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Abstract

While crowds of various subjects may offer application-
specific cues to detect individuals, we demonstrate that for
the general case, motion itself contains more information
than previously exploited. This paper describes an unsu-
pervised data driven Bayesian clustering algorithm which
has detection of individual entities as its primary goal.

We track simple image features and probabilistically
group them into clusters representing independently moving
entities. The numbers of clusters and the grouping of con-
stituent features are determined without supervised learn-
ing or any subject-specific model. The new approach is in-
stead, that space-time proximity and trajectory coherence
through image space are used as the only probabilistic cri-
teria for clustering. An important contribution of this work
is how these criteria are used to perform a one-shot data as-
sociation without iterating through combinatorial hypothe-
ses of cluster assignments. Our proposed general detection
algorithm can be augmented with subject-specific filtering,
but is shown to already be effective at detecting individual
entities in crowds of people, insects, and animals. This pa-
per and the associated video examine the implementation
and experiments of our motion clustering framework.

1. Introduction
Detection of individuals in dense crowds has received

comparatively little attention in vision because it is at once
a problem of segmentation, recognition, and tracking. Au-
tomatic analysis of crowd and traffic flow has mostly been
approached using the same models of appearance and shape
that apply to images containing one or few individual enti-
ties. Those techniques scale variously to handle larger num-
bers of entities, but generally struggle to initialize when the
crowd is dense. Dense scenes have so many individuals
that background subtraction and other preprocessing tech-
niques fail to find meaningful boundaries between entities.
We hypothesize that when dealing with video, just the in-
dependent motions of those entities can already offer good
initialization for tracking in dense crowds.

The central premise of our algorithm is that a pair of
points that appears to move together is likely to be part of
the same individual (see Figure 1). This assumption holds
in many scenarios and has previously been exploited for
rigid and nonrigid motion factorization [29, 23], but is par-
ticularly applicable to even somewhat-overhead views of
crowds of people and other subjects. Such crowds are a
particularly challenging class of video. The extensive oc-
clusions, lighting variations, and significant pose-dependent
appearance changes conspire to preclude repeated detection
of the same features throughout a whole sequence.

We are inspired by Johansson’s experiments where only
“moving light” at the joints of one actor allowed percep-
tion subjects to recognize that it was human motion, and
to identify the activities and eventually the gender of the
performer [8]. Instead of one, we have many actors, who
in their natural appearance, can be thought of as wearing
“lights” at random and changing locations. When view-
ing video with such reduced content, human observers are
able to detect the number and locations of separate individ-
uals. We propose a new algorithm which performs pairwise
Bayesian clustering to accomplish the same task automati-
cally.

2. Related Work
There is already commercial interest to develop crowd

detection systems for specific applications. Some stores use
infrared video to roughly gauge the timing and density of
customer flow [14], while visible light video is used to iden-
tify when groups of people are crossing the path of a moving
vehicle [17].

However, the limitations imposed by significant occlu-
sions in crowd videos render much of the previous human-
detection and tracking related literature inappropriate. Most
relevant, Zhao and Nevatia [31, 32] attack the problem of
people tracking specifically, and have tracked the largest
crowd of people thus far. They use articulated ellipsoids
to model human shape, color histograms to model differ-
ent people’s appearance, and an augmented Gaussian distri-
bution to model the background for segmentation. When
moving head pixels are detected in the scene, a princi-



(A) (B)
Figure 1. (A) One characteristically noisy frame from input se-
quence tunnel-A125. (B) Features are marked here as red dots on
white, and all current trajectories passing through a user-selected
(for illustration only) region show differing paths, even when peo-
ple are walking arm-in-arm. Despite perspective scale, the trace
lines are closest to other lines generated by the same person.

pled MCMC approach is used to maximize the posterior
probability of a multi-person configuration. Markov chain
jump/diffusion dynamics are used to perform hypothesis
testing of the numerous possible configurations. The algo-
rithm is tested to give quantitative results on crowds of up
to 33 people. See [9] for interesting examples of using re-
lated techniques to track more sparse “crowds” of ants, or
hockey players in the case of [15]’s impressive boosted par-
ticle filter. These algorithms skip the modeling of articula-
tions in favor of appearance models trained for the specific
unoccluded appearance of their respective subjects. Such
training was sufficient for Leibe et al. [10] to detect several
pedestrians at a time in street-level photos of even cluttered
city scenes.

