
A Probabilistic Framework for Space Carving

A. Broadhurst, T.W. Drummond and R. Cipolla
Department of Engineering
University of Cambridge
Cambridge, UK CB2 1PZ

Abstract

This paper introduces a new probabilistic framework for
Space Carving [9]. In this framework each voxel is as-
signed a probability, which is computed by comparing the
likelihoods for the voxel existing and not existing.

This new framework avoids many of the difficulties asso-
ciated with the original Space Carving algorithm. Specifi-
cally, it does not need a global threshold parameter, and it
guarantees that no holes will be carved in the model. This
paper also proposes that a voxel-based thick texture is a re-
alistic and efficient representation for scenes which contain
dominant planes. The algorithm is tested using both real
and synthetic data, and both qualitative and quantitative
results are presented.

1. Introduction

Three-dimensional reconstruction has attracted consid-
erable attention, and is still a very active topic for re-
search. The goal of reconstruction is to recover the three-
dimensional shape of a static scene viewed from a number
of different cameras. Many different representations have
been suggested, but still no single solution has been devel-
oped that covers all types and configurations of input im-
ages.

The earliest attempts [10] to solve the reconstruction
problem posed the solution using image matching. These
correlation based algorithms (e.g. [10, 7, 15]) attempted
to solve the 2-D disparity field which described the rela-
tionship between two images. In this representation, when
there is a change of depth, there is always an associated oc-
clusion. But, in all these algorithms the factor limiting the
complexity of the reconstruction is the depth parameterisa-
tion of space ���������
	 .

More recently, a second class of algorithms have focused
on using Euclidean (or projective) representations for space.
A common approach is to use piecewise planar polygons,
which can be made significantly more realistic by using

photographic and bas-relief texture. This was demonstrated
by [5], and further developed by [1] who used layered depth
images to efficiently represent 3-D scenes. The algorithm in
this paper uses a layer-based implementation.

A third class of algorithms are the volumetric represen-
tations, which may use voxels [14, 13, 9, 4], or level sets
[6]. The voxel-based algorithms make no attempt to model
the continuity of shape, rather, they model the volume as
an array of 3-D voxels. By not making assumptions about
planarity and continuity, the voxel algorithms are able to
cope with significantly more complex structures. The dif-
ficulty with these approaches, however, is that by ignoring
the regularising assumptions they become more susceptible
to noise.

In this paper a novel probabilistic framework for the
space carving algorithm will be presented. Many ideas from
the original Space Carving [9] framework will be retained
but, significantly the existence of a voxel will not be a bi-
nary function. Instead each voxel will be assigned a proba-
bility for it existing in the model. This is different from the
work of [14, 2], because the probability is used to describe
the existence of the voxel, and is not used to infer opacity.
It will be shown that by using a probabilistic framework,
two major failings of the Space Carving algorithm can be
avoided. The first advantage is that no global parameters
are required. (Space Carving requires the user to specify a
global variance.) The second advantage, is that it can be
guaranteed that the algorithm will not carve holes in the
model, which is a well known failing of the Space Carving
algorithm.

2. Background

In the Space Carving [9] framework, space is represented
by an array of voxels, which must enclose the entire scene.
At each iteration the algorithm selects a voxel and projects
it into all the images where it is visible. It then asks the
question; could this voxel have been part of the model? If
the answer is no, then voxel is removed. This process is
repeated until the algorithm has exposed the 3-D shape of

Figure 1. These images were generated using the
original Space Carving algorithm [9] with two differ-
ent thresholds. Notice how the windows have been in-
correctly carved in both models, and how the thresh-
old is too high in the right image to recover any detail.

the scene.
One difficulty with this algorithm is that if a voxel is re-

moved in error, the algorithm will punch a hole all the way
through the model. This erroneously removes further vox-
els, which may lead to a cascade effect. In practice a large
region of the model may be removed. This paper will solve
this problem by imposing the constraint that every ray must
intersect at least one voxel.

A crucial part of the Space Carving algorithm is the
consistency function, which is the mechanism that decides
whether a voxel should be kept or discarded. Originally ,
only the centroid of a projected voxel was considered [9],
and the voxel was kept if the RGB variance was less than a
global threshold. A later refinement introduced R-shuffles
[8] to allow for calibration error, but this still did not allow
for any image noise, or lighting errors. The effect of noise
can be reduced by using a statistical consistency function
[3], but voxels may still be removed erroneously.

