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Abstract

Many computer vision tasks may be expressed as the
problem of learning a mapping between image space and
a parameter space. For example, in human body pose es-
timation, recent research has directly modelled the map-
ping from image features (z) to joint angles (θ). Fitting
such models requires training data in the form of labelled
(z,θ) pairs, from which are learned the conditional den-
sities p(θ|z). Inference is then simple: given test image
features z, the conditional p(θ|z) is immediately computed.
However large amounts of training data are required to fit
the models, particularly in the case where the spaces are
high dimensional.

We show how the use of unlabelled data—samples from
the marginal distributions p(z) and p(θ)—may be used to
improve fitting. This is valuable because it is often signif-
icantly easier to obtain unlabelled than labelled samples.
We use a Gaussian process latent variable model to learn
the mapping from a shared latent low-dimensional manifold
to the feature and parameter spaces. This extends existing
approaches to (a) use unlabelled data, and (b) represent
one-to-many mappings.

Experiments on synthetic and real problems demonstrate
how the use of unlabelled data improves over existing tech-
niques. In our comparisons, we include existing approaches
that are explicitly semi-supervised as well as those which
implicitly make use of unlabelled examples.

1. Introduction
Many computer vision algorithms can be viewed as the

design of a function which takes images as inputs and re-
turns parameters of the imaged scene. In human body pose
estimation, for example, the input to the function is a vec-
tor of image features, and the desired output is a probability
density over the pose parameters of the human in the image.
Much recent research [2, 7, 8, 15, 17, 20, 21] has adopted

this “vision as regression” paradigm: given training exam-
ples comprising corresponding pairs of image features (z)
and joint angles (θ), learn a function θ = f(z). This is an
attractive paradigm because it promises fast and determinis-
tic inference, loading most of the computational effort into
the learning or regression phase.

This is a rather bare characterization of the paradigm,
however, with a number of difficulties which are immedi-
ately apparent. First, in most cases of interest, the mapping
between the pose space and image space can be many-to-
many, so that f must be a one-to-many mapping. This is
resolved by learning instead the conditional density, so that
given an observed image with features z, one can obtain a
distribution over the pose, namely p(θ|z).

The second difficulty, which we address in this paper,
is that the dimensionality of the feature and pose spaces is
typically relatively high, meaning that learning p(θ|z) re-
quires a considerable amount of labelled examples, i.e. cor-
responding (θ, z) pairs. We show in this paper how to make
use of unlabelled data to improve the estimate of the map-
ping. Unlabelled data are sets of pose parameters without
corresponding images, as might be found in a motion cap-
ture database; or image features obtained from generic im-
ages of humans in motion.

This significantly reduces the number of training exam-
ples needed to learn complex mappings, meaning that ap-
plications which would previously have required too much
labelled training data to be feasible are now possible.

1.1. Background

We combine a number of recent research results in order
to achieve this. First we observe that most papers adopting
the regression approach already do make use of unlabelled
data, even though they may not mention semi-supervised
learning. This is because many papers begin by projecting
raw image features and pose parameters into a lower di-
mensional space before learning the mapping. Early work
used principal components analysis [2], while more re-
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Figure 1. Learning a manifold. (a) 100 noisy samples from the
curve {(t, t + 0.3 sin(2πt)) | 0 < t < 1}. (b) Joint density mod-
elled by GPLVM. (c) 8 samples from the curve. (d) The manifold
is not well modelled by the GPLVM. (e) The same 8 samples are
augmented with 52 samples from each of the marginal distribu-
tions. (f) The marginal samples allow the manifold to be accu-
rately estimated. See §1.2 for a fuller discussion.

cent techniques allow for nonlinear mappings [17, 20]. In
terms of our notation, image features z are assumed to
be images of latent points tz on a low-dimensional man-
ifold, parametrized by a projection function of the form
z = Pz(tz). Similarly the pose parameters live in a low-
dimensional manifold in joint-angle space parametrized by
θ = Pθ(tθ). Instead of learning the conditional p(θ|z),
we learn the lower dimensional model p(tθ|tz) = f(tθ, tz)
from which p(θ|z) = f

(
P−1

θ (θ), P−1
z (z)

)
. The key is that

the functions Pθ and Pz can be learned using all available
image and pose samples, not just the those in the labelled
set, so that the mapping is learned in a lower dimensional
space, making better use of the labelled data.