The second most related work is that of Tu and Rittscher
and Rittscher et al. [24, 18]. Both systems group an image’s
spatial features, performing a global annealing optimization
that propagates the certainty at distinct person-boundaries to
uncertain areas where those people’s outlines are ambigu-
ous. The earlier work assumes an overhead view, model-
ing people as roughly circular collections of periphery ver-
tices. By maximizing the connectedness of each graph, de-
tection cliques emerge reliably when at least half of a per-
son’s contour is distinct. In the newer work, the iterative
feature grouping is interleaved with a generative model that
proposes the number, location, and 2D bounding box para-
meters of people’s shape until an image’s observations have
a consistent explanation. Seen from lower angles, observa-
tions consist of sections of people’s background-subtracted
bounding contours that are automatically tagged as a per-
son’s top, bottom, or either side. The detection results are
robust to various scale, shadow, and viewing angle condi-

tions, and serve as good initialization for a template based
tracker that was demonstrated on video of nine people. Our
proposed algorithm finds similar initial entity locations, but
in dense and crowded situations where boundary contours
are unavailable, while motion cues are.

Isard and MacCormick’s BraMBLe system [6] uses a
very simple motion model to help with detection in am-
biguous situations. The joint inference on both the number
of objects and their configurations is shown to perform effi-
ciently on scenes containing up to three people at a time,
with complex interactions and only a single foreground
model. We established that an extension is needed that
would efficiently create initialization samples in crowded
scenes. This is an element crucial to the success of other
particle-system techniques as well [25, 21], despite their
more specific models of the scene, human appearance, and
human motion.

The mutually supportive detection and tracking of Ra-
manan and Forsyth [16] finds multiple people by cluster-
ing relevant image patches. They, like [13, 20, 4], and [27]
for the static case, have a probabilistic scheme for finding
body part primitives that are likely to fit together. Such
probabilistic assembly, whether to satisfy kinematic con-
straints or other training data, has the attractive quality of
generating person-location hypotheses from low level fea-
tures, even when some components are occluded [26]. Our
approach of tracking-before-detection operates at an even
lower level, where detection is based on clustering of image
features, that we need not identify explicitly.

Our work can be seen as a type of middle ground be-
tween the domains of motion segmentation and multi-body
factorization. Layered motion segmentation depends on
motion discontinuities and texture to reveal the relationship
between patches of pixels. The recent work of [5] elegantly
demonstrates the flexible utility of clustering flow vectors.
With example data used to train their Bayesian clustering,
they are able to distinguish eight classes of facial expres-
sions. With sufficient training data, it is conceivable that
their system could learn to distinguish the same flow pat-
terns that we look for explicitly (space-time proximity and
movement in unison).

Data used in multi-body factorization [3, 29] is typically
like our own in that sparse features are tracked, but texture
support is limited. Also similar is the shared NP-complete
challenge: minimizing the energy of off-diagonal blocks in
factorization compares to associating tracked features with
the different possible configurations of number and loca-
tion of people. However, with the exception of Gruber and
Weiss [3], motion factorization is ill-equipped to handle
observations drawn from even moderately nonrigid bodies.
Typically, motion factorization is known for breaking down
in the face of even mild noise, and is fairly dependent on
complete tracking (no dropouts) of the features being clus-



tered. Our simple approach differs in spirit from that of
Gruber and Weiss in that our move-in-unison motion model
is intentionally naive, so it can generalize to highly variable
motion of subjects. Further, we implicitly have temporal
coherence without iterating, and measure travel distance in
both time and image space. The context for distinguishing
between noise and meaningful motion is more forgiving in
our problem domain of crowds because space-time proxim-
ity serves as a powerful prior.

3. Bayesian Framework
A 2D image feature, x, traces out a trajectory, X , when

tracked over time. Assuming several feature points move to-
gether on each person in the scene, we want the most prob-
able clustering of points given distance matrix Z(X1:N ),
the symmetric distance-measure Z(Xi, Xj) applied to all
the point trajectories (defined with the likelihood in 3.1).
Ideally, this means choosing the most probable cluster-
ing arrangement hypothesis Hm among M combinations:
P (Hm|Z). M is obviously very large since it enumerates
the combinatorial ways the Xn’s could be “joined,” i.e. re-
garded as belonging to the same bodies. The number of
bodies is itself unknown.