3. Framework

In this section the basic outline of the probabilistic
framework will be described. There are many implemen-
tation issues which will need to be considered, but these
can be left to the following section.

Indices�
Image index ���������	��
���� � Pixel co-ordinate index� ��� ��� Voxel index (m is depth)

Image data���
Image i������ Pixel ��� � of image

���
.

Geometric variables� �
Projection matrix for image

� �����
Homography from plane � to

���
Statistical variables�

All available data ��� ��� � � � � � ���!#"%$ � !#"%$ � �&�('*) voxel removed � �+) voxel exists �, "-$ �
The model for a voxel which exists at

� ��� ��� ../�"%$ �
The missing voxel model, for image

�
.

Table 1. Notation used in this paper.

3.1. Modelling the projection of a voxel

This algorithm will use two models to describe a voxel.
The first model will describe what the projection of a voxel
looks like in the image, and a second model will describe
what an image looks like when a voxel is removed. Later
Bayes’ rule will be used to infer which case is more likely.

={µ,σ}klmV

Ii

={µ,σ}klmW i

xyI i

01 2324 5356 7788939393939939393939939393939939393939939393939939393939939393939939393939939393939

:3:3:3:3::3:3:3:3::3:3:3:3::3:3:3:3::3:3:3:3::3:3:3:3::3:3:3:3::3:3:3:3::3:3:3:3:

;3;3;3;3;3;3;3;3;3;3;3;3;3;;3;3;3;3;3;3;3;3;3;3;3;3;3;;3;3;3;3;3;3;3;3;3;3;3;3;3;;3;3;3;3;3;3;3;3;3;3;3;3;3;;3;3;3;3;3;3;3;3;3;3;3;3;3;;3;3;3;3;3;3;3;3;3;3;3;3;3;;3;3;3;3;3;3;3;3;3;3;3;3;3;;3;3;3;3;3;3;3;3;3;3;3;3;3;;3;3;3;3;3;3;3;3;3;3;3;3;3;;3;3;3;3;3;3;3;3;3;3;3;3;3;

<3<3<3<3<3<3<3<3<3<3<3<3<3<<3<3<3<3<3<3<3<3<3<3<3<3<3<<3<3<3<3<3<3<3<3<3<3<3<3<3<<3<3<3<3<3<3<3<3<3<3<3<3<3<<3<3<3<3<3<3<3<3<3<3<3<3<3<<3<3<3<3<3<3<3<3<3<3<3<3<3<<3<3<3<3<3<3<3<3<3<3<3<3<3<<3<3<3<3<3<3<3<3<3<3<3<3<3<<3<3<3<3<3<3<3<3<3<3<3<3<3<<3<3<3<3<3<3<3<3<3<3<3<3<3<

klm = 0
klm = 1

No match
Match

(Images independant)

Figure 2. The model for a voxel existing (
! "-$ �)=�),

and not existing (
! "-$ �)>').

The first possibility is that the voxel indexed by
� �?� is

present in the model (denoted
!@"-$ �)=�), in which case the

image data corresponding to the projection of the voxel will
be described by the voxel model

, "%$ �
. This is true for all

views that are not occluded. Each voxel will be represented
by a spherical Gaussian distribution in RGB space. This
means that

, "%$ �
has four degrees of freedom that need to

be estimated, which are �(AB � ADC � AFE �%GIH � .
The second possibility is that voxel

� �?� does not exist
(denoted

! "%$ �)J'). In this case when the non-voxel is
projected into each of the images, the image samples will
be from different voxels. The difficulty here is that until
the entire model is known, it will not be know which vox-
els these were. To get around this difficulty, it will be as-
sumed that each sample is locally independent. This means
a missing voxel can be represented by a set of indepen-
dent models � ./�"%$ � � (one for each image). Again, each
of the models will be represented by a spherical Gaussian
�KA B � A C � A E �%GIH � .
3.2. How to make a decision about a voxel

The probability of a voxel existing L � ! "%$ �)M�&N � 	 is
determined using Bayes’ theorem. The voxel and indepen-
dent models are used to compute the likelihoods of the data
given the models. The prior probability that a voxel exists
is denoted L � !)&� 	 .
L � !#"%$ �)/�*N �)

L � � N !#"-$ �)=� 	 L � !)/� 	
L � � N ! "-$ �)&� 	 L � !)&� 	DO L � � N ! "%$ �)P' 	 L � !)P' 	 (1)

The two likelihood terms are written as a function of the
image data, and the model parameters. For the independent

model case these are � .=�"-$ � � , and are marginalised:

L � � N ! "%$ �) ' 	
) �
�

������	�
 L � � � N ! "%$ �)P' � . �"%$ � 	 L � . �"%$ � 	�� . �"%$ � (2)

A similar expression can be written for the case of a
voxel existing. In this case, the voxel model

, "%$ �
is

marginalised, which gives:

L � � N !#"%$ �)/� 	
)

�� ���
 �
� L

� � � N !#"%$ �)&� � , "%$ � 	 L � , "%$ � 		� , "%$ � (3)

3.3. Visibility and occlusion reasoning

Equations (2) and (3) assume that every voxel is visi-
ble. This is only true for exterior voxels, as any other voxel
may be occluded. Marginalising the existence of all closer
voxels, however, is computationally infeasible, but an ap-
proximation can be made.

A voxel
� � � defines a ray to a camera

� �
, and only vox-

els along this ray effect visibility. This is a first order ap-
proximation. Of all the possibilities of these voxels exist-
ing or not, only two cases are of interest which are denoted� �"-$ � � � '*)�� ������� ��� � �)������ ������� � � . The probability of a
voxel being visible L � � �"%$ �) ' N�� ! � � � 	 is computed by
ensuring all the voxels along the path of the ray do not exist.
Equation (4) assumes independence, which is the same first
order approximation (as above).

L � � �"%$ �)M' N � ! � � �) �!�" ray

L � ! !) ' N � 	 (4)

In (3), the effect of occlusion was neglected. These equa-
tions can be rewritten for a particular set of visible images� � �"%$ � � by only including the visible images in the product:

L � � N ! "%$ �)M' � � � �"%$ � � 	
) �
�$# � ����	�
L � � � N !#"%$ �)�' � . �"%$ � 	 L � . �"%$ � 	�� . �"%$ �&%�' ��	�
 (5)

The next step is to marginalise the visibility � � �"%$ � � by
summing all the possible visibility assignments.

L � � N !@"%$ �)>'))(*	+,"�-	.0/ 1�2L � � 1"%$ �)3� 1 N � ! � � 	 � � �(*54�"�-	.0/ 1�2L � �76"%$ �)8� 6 N � ! � � 	 L � � N ! "%$ �)P' � � � �"%$ � � 	
)9(* + ���	�:(* 4 �

� L
� � �"%$ �)3� � N � ! � � � 	 ��; �"-$ � 	 ' ��	�
; �"%$ �) � ������
L � � � N !@"%$ �)P' � . �"%$ � 	 L � . �"%$ � 		� . �"%$ �

(6)

Equation 3 can be modified in a similar manner:

L � � N !#"-$ �)=� 	
) (*	+ ����� (*54 �

� L
� � �"%$ �)<� � N � ! � � � 	 �>= � "%$ � 	 ' ��	�
= � "%$ �) �� �	�
L � � � N ! "%$ �)&� � , "%$ � 	 L � , "%$ � 		� , "-$ � (7)

To correctly marginalise the dependence of voxels, it
would be necessary to integrate over all the visibility cases
of all the other voxels. This is infeasible, and is replaced in
this section by a first order approximation to marginalise the
different visibility cases. This still has ? ��@ 6 	 complexity,
so a brute force approach is still impractical, but a further? �
 	 approximation is considered in Section 4.5.

3.4. Image sampling and independence

Consider the problem of estimating the likelihood of the
data for a given voxel. This requires information from dif-
ferent images with different levels of detail to be combined.

Typically the resolution of the voxel array is similar to
that of the images, but for a particular voxel it may be either
slightly higher or lower than that of the voxel grid. The diffi-
culty with this is that it is necessary to compute the fraction
that each pixel contributes to the distribution of each voxel.
This is difficult and time consuming. A better approach is to
oversample the voxel array so that it can be guaranteed that
each sample point is drawn from a single pixel. The over-
sampled plane corresponds to the front face of each voxel
and is denoted ACB:D"-$ � , where

� � � refers to the voxel, and E �
are the co-ordinates of the sample point within that voxel.

There is a complication, however, in that pixels which
project to a large area on the voxel will get counted many
times. To solve this problem, the samples from each im-
age are inversely weighted according to their area: F �)1GIH5J�K�LNM � O	P&Q where R ��	� is the affine homography from the

image to the front face of the voxel, and where S ��T 	 is its
Jacobian. This means that a large pixel which spans several
sample points will get a small weighting.

