiwi;�iÞ
meaning that �ui is also Gaussian with mean ŵwT

i k and
variance

si ¼ kT�ikþ �2i ; ð15Þ

where�2i is the variance from (6) [25]. To secure the benefits of
temporal fusion of data, observations must be obtained in a
probabilistic setting. This is one of the principal advantages
of the RVM over the SVM: The RVMdoesn’t just estimate the
change in state, but generates an output probability
distribution:

�u � Nð�ujWk; SÞ: ð16Þ

W is a matrix whose rows are the weight vectors of the

D RVMs,

W ¼
ŵwT

1

..

.

ŵwT
D

2
64

3
75 ð17Þ

and S is a diagonal covariance matrix (the cross-covariance
terms are assumed to be zero) containing the scalar
variances from (15):

S ¼ diagðs1; . . . ; sDÞ: ð18Þ

This probabilistic output can be treated as a Gaussian
innovation and incorporated into a Kalman-Bucy filter [9].

Equations for the evolution of the state and observation
are established by modeling the dynamics as a second order
autoregressive process (ARP) [3]. The state equations are
augmented to account for the two previous observations:

p u0tþ1ju0t
� �

/ exp � 1

2
u0tþ1��u0t
� �T

Q�1 u0tþ1��u0t
� �� �

; ð19Þ

where ut is a state estimate at time t and u0t ¼ ½utut�1�
T is its

augmented form. The coefficients, � and Q are learned
using maximum likelihood from a sequence capturing
typical motion of the target region [4].

The innovation term, �u, is then used to update the state
estimate, ut, by fusing this observation with the motion
model [9]. Algorithm 2 outlines the continuous tracking
process:

Algorithm 2 Tracking loop
Require: Initial state estimate: u0

Require: Initial state covariance: U0

t 0
loop
I  New image from capture device
xt  SampleðI;utÞ
Extrapolate state estimate using motion model (19)
utþ1  �ut
Utþ1  �Ut�

T þQ
Get innovation from displacement expert (16)
�u; S  gðxtÞ
Compute Kalman gain [9]
Gk  Utþ1½Utþ1 þ S��1
Fuse prediction and innovation
utþ1  utþ1 þGk�u
Utþ1  Utþ1 �GkUtþ1
t tþ 1

end loop

4 INITIALIZATION AND RECOVERY

For efficient operation, the RVM tracker fully exploits
temporal coherence. However, a robust tracker capable of
operating for an indefinite period also needs a detection
system, running in tandem, for initialization and recovery.
This object detector operates in two distinct modes. During
continuous tracking, the identity of the tracked object is
verified by warping it according to the current state estimate
(Section 3.1) and testing it with a classifier.4 Absence of
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Fig. 6. Expert prediction. A vector, x that has been sampled from an
image, is compared to the relevance vectors using the kernel function.
These values are then summed via the weights found by Algorithm 1 to
give an estimated displacement �u of x from the target.

4. Because image patches are warped before verification, rotated objects
are successfully verified. The restart mechanism, however, does not model
rotations and, thus, will not locate an object rotated by a significant amount
from its canonical orientation.

Fig. 5. The relevance vectors span the state space. As a tutorial
example, this figure shows the positions (ti) of examples used to train a
tracker in a space of 2D translations. Relevance vectors are indicated for
horizontal translations (circles) and vertical ones (squares).



verification triggers a search in which the classifier tests a
tessellation of neighborhoods in a grid over the image and
this continues until verification is obtained, after which RVM
tracking resumes. The same mechanism is used to initialize
from the first frame (i.e., provide u0 in Algorithm 2).

4.1 Overall System Design

The complete tracking system now has three components
which are shown in Fig. 7:

1. The RVM displacement expert as described in
Section 3.

2. A validator which uses a classifier to test the region
of the image described by the current state estimate.

3. A full-frame search which uses the chosen classifier
to search an entire image exhaustively, independent
of previous estimates.