The difficulty with this approach is that the z and θ
manifolds are learned independently, so that the function
f which describes the mapping between them may be un-
necessarily complex. In order to overcome this difficulty,
shared manifold methods [7, 8, 15, 21] simultaneously learn
the mappings Pz and Pθ from labelled samples, so that
each (θ, z) pair is associated with a single latent t, giving
(θ, z) = (Pθ(t), Pz(t)). These methods are, however, re-

stricted to one-to-one mappings, and so cannot the model
multimodal conditionals common in problems such as hu-
man pose estimation.

Closely related to our work is the study of semi-
supervised regression, on which a survey can be found
in [22]. Semi-supervised regression attempts to learn a
mapping of the form z = f(θ), using labelled pairs (θ, z)
and unlabelled θ samples only. Our work improves on these
methods by also incorporating samples from the z distribu-
tion, and by incorporating manifold learning to reduce the
dimensionality of the joint space in which learning is per-
formed.

One more related approach to the regression problem
is direct modelling of the joint density p(tθ, tz), from
which the conditionals are extracted using p(tθ|tz) =
p(tθ, tz)/p(tz). Agarwal et al.[3] propose fitting a mix-
ture of Gaussians to the joint samples, and this was later ex-
tended [13] to incorporate missing data using the algorithm
of Ghahramani and Jordan [5]. These approaches make use
of unlabelled data, and can learn multimodal conditionals,
but as we shall show in this paper, the mixture of Gaussians
model needs many parameters, and hence a large number of
labelled samples, in order to fit nonlinear manifolds.

Our primary modelling tool will be the Gaussian process
latent variable model (GPLVM [11, 10]), which has already
been used by several researchers in the context of human
pose estimation [6, 15, 19, 20]. Our main contribution is to
modify it to use marginal samples, and to demonstrate the
improvement this confers.

1.2. The key idea

Figure 1 is an abstract illustration of the problem solved
by this work. The horizontal axis represents images z, and
the vertical represents pose parameters θ. Given 100 train-
ing pairs {(zi,θi)}100

i=1, we can get a good estimate of the
joint density p(z,θ), and consequently a good estimate of
p(θ|z) as shown in figure 1b. However in higher dimen-
sions, samples are relatively more sparse, and we typically
have a situation more akin to that in figure 1c, where only
eight samples from the joint density are available. In this
case, even the best algorithm we have (we show the results
for lesser algorithms later in the paper) fails to model the
manifold well. All is not lost, however: adding 52 unla-
belled examples to the eight used in (d) allows the manifold
to be reconstructed accurately. The unlabelled examples are
simply samples from the marginal distributions p(θ) and
p(z).

This is a “pure” example of semi-supervised learning:
because the features live in 1D spaces and the latent mani-
fold is 1D, there is no opportunity for manifold learning to
leverage unlabelled data. Without further prior knowledge,
the smoothest mappings Pz and Pθ will be the identity. The
unlabelled samples contribute to the estimate of the joint



density because the marginals of the fitted joint density must
match the distributions of p(z) and p(θ). Put another way,
additional constraints on the joint density model are pro-
vided by the projection constraints p(θ) =

∫
p(θ, z)dz and

p(z) =
∫

p(θ, z)dθ.
The rest of this paper develops this idea for general

regression problems, using the GPLVM as the manifold
model. The final model is an assembly of various exist-
ing components, but the combination as implemented here
is novel and, as we show, outperforms existing models on a
number of real-world problems.

2. Joint Manifold Modelling (JMM)
Our ultimate goal is to model the joint density of (θ, z).

The model will depend on model parameters φ, and when
we wish to make this clear, this density is written p(θ, z|φ).
A latent variable t drawn from distribution p(t) generates
each of θ and z giving the factorization

p(θ, z|t) = p(θ|t)p(z|t) (1)

from which the joint density may be obtained as

p(θ, z) =
∫

p(θ|t)p(z|t)p(t)dt (2)

Each conditional p(·|t) will be defined by a Gaussian pro-
cess, as described below. Given training examples D =
{(θl, zl)}L

l=1, the manifold learning task is to associate with
each example a latent value tl to maximize the posterior

p(t1..L|D) ∝
L∏

l=1

p(θl, zl|tl)p(tl) (3)

=
L∏

l=1

p(θl|tl)p(zl|tl)p(tl). (4)

We begin by describing Gaussian processes and the
GPLVM, and then show how the above procedure may be
modified to deal with unlabelled examples.