We suggest that the search for Hm can be made tractable,
even for large crowds, if we exploit general motion infor-
mation to constrain the size of M . We propose that pair-
wise decisions about whether or not to merge groups of
features can reveal clusterings. Referring to one or more
features X that are previously clustered as Ci, we use a
probabilistic framework to decide for or against merging
two clusters Ci and Cj : P (Ci ∪ Cj |Z(XCi, XCj)), where
XCi = {Xn : n ∈ Ci}:

P (Ci ∪ Cj |Z(XCi, XCj)) = (1)
P (Z(XCi, XCj)|Ci ∪ Cj)× P (Ci ∪ Cj)

P (Z(XCi, XCj))

Besides finding an implementation of (1), we also have
a choice of ways for combining the pairwise results. Any
greedy or coarse-to-fine approach to merging of merged
clusters must (1) have a repeatable means of choosing with
which pairs to start, (2) have an appropriate criterion for
stopping the merging process, and (3) be robust to shared
features, i.e. features on person-person boundaries. Such
features are troublesome when they are just similar enough
to two separately moving clusters to act as a bridge. We
avoid the first two requirements by performing a one time
flat evaluation of all (n(n−1)

2 ) = O(n2) pairings within Cn,
and then building minimum spanning trees in the resulting
merged and disjoint space of pairs. Note that while an XCi

naturally contains only one tracked feature X , practical sit-
uations may start off with known groupings of X’s.
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Figure 2. The system implementing our algorithm can run on short
sequences or continuously (and in parallel) through use of a data-
base server.

3.1. Algorithm
Our algorithm, illustrated in Figure 2, starts with image-

features tracking. Appearance is not used because our aim
is to evaluate the performance of the single cue of motion,
for purposes of detection. Incorporating the two cues would
be an extension of this algorithm. For a detected feature to
be useful, it must be tracked with a high degree of confi-
dence both forward and backward in time. For detection, we
locate both Rosten-Drummond features [19] and Tomasi-
Kanade features [22]. A hierarchical optical flow imple-
mentation [1] of [11] tracks all the features for two frames.
We experimented with several other features such as Har-
ris corners. While not substantially different, our approach
found a superset of those corners.

To quickly isolate promising features among each of
frame f ’s pool of detected corners Df , we corroborate
that independent feature finding in two subsequent frames
agrees in accuracy to within one pixel. Function W (Df , n)
returns the image coordinates of projecting corners in Df

along their optical flow paths forward for n frames:

W (Df , 2) = W (Df+1, 1) = Df+2. (2)

A feature in Df which satisfies (2) is then treated as an
image feature x. In processing a finite video, x is tracked
in subsequent frames until it is lost, then again in previous
frames in a second pass through the video in reverse. While
optical flow helps initialize reliable features, accurate and
faster tracking is accomplished by searching a 2D window
around each x using normalized cross correlation.

Ideally, the size of the 2D search window would be
adjusted for different parts of the image using a known
ground-plane calibration. This can be determined us-
ing [12], or as in our implementation, by hand-clicking an
approximate horizon line. Many alternative and adaptive
tracking techniques exist (e.g. [7]), but we found sufficiently
reliable trajectories Xn in all our videos by simply follow-
ing a small (image-space dependent) search window of the
initial template, until its correlation fell below 0.96. This



was determined empirically as a conservative threshold. To
compare two trajectories Xi and Xj , which respectively ex-
tend in time over ∆ti and ∆tj , we consider only the over-
lapping range of frames {fn : n ∈ ∆ti ∩∆tj}.

Spatial Prior To perform clustering in a frame f , we em-
ploy the Xn trajectories which have data at f . Each cur-
rently active X is sampled in time extending ±30 frames.
Where an X’s data runs out, the missing samples are gen-
erated as linear extrapolations of the last known veloc-
ity. To calculate the prior term from (1), P (Ci ∪ Cj), we
compute a clustering of these sampled loci, shown in Fig-
ure 4(A). The Euclidean distance between each of the locus
pairs (Xi, Xj) is used to build a distance tree. The tree
is assembled following the criterion of furthest distance:
max(dist(Xri

, Xsj
)), i ∈ (1, . . . nr), j ∈ (1, . . . ns). This

tree is split into c clusters, where c is chosen manually
(once) as 3 − 5 times the number of bodies that could fit
in the field of view. Choosing a c that matches the ac-
tual number of bodies can speed up computations, but over-
segmenting is safe and preferable, with the upper limit that
this prior ceases to be useful as c exceeds half the number of
features |X|

2 . The prior probability of a hypothesized merg-
ing of Ci and Cj is calculated as

P (Ci ∪ Cj) =
{

1 Ci, Cj ∈ c, and are neighbors
0 otherwise

(3)
This prior acts as a noisy but effective initialization; X’s

that are too far apart spatially are ignored as possible pair-
wise candidates for clustering when calculating the poste-
rior.