The voxel model has been assumed to be Gaussian, so, "%$ �) �VUA ��G � . The voxel model term in (7) can be
marginalised as follows:

L � � � � N , "%$ � � � �"-$ �)>' � ! "%$ �)/� 	
)

�W� � B,D L � A B:D"%$ � N � �"%$ �)P' � !#"%$ �)&� 	�X � L � UA 		� UADL � G 	��3G
)

�W� � B,D �Y# �Z GV[@]_^0` �badc�e&f>g���
ihkjl cnmmpo m % X �
L � UA 	�� UAFL �?G 		��G

(8)

At this point the prior for L � UA 	 is assumed to be flat, and
L �?G) 1q is given a Jeffrey’s prior. This is both mathemat-

ically convenient, and favours voxels with small variances,
which agrees with the posterior data.

L � � � � N , "-$ � � � �"%$ �)M' � !#"%$ �) � 	
) �@ [
�� �G�� [\
�� ` L 6 a 1 Q�� �	� �
�
 � 	@ � (9)

where
�)� F � and GIH�) GIH��� O GIH��� O GIH���
and GIH� �) 16 � � B,D � F � � H B 	
���@HB . A similar expression
can be written for the case of independent models (i.e. no
match):

L � � � � N � . "%$ � � � � �"-$ �)>' � !#"%$ �)>' 	
) �
�

� � � B:D L � A B,D"%$ � N � �"%$ �)P' � !#"%$ �)P' 	 L � UA 		� UADL � G 	��3G
) �
�W# �@ [
�� �G �� [\
�� ` L 6 a 1

Q��
� � �
�
 � 	@ � % X �

(10)

This can be expressed using log probabilities, with
 be-
ing the number of visible images, as:����� L � � � � N�� . "%$ � � � � �"%$ �)M' � ! "%$ �)M' 	

) (� F ����� �
 	 ����� Z G �� ^ H O � �
 	! (11)

In summary, a voxel is defined by one of two models,
depending on whether it exists in the model, or not. An
expressions has been derived for estimating the parameters
of both models, and for computing their likelihoods in a
Bayesian framework. A technique for handling visibility
and occlusion has been presented, but this is still compu-
tationally expensive, so a number of implementation issues
will be addressed in the next section:

4. Implementation

In this section the implementation of the Probabilistic
Space Carving algorithm will be discussed, but first, a num-
ber of practical issues need to be addressed:

4.1. Overview of the carving algorithm

The voxel array is processed using the plane sweep al-
gorithm, starting with the layer of voxels closest to the
viewer. After the probabilities for the first layer of voxels
have been calculated, the probabilities are rendered into the
alpha channel of each of the source images. When process-
ing each of the subsequent layers, the probability of a voxel
being occluded (in each image) is easily obtained by look-
ing up the projected alpha value in the images. Again, after
each plane is processed the rendered alpha values in each of
the images are updated.

4.2. Processing layers for efficiency

Rendering a voxel array using triangles is very inefficient
as there are 12 triangles per voxel. Silicon Graphics have
overcome this problem in OpenGL, by defining a set of ex-
tensions for volume rendering. The voxel array is described
as a set of texture mapped layers, with the alpha channel
specifying the the opacity. Matching using layers is not a
new concept in Computer Vision [14], however, in this pa-
per the alpha channel will be used to store the probability of
a voxel existing L � !) � N � 	 not opacity.

4.3. Encoding probability

The alpha channel on most graphics platforms is only
8 bits wide, so an efficient encoding scheme is needed for
storing the probability. This probability is computed using
Bayes’ rule (1), and can be expressed as:

L � !) �N �) �
� O � L#" $&%�' L)(�* +-, . Q a " $&%�' L)(�* +-, 1 Q/. " Q (12)

where the prior
�) ����� L � !)P' 	
 ����� L � !)&� 	 is assumed

constant. The alpha channel stores the difference between
the log likelihoods and is insensitive to

�
.

4.4. Calculating visibility

The probability of a voxel being visible is given by (4).
It is not necessary to compute the entire product for every
voxel. After each plane has been processed the images can
be used to cache the result of L � � N ! � � 	 for all planes
up to the one being processed. This is a significant speed
improvement.

Consider one pixel in an image. This pixel defines a ray
in space, which intersects with one voxel in each layer. To
find the current estimate for L � � N ! � � 	 , the product along
each ray is calculated. Since this ray is defined by a single
image pixel, the 0 channel of the source image can be used
to cache the accumulated probability 1=L � � N ! � � 	 . After
each new layer of voxels is carved, the cached values need
to be updated. This is implementing using two alternating
phases. In the first phase a layer of voxels is processed, and
in the second phase the cached visibility values are updated
(in the image plane). This is repeated for each layer.