The search mechanism can also be used to build the
tracking component by automatically labeling the seed
images required by the training algorithm (Algorithm 1).
This is only possible when the type of object to be tracked is
known beforehand and the classifier suitably trained. The
overall algorithm is summarized in Algorithm 3:

Algorithm 3 Complete tracking system
Require: Displacement Range: ����, # examples: N , # seed
images: nSeed
Expert Training
n 0
while n < nSeed do
while No object detected do
In  New image from capture device
����n  SearchðIÞ
n nþ 1

end while
end while
Train expert on ðfIg; f����g; N;����Þ from Algorithm 1
Initialization
while No object detected do
I  New image from capture device
u0  SearchðIÞ

end while
Tracking Loop
t 0
mode EXPERT

loop
I  New image from capture device
if mode ¼¼ EXPERT then
Update state according to Algorithm 2
Test new estimate with validator
if Test passed then mode  EXPERT
else mode  SEARCH

else
utþ1  SearchðIÞ
if Target found then mode  EXPERT
else mode  SEARCH

end if
t tþ 1

end loop

4.2 Algorithmic Complexity

As described in Section 2, RVM training time scales as
OðN3Þ, where N is the number of training examples. In the
case of the displacement expert, N < 100 examples in total
produces satisfactory results (see Section 5) and training
takes a few seconds. During continuous tracking (following
Algorithm 2), the operation count for generating innova-
tions from the expert scales linearly with three terms:

opsexpt / ½# pixels in patch� � ½# relevance vectors� � ½DOF�:
ð20Þ

In a particular application, the number of degrees of
freedom is fixed, however, the strength of the RVM learning
algorithm is that it can learn a displacement rule from a
training set of subsampled images (typically comprising
400-1,000 pixels), retaining a fraction of the training set as
relevance vectors (typically around 75 percent in our
experiments, see Section 5).

For a typical object detector, which searches an image
exhaustively (in translation and scale space), the number of
operations is also linear:

opssearch / ½# features� � ½Image width� � ½Image height�
� ½Tessellation density� � ½# scales�:

ð21Þ

Fast object detection algorithms achieve computational
efficiency in part by adapting the number of features used
for each test. In the case of [28], [21] this is done via a
detection cascade wherein many candidates are rejected
without the need to examine all of the features. Importantly,
however, the cost of a detector of this kind still scales with
the size of an input image whereas the cost of the
displacement expert does not. The validator, which tests
just one location, also escapes any dependency on image
size and thereby imposes negligible computational cost.

5 EXPERIMENTAL RESULTS

Experiments were conducted to investigate the perfor-
mance and characteristics of the tracking system described
in this paper. These are divided into experiments on the
displacement expert alone and on the complete hybrid
system of Section 4:

Displacement expert

1. Sensitivity to parameter settings,
2. Effect of multiple seed images,
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Fig. 7. Overall system design. At each time step, the validator uses the
object classifier to examine the subregion described by the state estimate,
ut. If the classifier gives a positive response, the RVM displacement
expert is used to generate estimates as outlined in Algorithm2. A negative
response from the validator indicates loss of lock requiring the classifier to
reacquire the target by exhaustive search. When search completes
successfully, control is returned to the displacement expert.



3. Tolerance to unmodeled 3Dmotion and deformation,
4. Tolerance to lighting variation and occlusion,
5. Tolerance to varying background,
6. Tracking with 6 degrees of freedom, and
7. Comparison to other 2D tracking approaches.

Complete System

1. Comparison to plain object detector and
2. Long-term performance.

5.1 Test Data

The experiments were carried-out on video sequences
captured with a variety of equipment and showing various
objects, including: Five videos of between25 and100 seconds,
captured with Web cams and showing the faces of three
individuals moving against office backgrounds. A 60 second
video showing a face under severe lighting variation. Two
short sequences showing a hand and a planar CD case,
respectively. Two videos of passing cars, captured with a
camcorder. A one hour-long sequence captured online by a
Web cam.

All experiments detailed in this paper were carried out
on a desktop PC with a 2.54GHz Intel Pentium IV processor
and 512MB of RAM.

5.2 Performance Measures

The two properties of the algorithm we need to measure are
speed and accuracy. Speed is measured here as both time
taken to track each frame and CPU utilization. This second
measure is meaningful when video frames are only
available at a maximum rate (e.g., 15 or 25 frames per
second) and the tracker leaves processor cycles free.