Even if specifying a very high c for oversegmentation,
features can initially be forced into the same prior Ci de-
spite disparate trajectories when many dissimilar noise fea-
tures elsewhere in the scene use up the available clusters.
For this reason, we precede the final clustering stage (which
only merges) with a cleaving of the prior’s XCi whenever
islands of features exceed a distance to their neighbors of 5
in (4)’s distance metric. 5 was chosen empirically because
it excluded grossly dissimilar motions for all our sequences.

Coherent Motion Likelihood To compute the likeli-
hood term of (1), P (Z(XCi, XCj)|Ci ∪ Cj), we start
with the constituent trajectories of Ci and Cj , XCi and
XCj (all original samples, unlike the prior). We seek a
P (Z(XCi, XCj)) that relates the two sets of trajectories
in proportion to the probability that all points {XCi, XCj}
moved together on one body. We use the assumption that
two individual features, Xu and Xv are more likely to come
from the same body if the variance in distance between them
is small:

Q(Xu, Xv) =
1

1 + V ar(Xu, Xv)
, (4)

where V ar(Xu, Xv) = V ar(DistanceEucl(Xu, Xv)) for
the ∆t frames of overlap. Ideally, two features moving on
a rigid body would be a constant distance apart, yielding
Q(.) = 1. In reality, this is only true of motion parallel
to the image plane, but has proven to be an acceptable ap-
proximation, in part because perspective scale varies less
when trajectory overlap is more brief. Figure 4(B) shows
lines between feature pairs that remain after applying a min-
imal threshold on Q(.). With Q(Xu, Xv) as a measure
of the probability that Xu and Xv moved together rigidly,
we compute the class conditional probability that all points
XCi and XCj did as well:

P (Z(XCi, XCj)|Ci∪Cj) =
∏

u,v:Xu,Xv∈(XCi∪XCj)

Q(Xu, Xv)

(5)
P (Z(XCi, XCj)) is a measure of the inter-cluster vari-

ance for (i 6= j), and the intra-cluster variance when (i =
j).

Evidence Ideally, the normalization term
P (Z(XCi, XCj)) from (1) represents the unconditional
probability of observing all features XCi and XCj moving
together rigidly, among all other possible hypotheses Hm

of which clusters moved together and were observable as
such:

M∑
m=1

P (Z(XCi, XCj |Hm))P (Hm) = 1. (6)

As an approximation, we instead compute
∑

Q(Xi, Xj)
over {Xi ∈ Ci, Xj ∈ Cj} as a fraction of the same sum but
with {Xi, Xj ∈ C1...N}. The P (Z(XCi, XCj)) represents
the fraction of “good” feature-to-feature pairings just be-
tween cluster i and j to the number found throughout the
whole network of X’s.

Discriminant Function With the established means of
computing the posterior P ′

ij = P (Ci ∪ Cj |Z(XCi, XCj))
for each pair of clusters (Ci, Cj), we make a single decision
about whether or not to merge them. A log ratio discrimi-
nant function

Sij = −ln(P ′
ij)− (−ln(P ′

ii)− ln(P ′
jj)), (7)

compares the probability of a joined cluster Cij = (Ci∪Cj)
to that of two separate clusters, Ci and Cj (see Figure 3).
We could just as well view this as a minimum description
length (MDL) problem; positive Sij indicates that the first
term has a greater message length than the last two, so Ci
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pairwise comparisons whether candidates for
merging Ci and Cj are more probably separate clusters (> 0) or
part of the same (< 0). Pictured are the cluster pairs for frame
20 of the tunnel-A125 sequence. Examining the pairs individually,
we find that falsely separated and falsely joined clusters scored +1
and −1 respectively, and in case of false separation, other unions
can still bring the two together indirectly.

and Cj should be “sent” separately. Leaving cluster Ci and
Cj separate when Sij > 0 and joining them when Sij ≤ 0
for all unique pairings has the effect of indirectly connecting
clusters into minimum (or maximum probability) spanning
trees, shown in close-up in Figure 4(C).