4.5. Marginalising visibility

To calculate the probability of a voxel existing, the
probability given each of the possible visibility assign-
ments must be computed (see equation 7), and the visibility
marginalised. This is very slow as it has complexity ? ��@ 6 	 .
Instead a local threshold 2 is introduced and view

���
is in-

cluded in the integral if L � � �"%$ �) 'MN ! � � 	43 2 . The

Figure 3. This figure shows two of the eleven images
of the Master’s Lodge, Trinity College, Cambridge

parameter 2 is then varied between ' �	����� , and the maxi-
mum likelihood value of L � ! N � � � 	 is found.

Since the number of images is usually significantly lower
than the number of possible 0 values, it is a good idea to
break the search up into a small number of 2 ranges. In this
way one can guarantee the visibility to stay the same over
each of the ranges.

This approximation selects the most likely cases for 2
views, 3 views, etc. All other visibility cases are assumed
to be unlikely. This approximation can be checked as the
total likelihood of all the visibility cases should be one.

4.6. Approximations for rendering

This section describes how an image from a new view-
point is rendered. The best approach is to integrate along
each ray marginalising the probabilities of each voxel using
Bayes’ rule. This assumes that there is one voxel visible
along each ray, but cannot be implemented using OpenGL.

� B ���) � B " B ��� � B L � ! B)/� 	� B " B � � L � ! B)=� 	 (13)

If Equation (13) is approximated by a maximum likeli-
hood estimate, then an OpenGL implementation is possible.
The model is repeatedly rendered using the 0 -test, with an
increasing probability threshold. Alternatively, a conven-
tional 3-D model can be generated by classifying each voxel
as either existing, or not; by selecting the best voxel along
each ray. This technique was used to generate Figure 4.

5. Results

The algorithm is demonstrated in both a qualitative and
quantitative manner. Figures 4 and 5 were generated us-
ing the Master’s Lodge [3] and the Castle [11] image se-
quences. The rendered views are new viewpoints, which
were not used during the reconstruction process. The
ground truth is shown in Figure 5 for comparison. Notice
how the entire image including the background and trees
has been reconstructed.

A quantitative analysis has been performed using both
real and synthetic data. Figure 6 shows the performance of
the original Space Carving algorithm and the probabilistic
approach, by plotting the number of missing pixels (holes)

against reconstruction error. Notice how the new approach
never carves holes in the model, and how difficult it is to se-
lect an optimal threshold parameter in the original method.

Figure 4. This figure shows two rendered im-
ages from unseen viewpoints. The front view uses
Bayesian rendering, and the top view is generated us-
ing a M.L. reconstruction. The model contains 63
planes with texture size @����
	�� � @ .

Figure 5. This figure was generated using 16 images
from the castle sequence. The model contains 116
planes with texture size @����	 � ��� . The left image is
the new viewpoint, and the right image is the withheld
view.

30 35 40 45 50
0

5

10

15

20

t=16

t=18

t=20

t=22

t=24

t=26
t=28Probabilistic

Space Carving

Error (RGB distance)

P
er

ce
nt

ag
e

of
 m

is
si

ng
 p

ix
el

s

20 30 40 50 60 70
0

10

20

30

40

50

t=5

t=7

t=10

t=20 t=25

t=10

t=12

t=15Probabilistic
10%0%

Space Carving

Error (RGB distance)

P
er

ce
nt

ag
e

of
 m

is
si

ng
 p

ix
el

s

no noise
sigma=10%

Figure 6. These two graphs compare the perfor-
mance of the probabilistic approach with the original
Space Carving algorithm. Each data point was gen-
erated by calculating the pixel error between an un-
seen ground truth image, and a reconstructed image.
The right hand plot uses synthetic data, and shows
the effect of noise. The left plot uses the Master’s
Lodge image sequence. The parameter � (0..255) is
the global variance threshold of the original Space
Carving [9] algorithm. The probabilistic framework
has no parameters.

5.1. Discussion

Figure 6 shows how significantly the quality of the re-
construction is affected by the threshold parameter in the
original Space Carving algorithm. This ambiguity is elim-
inated using the probabilistic approach. In particular, the
algorithm never generates holes in the model. This has
two side-effects. Where previously there would have been
holes, the new algorithm renders using a low probability
voxel. This can lead to higher errors in the rendered images
around these regions. A second difficulty is that if the back-
ground is not accurately segmented, then the algorithm will
not find holes where there should be holes. In many cases,
such as the Castle sequence, background segmentation is
not necessary.