Accuracy is reported as the root-mean-square (RMS)
error between tracking estimates and a ground-truth state.
The ground-truth was obtained by hand-labeling each
frame with the horizontal and vertical position of the target
object. The RMS error is defined as:

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

F

XF
f¼1

X
d2fu;vg

ðudf � vdfÞ2
vuut ; ð22Þ

where F is the number of frames in a sequence. vdf is the
ground-truth state for degree of freedom d in frame f and udf

is the mean of the corresponding estimate made by the
displacement expert. In some of the experimental sequences,
the displacement expert loses track. On these occasions, the
RMS error becomes meaningless (being wrong by 100 pixels
is no better or worse than 200 pixels). Therefore, an
“adjusted” RMS value is also reported for some experiments.
This is found by not including any frames with loss of lock in
(22). To make this fair, a second figure is reported stating
what proportion of the frames (inliers) were included in this
estimate. Inliers are defined as frames for which an
exhaustive object detector gives at least one positive hit.

5.3 Displacement Expert

The first set of experiments were conducted on the
displacement expert alone. Unless otherwise stated, all
experiments were performed without the use of a Kalman
filter (Algorithm 2) to eliminate any advantages introduced
by a motion model. Without the Kalman filter, tracking is
performed by updating a point state estimate by the mean
of the output of the displacement expert.

5.3.1 Parameter Settings

To train thedisplacement expert,Algorithm1requires at least
one labeled seed imagealongwithparameters for the rangeof
displacements to generate training examples from (�) and
andnumber of examples to create (N). A third free parameter
is the width of the RBFs used in the RVM (� in (8)). Fig. 8
showshow theRMS tracking error varieswith� and� (when
trained from a single seed image).

Fig. 9a shows the tracking error and average tracking
time per frame against N (including training time). Fig. 9b
shows the number of relevance vectors (wi 6¼ 0) retained for a
given training set size. In the linear part of this graph, the
number of relevance vectors is approximately 0:75N .

In subsequent experiments, the values � ¼ 0:8, N ¼ 50
were used. A training range of�u;v ¼ 15 pixels was used for
translation and �s ¼ 0:1, �� ¼ 10 were used for scale and
rotation, respectively.

By using a single seed image, the performance of the
displacement expert is dependent on what can be learned
from that one image. To capture greater invariance to
deformation, 3D rotation, lighting, and background, it is
favorable to train the expert on examples gathered from
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Fig. 8. Parameter sensitivity. (a) Effect of kernel width parameter, � on tracking accuracy. (b) Effect of training displacement range, � (only
translation shown), on tracking accuracy. Error bars indicate � one standard deviation in results.



several different seed images. Fig. 10 shows how accuracy is
improved by using more than one seed image.

5.3.2 Tolerance to Unmodeled Appearance Changes

The displacement expert, trained to track the Euclidean
similarities, doesnotmodel three-dimensional rotation (pitch
and yaw) and as suchmust have a certain degree of tolerance
to these transformations. When trained with a single seed
image (Fig. 10a), the maximum yaw (rotation about vertical
axis) tolerated before loss of lock was 37 degrees and the
maximum pitch (rotation about horizontal axis) was 53 de-
grees.When trained on three seed images (Figs. 10a, 10b, and
10c), this performance improves to: maximum yaw, 48 de-
grees; maximum pitch 61 degrees.5

Other important appearance changes that can occur are
due to deformation of the object (e.g., facial expression in face
tracking), occlusion by some foreign object or a change in
lighting conditions. The first two rows of Fig. 11 demonstrate
the tolerance of the displacement expert to deformation and
partialocclusion(whentrainedfromasingleseedimage).Due
to the use of intensity data as observations, the displacement
expert fails under significant changes in lighting. Preliminary

experiments have used the output of steerable filters [8] to give
the orientation of the strongest gradient at each image
location. As these features are magnitude invariant, they
exhibit excellent tolerance to severe lighting variation when
used by the displacement expert (row 3 of Fig. 11).