2.1. Gaussian Processes (GPs)

The conditionals take the form of a Gaussian process,
a distribution over functions which, when conditioned on
training data, produces a radial basis function approxima-
tion to the data, along with associated covariance estimates.
The Gaussian process is an elegant and powerful way to
model regression, and for full details the reader is encour-
aged to consult one of the many introductory treatments
(e.g. [4]). For our purposes, a brief adumbration of the
properties will suffice. Consider a scalar function x(t) of
a scalar parameter t. Let x(·) be drawn from a zero-mean
Gaussian process with kernel function κ(·, ·). Then for any

(possibly infinite) vector of values T = [ti]i, the vector
of corresponding function values X = [x(ti)]i is Gaussian
distributed with distribution

p(X|T ) = N (X|0, κ(T, T )) (5)

where N is the standard multivariate Gaussian

N (x|µ,Σ) = |2πΣ|− 1
2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
Conditioning a GP on training data may be viewed as

producing another GP, with a new kernel and mean func-
tion, which we may loosely think of as “parameters” of
the conditioned or fitted GP. A set of training examples is
represented as pairs of column vectors {(xl, tl)}L

l=1, where
each xl ∈ Rd, and tl ∈ Rs. We wish to determine
the GP parameters for the GP conditioned on the training
data. Arrange the training vectors into the rows of matrices
Xtrain = [x1, ...,xL]> and Ttrain = [t1, ..., tL]>. The recipe
for “fitting” the GP is as follows:

1. Compute the L× L Gram matrix K with ijth element
κ(ti, tj). Our implementation used a Gaussian kernel
of the form

κ(t, t′) = α exp
(
−β

2
‖t− t′‖2

)
+ λt>t′ (6)

We define φ to be vector of hyperparameters
{α, β, λ, γ}, where γ is a noise precision (see below).

2. Compute the L× d weight matrix W = K−1Xtrain.

3. Define the pair of functions

k(t) = κ(t,Ttrain) = [κ(t, t1), ..., κ(t, tL)]>,
(7)

Σ(t, t′) = κ(t, t′)− k(t)>K−1k(t′). (8)

Given the above definitions, the conditional density at a
point t is then

p(x|t) = N
(
x|W>k(t),Σ(t, t)I + γ−1I

)
(9)

where xi is the ith component of vector x. Optimizing the
likelihood of Xtrain over the hyperparameters φ is achieved
using a nonlinear optimizer such as scaled conjugate gradi-
ent [10, 12].

2.2. GP Latent Variable Model (GPLVM)

We are now given training examples X ⊂ Rd which are
assumed to live in a low-dimensional submanifold of Rd.
The goal of the GPLVM to discover this submanifold, that
is to associate with each xl a latent variable tl representing
its coordinates in the manifold. We find T by maximizing
the likelihood of the training examples. The likelihood of X



given T and the hyperparameters φ is given by a Gaussian
process as above,

p(X|T, φ) =
d∏

i=1

N
(
X:,i

∣∣∣0, κ(T,T) + γ−1I
)

(10)

The notation X:,i is used to indicate the L×1 column vector
constructed from the ith dimension of the data points. The
prior over T is independently Gaussian on each tl:

p(T) =
L∏

l=1

N (tl|0, I) . (11)

Thus the posterior is given by

p(T,X|φ) = p(X|T, φ)p(T) (12)

Again, a suitable optimization method can be used to find
the optimal set of values (T, φ) that minimizes the negative
log posterior L = − log p(T,X|φ) for a given data set. Ap-
plying the GPLVM to our problem (4), we define xl as the
concatenation

xl =
(

θl

zl

)
(13)

and proceed as just described.

2.3. Accommodating unlabelled data

An advantage of the GPLVM is that it is relatively
straightforward to incorporate unlabelled examples. Due to
the separation along each dimension in equation (10), data
with some missing dimensions can be accommodated in the
model as explained below.