Implementation Trajectories are stored as a simple data
structure with fields for image coordinates, frame number,
and per-frame cluster assignments. We eventually built an
SQL database interface to address the bookkeeping chal-
lenges of long sequences. The custom data types of MySQL
allow storage and analysis of data streams extending months
and years. An added future benefit is that speed can be
increased using multiple computers, which can access the
database to perform parts of this highly parallelizable algo-
rithm.

4. Results
The footage used in our experiments features crowds of

specific subjects, including bees, ants, penguins, and mostly
humans. The 10 sequences we tested vary in length from
3sec. to one hour, and the videos of human crowds also
vary significantly in density and viewing angle. Some seg-
ments are compressed and small, have interlacing artifacts,
significant video noise, and regions that are out of focus.
These flaws are typical of the expected quality of footage
featuring public spaces, and motivated our research into the
extent to which non-appearance based detection would seg-
ment crowds.

Different spatial clusters, representing the computed
prior, are color coded for a frame from sequence escalator-
A128 (see Figure 4(A)). Knowing the perspective scale from
the ground plane calibration is again useful here, since the

prior can eliminate (Ci, Cj) pairs from the pool of merge-
candidates if they are too far apart in “depth,” saving time
and possibly preventing false clustering unions. Spatial
clustering of each frame takes an average of 5 seconds. For
illustration purposes, the likelihoods are rendered in Fig-
ure 4(B) by drawing an edge between any pair of features
that do not meet the cleaving criterion. Calculating the like-
lihoods is the slowest stage because frames with many im-
age features must evaluate many candidate pairings (addi-
tional 5 sec. to 3 min.). Parallelization and a hierarchical
implementation will improve performance significantly.

The implemented algorithm detects entities that exhibit
independent motion, even under crowded and noisy con-
ditions. The final cluster assignments, or detected enti-
ties, that result from building spanning trees in the space
of successful pairings are shown in Figures 4(C,D), 5, 7, 8,
and 9(B) for some of our test sequences. These and other
sequences appear in the associated video. Note that tree
nodes are rendered only if a cluster has 3 or more non co-
linear features.

While features are tracked over time, the detections are
computed separately for each frame (i.e. entities are not
tracked). Entities inevitably lose some image features and
acquire new ones as they move about. Consequently, what
is detected as an individual entity in one frame may later re-
veal itself to be multiple individuals that had been moving
in unison. Conversely, a detected individual may eventually
merge with other entities if its distinguishing feature trajec-
tories are replaced by features that move in synch with a
neighbor.

One can not expect a general-purpose motion segmenta-
tion algorithm to perform favorably against subject-specific
trackers. However, one measure of how fully we are ex-
ploiting motion is the degree to which those systems’ results
are approximated. For qualitative comparison, the video
and Figures 7 and 8 show side-by-side performance of our
independent motion detector on the sequences from Zhao
and Nevatia’s [32] and Rittscher et al.’s [18] people track-
ing, respectively.

Emphasizing again that the aim is only to show that de-
tection of independent motion has potential to aid in people-
tracking, we also performed a limited quantitative com-
parison. Because of the large number of people traveling
through the fairly long sequences, Table 1 summarizes the
performance of our implementation against hand labeled
ground truth for only several independent frames, chosen
from the tunnel-A125 sequence by a random number gener-
ator. Zhao and Nevatia’s scores are listed for convenience,
as the performance of a subject-specific tracker is naturally
superior.

Finally, as a sample application that employs our algo-
rithm to detect entities, in this case people, we implemented
a gaze-direction visualization system, pictured in Figure 6.



(A) (B) (C) (D)

Figure 4. Result of clustering coherent motions in frame 94 of sequence escalator-A128: (A) Spatial clustering prior, (B) motion coherency
likelihood (thresholded for illustration only), (C) resulting disjoint clusters (D) people-counter reports 40 individual bodies. Please see the
submitted video to examine this sequence.

Ours Zhao & Nevatia’04
distinct detections 144 8466
correctly detected 136 7881
missed detections 8 585
false detections 33 291
detection rate 94% 93.09%
false detection rate 22.9% 3.43%

Table 1. While the rate of correct detections is comparable to Zhao
& Nevatia’s [32], our false detection rate is substantially worse.
We expect that temporal averaging or even a simple threshold
on the minimum number of consecutive detections will improve
our algorithm’s score. However, situations where the individuals’
arms, legs, and luggage are visibly moving will continue to appear
as distinct to our algorithm which has no human body model. The
“distinct detections” criterion is counting distinct detections in our
systems, but counts repeated detections of each tracked individual
in Zhao & Nevatia’s system, which saw a maximum of 33 people
at any one time.