5.3.3 Effect of Background

While it is possible that the relatively small number of
training examples generated by Algorithm 1 are sufficient
to capture variation in the appearance of the target object,
they are certainly insufficient to capture all possible
backgrounds. There are two strategies available to help
reduce the effect of background:

1. If the target region is cropped inside the true object
boundary, the “background,” as registered by the
displacement expert, is actually the periphery of the
target and will therefore exhibit far less variation
than arbitrary background would.

2. Training on multiple seed images showing the target
against different backgrounds will introduce some
invariance to background. While this still will not
generalize all backgrounds, true background rarely
occupies more than 25 percent of a sampled region
and the remaining pixels can still be used to guide
the displacement expert.
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Fig. 10. Benefits of using more than one seed image. This plot shows how RMS tracking error decreases as additional seed images are used to
create the displacement expert. The images on the right are the five seed images used in this experiment given in the order in which they were used.

5. Figs. 10a, 10b, and 10c only demonstrate pitch and yaw in one
direction and in this experiment, the maximum was only measured in this
one direction. To improve performance in all directions, more examples
would be needed in the opposite sense to Figs. 10b and 10c.

Fig. 9. Effect of training set size N. (a) Tracking accuracy and tracking time per frame (inclusive of training) as a function of training set size N.

(b) Average number of relevance vectors against N.



To test these conjectures, two experiments were devised.
The first tested how tracking accuracy changes as the target
region becomes a smaller fraction of the true object size. The
results of this are shown in Fig. 12. The second examines the
effect of using different backgrounds in seed images. The
results of this are in Fig. 13.

For objects with nonrectangular boundaries, another
method tominimize the influence of background on tracking
performance is to sample pixels from contoured regions.
Fig. 14 shows clips from a hand tracking experiment inwhich
pixels are sampled from a region described by a closed
B-spline curve [4].6

As an example of tracking object with more varying
backgrounds than an office, Fig. 15 shows the results of
tracking passing cars. Both cars were tracked successfully
after training from a single seed image.

5.3.4 Affine Tracking

An alternative method for handling 3D rotation is to model
it approximately with an affine transformation. This
requires six degrees of freedom in the displacement expert,
the results of which are shown in Fig. 16.

5.3.5 Benefits of Temporal Fusion

Fig. 17 shows the advantages of using probabilistic
inference. The object being tracked moves progressively
more rapidly and without filtering, the errors grow to the
point where lock is lost, and the tracker requires reinitia-
lization. With a Kalman filter in place the error is an order
of magnitude lower. Probabilistic inference has greatly
increased both the stability and the robustness of tracking.

5.3.6 Comparison to other Approaches

Many approaches for 2D region tracking exist in the
literature. We compare the displacement expert to two of
them here:

1. First,we compare to normalized cross-correlation [17]

as this is awell established and familiar approach and

will serve as a benchmark. This was implemented by

updating the state estimate to the location having the

highest correlation scorewith an initial template. This

searchwasperformed in a region around theprevious

state estimate. The size of search regionwas chosen as

the smallest that enabled the algorithm to track the
entire sequence without failure.

2. Second, we compare the displacement expert to the
performance of the WSL tracker of Jepson et al. [14].
This is an adaptive approach and as such is reported
to have excellent tolerance to appearance changes as
well as good accuracy.

The three methods were compared for both accuracy (RMS

error)andefficiency(timeper frame).Theresultsarerecorded

in Fig. 18.

5.4 Complete System

Section 4 explains how a validation/restart mechanism can

be used in conjunction with the displacement expert to

provide long-term reliability. Recently, work such as [28] has

provided highly efficient face detection algorithms and for

face tracking applications of this system FloatBoost [18] was

used. Experimentswere carried out tomeasure both the CPU

demand and accuracy of FloatBoost alone7 and the hybrid

tracker of Section 4 using FloatBoost as the validator and

detector. Fig. 19 shows how the accuracy of frame-indepen-

dent search by FloatBoost compared to those made by a

hybrid system with the displacement expert. The sequences

used in this experiment all include the target object becoming

totally occluded for a short time. To calculate the adjusted

RMS values, inliers were counted as those frames for which
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6. Note that this does not model the fact that a hand is not a rigid body
but is merely illustrating the use of contoured boundaries.