From (13), each data point xk is composed of two com-
ponents, which in this section we name pose component xp

k

and the feature component xf
k , of dimension P and F re-

spectively, so P + F = d. Then xk = [xp
k
>xf

k

>
]>. With-

out loss of generality, we may reorder the matrix X into
three blocks, containing respectively the joint, f -marginal
and p-marginal samples, so

X =

Xpf

Xp∗

X∗f

 , with block sizes

 L× P L× F
M × P ∗

∗ N × F


(14)

Now we can reformulate the equation (10) as follows:

p
(
X

∣∣∣T, φ
)

=
P+F∏
i=1

p
(Xpf

Xp∗

X∗f


:,i

∣∣∣
Tpf

Tp∗

T∗f

 , φ
)

(15)

=
P∏

i=1

p
([

Xpf

Xp∗

]
:,i

∣∣∣ [
Tpf

Tp∗

]
, φ

)
×

×
P+F∏

i=P+1

p
([

Xpf

X∗f

]
:,i

∣∣∣ [
Tpf

T∗f

]
, φ

)
(16)

=
P∏

i=1

N
(
Xp

:,i

∣∣∣0,Kp + γ−1I
)
×

×
P+F∏

i=P+1

N
(
Xf

:,i

∣∣∣0,Kf + γ−1I
)

(17)

In the above set of equations ∗ indicates the missing data.
The notation Kp indicates the kernel matrix computed from
the set of latent variables Tpf and Tp∗. The matrices Xp

:,i

and Xf
:,i are defined as follows:

Xp
:,i =

[
Xpf

Xp∗

]
:,i

,Xf
:,i =

[
Xpf

X∗f

]
:,i

(18)

It is important to address the uncertainty in the latent co-
ordinates of the unlabelled set properly. Otherwise, when
there is a (relatively) large number of unlabelled data, the
model tends to learn the manifolds in the marginal dimen-
sions because the small number of latent points associated
with the labelled data that captures the joint-space manifold
contributes significantly less to the objective function. This
usually does not represent the joint-space manifold because
the relationship between the feature (marginal) dimensions
and pose (marginal) dimensions is one-to-many. Hence, the
prior on T, defined in (11), is modified as follows:

p(T) =
L∏

l=1

N (tl|0, I)
L+N+M∏
l=L+1

N (tl|0, ηI) (19)

Here, η (> 1) controls the uncertainty of the latent points
associated with the unlabelled data. In all our experiments
we set η = 100.

Fitting the GPLVM to a set containing unlabelled data
is then a matter of maximizing the posterior (12) having
substituted the appropriate definitions of p(X|T, φ)p(T, φ)
from (17) and (19).

2.4. Backprojection

The GPLVM gives a convenient form for p(x|t), but the
reverse model p(t|x) can be multimodal, and does not have
a simple functional form. A latent space point t correspond-
ing to a new data point x can be found by minimizing the
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Figure 2. Comparing methods. (a) Mixture of experts (ME) fit
to the S-curve with 15 points. The shape is well approximated but
not the density. ME cannot fit to fewer than 15 points on this data.
(b) Gaussian mixture model fitted to 15 joint samples. (c) GMM
on 8 samples. (d) GMM on 8 samples with 52 marginals. The
GMM is a poorer fit to the manifold than the JMM (compare to
figure 1), and gains less benefit from marginal data.

negative log joint-posterior over the novel data point and
the associated latent point. However in practice, we found
that it is sufficient to seek several modes by random starts
within the latent space during the optimization of the ob-
jective function L and use the point estimates to obtain the
likelihoods.

2.5. Summary: Using the JMM for pose estimation

To concretize the above discussion, we summarize the
steps in using the JMM for pose estimation. The training
data is a set of pairs {(θi, zi)}L

i=1, and two sets of unla-
belled samples {θ∗j}M

j=1 and {z∗k}N
k=1. Fitting the GPLVM

associates with each sample a latent parameter t, which is
stored with the training examples, along with the Gaussian
process matrices, giving a representation of the form

Φ =
{
(θi, zi, ti)L

i=1; (θ
∗
j , t

′
j)

M
j=1; (z

∗
k, t′′k)N

k=1

}
(20)

to which can be added the Gaussian process matrices
Kθ,Wθ and Kz,Wz . At inference time, given a new im-
age feature vector z, we find the latent values t which are
local maxima of p(t|z) ∝ p(z|t)p(t). This can be seeded
relatively efficiently by nearest neighbour lookup of the zi

followed by gradient-based optimization of p(t|z). For each
mode, we then compute p(θ|t).

3. Implementation
The above section describes the theoretical formulation

of the joint manifold model, but of course certain details

need to be attended to for a practical implementation.
Firstly, the kernel parameters α and β need to be con-

strained to be positive. In our experiments this was enforced
by re-parameterizing as e.g. α = ln(1 + exp(α′)) and opti-
mizing over α′.

Secondly, the dimension of the latent embedding can
found from the residual variance similar to approach of
Tenenbaum et al. [18].