The CG floor and walls were calibrated and modeled by
hand, but the rendered sequence was generated by the algo-
rithmic equivalent of attaching a headlamp to each detected
individual. Currently, advanced architectural floorplan vi-
sualization systems still operate using isovists [2], which
measure the gaze of only one person.

5. Conclusions
A simple unsupervised Bayesian clustering framework

for detecting individuals in moving crowds is the main
contribution of this paper. This probabilistic clustering of
low level image features is surprisingly good at finding a
first approximation of the number and location of individ-

(A) (B)

Figure 5. (A) Frame 115 from penghurry-01. (B) Features on all
three moving penguins are correctly detected to be independent.

Figure 6. Sample image of gaze-rendering application, fed by the
escalator-128 results (pictured in Figure 4(D)). Note that bright ar-
eas in the gaze-rendering image are “seen” by many people, while
dark regions, such as the hanging sign in the lower right, are likely
being ignored.

ual entities in crowded video sequences. Footage of an-
imals, insects, and complex pedestrian traffic containing
significant occlusions, noise, and perspective foreshorten-
ing is processed in a one-shot fashion, without the benefit



Figure 7. Frame 540. Example results from Zhao and Neva-
tia’s multiple-human tracker [32] (above) on their Commons01 se-
quence, and the results of our independent-motion detection. Note
different false negatives in both. See video for entire sequence.

Figure 8. Example results (above) from Rittscher et al.’s multiple-
human tracker mentioned in [18], and the results of our detection
of independent motion.

Figure 9. Sequence subway-B152 is a minute long and features
our most dense pedestrian traffic. (A) Pairs of features with high
likelihoods of being joined. (B) Isolated groups of features result
from applying the discriminant function. Please view the video
results for an excerpt of the sequence.

of training data or any notion of an appearance model at
all. In our experiments, we found that the trajectories of
tracked features are usually unique enough that joint evalua-
tion of different hypotheses is unnecessary. This finding has
the secondary effect that the complexity of non-temporally-
smoothed entity detection is primarily limited by the scene
complexity, and less by the number of individuals.

The limitations of our motion-only approach are not un-
expected. First, if an individual is camouflaged so that im-
age features, in particular corners, are absent, then all sub-
sequent clustering will ignore that individual. Features on
one body are assumed to be moving rigidly, so features from
the same body can erroneously be left separated if the body
deforms or exhibits sustained articulations. Interestingly,
leg motion is less of a problem in our experiments than
arms precisely because of the extensive person-person oc-
clusion. The most common false positives occur in pedes-
trian scenes when persons carry items such as newspapers



or backpacks, which presents an interesting sub-problem of
moving-object identification. False negatives occur when
two (though possibly more) bodies move near each other
and in step. With this method, we can expect no meaning-
ful results from e.g. footage of a marching army, or people
standing in place. Finally, while the algorithm uses features
tracked over sequences of frames, the clustering and de-
tection of individuals is happening independently for each
frame, meaning that the current system does not track enti-
ties per se.

There are many possible extensions of this work since
robust tracking of individuals in dense crowds will benefit
from merging our motion based detection into various ap-
pearance based methods of filtering and tracking. To start,
the Bayesian clustering presented here can be applied to
extended sequences where periods of particularly reliable
clustering and sparse flow would allow for autocalibration.
The existing system could benefit most from automatically
tuning relative scale (perspective). These parameters would
both limit the search area for feature tracking and could be
incorporated as a prior for the image “footprint” size and
lighting of subjects in different parts of the image.

There is room for obvious performance improvements,
since this work has been assessing the value of motion, and
the information content of appearance has been left out as
the control. Wu & Nevatia [28] have a new appearance
based approach to people tracking based on body part de-
tection, which is very complimentary and will benefit from
motion cues. Temporal smoothing is the next most obvious
extension, and it would be trivial to automatically learn the
layout of entrances and exits. These would in turn prevent
the “spawning” of new entity hypotheses in the middle of
the scene. It is also exciting to imagine that pedestrian traf-
fic flow patterns could be learned, with the aim of predicting
or filling in tracks missing due to occlusion or local camou-
flage. Finally, further experiments and ground truth testing
are needed to objectively compare algorithms such as [30]
against our own in the context of crowd scenes.
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