7. As a fairer comparison to the displacement expert, a version of the
FloatBoost detector was used that is optimized for finding only one face in
an image. By using a heuristic search pattern and halting after one face is
found, this version is more efficient than exhaustive full-frame search.

Fig. 11. Tolerance to appearance changes. Rows 1 and 2 show the displacement expert tracking a face undergoing deformation and occlusion.

Partial occlusion is tolerated (although small misalignments occur), however, the last occlusion in row 2 is too severe and tracking is lost. A

displacement expert using gray-scale features is very sensitive to lighting variation, but one using the orientation from steerable filters [8] is

extremely tolerant to it. Row 3 shows the result of tracking such filtered image features under severe lighting variation.



the boosting algorithm supplied an estimate (the boosting

RMSandadjustedRMScolumnswere therefore computedon

the same number of data).
Fig. 20 shows the mean CPU utilization of each algorithm

aswell as the “steady-state”CPUusageduring tracking alone

(i.e., ignoring exhaustive searches and training).

5.4.1 Long-Term Performance

The aim of combining an object detector with a tracker is a

system that is efficient and can recover from failure of the

tracking component yielding long-term (indefinite) relia-

bility. Fig. 21 shows snapshots from a 60 minute face

tracking sequence during which the target (observed by a

Web cam) carries on working as normal, including leaving

and returning to the scene several times. The tracker was

trained from three seed images and the mean CPU

utilization for this period, including online learning of the

displacement expert was 32 percent. Of all the occasions

that the system changed from tracking to restart mode,

approximately 12 percent were due to tracker failure rather

than the target simply leaving the field of view.

6 DISCUSSION

Fig. 8 shows the sensitivity of tracking error to the input

parameters of the displacement expert training algorithm.

The error bars of Fig. 8b give insight into the behavior of the

expert trainedonsmalldisplacementranges�:Goodtracking

accuracy is possible as the expert has been trained on many

examplesveryclose to the targetobjectandpredictionswithin

this local region are very accurate. However, the expert has

not been trained on any large displacements and rapid

interframe motion will cause loss of lock.

Choosing the size of the training set N (Fig. 9) involves a

compromise. Clearly, the more training examples included,

the better the trackingperformance, however, largerN incurs

a larger computational penalty, for both training and

tracking. During tracking, the extra burden is imposed by

an increased number of relevance vectors (Fig. 9b). This

number increases linearly with N up to N ¼ 80 examples,

afterwhich thenumberof relevancevectors saturates at about

56. This implies that adding examples aboveN ¼ 80 does not

provide any extra information about displacements.

The advantages of training the displacement expert on

more than one seed image are illustrated in Fig. 10. It is

worth noting that, while the improvement of using two

seed images over one is dramatic, subsequent improve-

ments are far smaller. It is possible that for this face-against-

office scenario two seed images captures sufficient varia-

bility in appearance. This could increase for sequences

which show more dramatic variation, for example in

lighting conditions (see below).
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Fig. 13. Advantages of using different backgrounds in seed images. (top) Stills showing the three backgrounds used in this experiment. (bottom)
Table showing the accuracy of the displacement expert when trained on one or more seed images showing different backgrounds. Results are given
for tracking the object on the “host” backgrounds the expert was trained against and on unseen backgrounds.

Fig. 14. Hand tracking. When tracking a nonrectangular object pixels
can be sampled from an arbitrarily contoured region to exclude as much
background as possible.

Fig. 12. Effect of cropping. By setting the target region to be inside the true

target, the displacement expert is less dependent on viewing the object

against one particular background. In this example, the 100 percent area

is of width 59 pixels and height 74 pixels.