5.2. Application: Thick texture

Many scenes can be broken up into two or three dom-
inant planes [1, 12]. Typically, these planes contain addi-
tional detail. For example, a wall may contain bay windows
or plants. These are difficult to represent using polygons,
and bas-relief textures do not always capture all the occlu-
sion relationships. In this example, two thin voxel arrays
are used as thick texture.

Figure 7. This figure was generated using two thin
voxel arrays (6 layers) positioned parallel to the walls.

6. Future Work

At present the algorithm has only been tested on image
sequences that can be processed in a single sweep. In or-
der to use more complex sequences the input images will
have to be divided into subsets. Each orientation of the
sweep plane will generate a different model, and a method
is needed to combine the results to yield the maximum like-
lihood reconstruction.

7. Conclusion

In this paper a probabilistic framework for the Space
Carving algorithm has been presented. In this framework
there is no global variance parameter. The qualitative re-
sults show how the new approach does not carve holes in the
model, although it may introduce a small amount of voxel

clutter. Quantitative results have shown that the probabilis-
tic approach generates reconstructed images with a lower
intensity error than the original Space Carving algorithm.

References

[1] S. Baker, R. Szeliski, and P. Anandan. A layered approach to
stereo reconstruction. In Proc. Conf. Computer Vision and
Pattern Recognition, pages 434–441, June 1998.

[2] J. S. D. Bonet and P. Viola. Poxels: Probabilistic voxelized
volume reconstruction. In Proc. 7th Int. Conf. on Computer
Vision, pages 418–425, Corfu, Greece, 1999.

[3] A. Broadhurst and R. Cipolla. A statistical consistency
check for the space carving algorithm. In Proc. British Ma-
chine Vision Conference, volume I, pages 282–291, 2000.

[4] W. Culbertson, T. Malzbender, and G. Slabaugh. General-
ized voxel coloring. In Proceedings of Vision Algorithms
Theory and Practice Workshop, pages 100–114, Corfu,
Greece, 1999.

[5] P. Debevec, C. Taylor, and J. Malik. Modeling and render-
ing architecture from photographs: A hybrid geometry- and
image-based approach. Special Interest Group on Computer
Graphics, pages 11–20, 1996.

[6] O. Faugeras and R. Keriven. Variational principles, surface
evolution, PDEs, level set methods, and the stereo prob-
lem. Transactions on Image Processing. Special Issue on
Geometry Driven Diffusion and PDEs in Image Processing,
7(3):336–344, March 1998.

[7] T. Kanade and M. Okutomi. A stereo matching algorithm
with an adaptive window: theory and experiment. IEEE
Trans. Pattern Analysis and Machine Intelligence, 16:920–
932, 1994.

[8] K. Kutulakos. Approximate N-view stereo. In Proc. Euro-
pean Conference on Computer Vision, pages 67–83, Dublin,
Ireland, 2000.

[9] K. Kutulakos and S. M. Seitz. A theory of shape by space
carving. Int. Journal of Computer Vision, 38(3):198–218,
July 2000.

[10] D. Marr and T. Poggio. Cooperative computation of stereo
disparity. Science, vol.194:283–287, 1976.

[11] M. Pollefeys, R. Koch, M. Vergauwen, and L. V. Gool. Met-
ric 3-D surface reconstruction from uncalibrated image se-
quences. Proc. SMILE workshop (post-ECCV), Lecture
Notes in Computer Science, 1506:138–153, 1998.

[12] P.Torr, A. Dick, and R. Cipolla. Layer extraction with a
Bayesian model of shapes. In Proc. European Conference
on Computer Vision, volume II, pages 273–289, Dublin, Ire-
land, 2000.

[13] S. Seitz and C. Dyer. Photorealistic scene reconstruc-
tion by voxel coloring. Int. Journal of Computer Vision,
35(2):1067–1073, 1999.

[14] R. Szeliski and P. Golland. Stereo matching with trans-
parency and matting. In Proc. 6th Int. Conf. on Computer
Vision, pages 517–524, Bombay, India, Bombay, India 1998.

[15] O. V. Y. Boykov and R. Zabih. Fast approximate energy min-
imisation via graph cuts. In Proc. 7th Int. Conf. on Computer
Vision, pages 377–384, Corfu, Greece, September 1999.