Fig. 11 shows that the displacement expert is robust to

object deformations and partial occlusions yet, despite the

use of histogram equalization (Section 3.1), it is unstable

under significant lighting variation. One way to overcome

this is to provide multiple seed images showing various

illuminations. When being used for real-time tracking,

however, the user cooperation required to gather multiple

illuminations is unacceptable and an alternative approach is

sought. Replacing the raw pixel features with magnitude

invariant orientation information dramatically improves

stability under illumination changes, however, there is the

additional computational cost of filtering each incoming

image. This undermines the principal advantage of the

displacement expert over some other methods (e.g., WSL

[14]), and a topic for future work will be to incorporate this

type of invariance in a computationally efficient way.

The comparison to normalized cross-correlation in Fig. 18

shows that thedisplacement expert achieves greater accuracy

at around a third of the computational cost. The WSL

algorithm [14] is shown to be significantly more accurate

than the displacement expert, however, it takes over 40 times

as long to track each frame, exposing the trade-off between

accuracy and speed in tracking algorithms.

Fig. 12 demonstrates that setting the target region to be

inside the overall object being tracked improves performance

by reducing the variation in what the displacement expert

sees as “background.” If this is taken too far (to below around

50 percent in face tracking), the number of features available

to help track the object has been reduced to such a point the

accuracydegradesagain. For face tracking, theoptimal area is

around 75 percent of the total object. Fig. 13 shows again that

trainingonmore thanone seed image improves accuracy: this

time for resistance to background appearance.

Figs. 19 and 20 compare the accuracy and efficiency of the

displacement expert-detector hybrid with search by Float-

Boost [18]. For tracking a single object, the expert shows

similar accuracy to boosting (when taking the adjusted RMS

value). With respect to CPU usage, the hybrid system takes

75percent thenumber of cycles requiredbyboosting for these

short test sequences (including training the expert). In other,

longer, scenarios with less attempts to deliberately instigate

restarts, this gets closer to the 40 percent suggested by the

steady-state results. It isworthmentioning, however, that the

version of FloatBoost being used is optimized for finding a

single face. Using a version with exhaustive search will

require more CPU time, but will have the advantage of

finding all faces present in the image.
The final experiment over 60 minutes proves the hybrid

strategy to be viable for tracking an object for extended
periods of time while still only using a fraction of available
CPU cycles.
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Fig. 15. Tracking cars. Digital video recordings of a passing vehicle and
a license plate. The tracker was trained from a single frame and
successfully follows the regions despite clutter and an unsteady camera.

Fig. 16. Trackingwith six degrees of freedom. These clipswere generated
by training an RVM displacement expert to work with six degrees of
freedom in the affine similarity space. This approximately models the
projection of a planar object undergoing out-of-plane rotations.

Fig. 17. Probabilistic inference improves performance. This figure shows

the error performance of the RVM tracker with Kalman Filter (solid),

compared with raw, unfiltered RVM output (dashed).

Fig. 18. Comparison to normalized cross-correlation and WSL tracking. These results were taken from tracking a 200 frame sequence of a head

passing in front of the camera at approximately constant depth.



7 SUMMARY AND CONCLUSIONS

We have demonstrated a tracker using sparse probabilistic

regression by RVMs, with temporal fusion for high

efficiency and robustness. Further robustness is obtained

by running, in tandem, an object-verifier which serves to

both validate observations during normal operation and to

search intensively for an object during initialization and

recovery. The RVM can be trained from a single object

instance (seed image) perturbed to generate a training set

and training is performed online taking only a few seconds

on a desktop PC. Given that estimates are generated from

local image observations only, this is a real-time tracker

imposing a modest computational load in comparison to

approaches that search each frame exhaustively. Thanks to

its recovery mechanism it runs continuously. This is a

general method for affine tracking and we have demon-

strated real-time operation tracking faces, hands, and cars.

As presented, this system is designed to track a single

object of interest and future researchwill address the efficient

tracking of multiple objects. Other future work includes:

1. Greater invariance to illumination changes is ob-
tained by preprocessing of images beyond simple
intensity normalization; the aim is to incorporate
these invariant features with a minimum increase in
computational burden.

2. Adaptive retraining in parallel with tracking.
3. Greater variation of view and articulation.
4. Enhanced inference by efficiently modeling depen-

dencies between state space dimensions and using
motion trajectories in prediction.
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