Finally, suitable initialization procedures should be em-
ployed to initialize the latent variables t. In our implemen-
tation, we first ran the Isomap [18] algorithm on the labelled
samples to assign latent coordinates. Then for each unla-
belled sample, say (θ, ∗), the set of joint space neighbours
{(θl, zl) | ‖θl−θ‖ < ε} is computed, and a single element
randomly chosen. Local linear interpolation performed us-
ing the neighbors of this chosen joint-space sample in the
latent space yields the t assignment for (θ, ∗). In multi-
modal areas of the density, this will incorrectly assign la-
tent coordinates to a proportion of the unlabelled samples,
but the problem is mitigated by the broad priors on the latent
coordinates for unlabelled samples defined by η in (19).

Although tracking is not formally modelled in our ap-
proach, in order to demonstrate the advantages of our
method, a simple hidden Markov model was fit to the pro-
posed hypotheses and the Viterbi back-tracking algorithm
was applied to produce some tracked video sequences. For
each frame in the sequence, the multiple hypotheses pro-
posed by the JMM were treated as the states and the con-
fidence values obtained from the JMM as the state proba-
bilities. The transition probabilities are computed from a
nearest-neighbour dynamic model as follows. For each mo-
tion training sequence, a subset of frames are selected as
keyframes. A transition matrix is learnt for these discrete
key-poses from a large set of motion captured data. When
applying the Viterbi algorithm, the transition probability be-
tween two poses is approximated by the transition probabil-
ity between the two closest key-poses.

4. Experiments
Experiments were performed on synthetic and real ex-

amples to compare our approach (JMM) with existing al-
gorithms. We compared to a selection of competing algo-
rithms: nearest-neighbor (NN), mixture of experts (ME)
models [2, 17], and joint density models [3, 13] (which
we denote by GMM, as both are Gaussian mixtures). We
also implemented the shared latent structure technique of
Shon et al. [15] and the manifold alignment of Ham et al.
[7], denoted S06 and H06 respectively. Finally, we created
missing-data versions of these two algorithms in a manner
analogous to the missing data GPLVM, in order that they
can use unlabelled data, which we call S06* and H06*. Not
all algorithms were tested on all sequences, generally be-
cause they were not appropriate, or could not run with the
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Figure 3. Effect of number of marginal samples. The S-curve
(fig 1) is fit using the JMM, with varying numbers of joint and
marginal samples.

small numbers of joint samples we used. A subset of exper-
iments are reported here, for more, and for video examples,
see our website [14].

4.1. Synthetic problem

Experiments were carried out on the synthetic example
from figure 1. Data points were samples from the curve
{(z,θ) = (t + 0.3 sin(2πt), t) | 0 < t < 1} to which were
added Gaussian noise with zero mean and variance of 0.01.
Thus the conditional p(θ|z) is multivalued: for each z there
may be up to three modes. Some (z,θ) pairs are retained
as the subset of points with known correspondence while
the rest of the data are divided into separate collections of
(z, ∗) and (∗,θ) unlabelled points and treated as marginal
data in algorithms for which this is possible. The JMM is
fit as above.

Qualitative results of applying JMM, ME and GMM on
15 joint-samples are illustrated in figures 1 and 2. In gen-
eral, JMM models the density better than either ME or
GMM, and gains more benefit from marginal samples than
GMM.

For the same toy problem, the performance of the JMM
under varying combinations of number of joint-space and
marginal samples was also investigated (figure 3). For each
of 1000 test points sampled from the noise-free underlying
manifold, the shortest distance to the predicted JMM mean
function is computed. These distances were used in com-
puting the RMS error. The results clearly show the benefit
of introducing some marginal data. However, when a large
number of marginal data is introduced, the error increases
due to the effect described in section 2.3.

4.2. Human Body Pose Estimation

Experiments were conducted with real images and pose
information obtained from motion capture systems [1]. Sil-

Figure 4. Samples of images and silhouettes used to train the JMM
for a walking motion.

(a) (b) (c)
Figure 5. Results from applying a trained JMM for a walking mo-
tion. (a) Test images. (b) Silhouettes. (c) Modes of p(θ|z) in
decreasing order of likelihood. The left/right ambiguities arising
from these silhouettes are correctly predicted by the JMM.

houette features were used as the basis to construct image
descriptors. These image descriptors and the motion cap-
tured joint-angle information form our joint-space. Silhou-
ette data for training (Fig.4) and testing were created using
PoserTM , a graphics package that can render realistic look-
ing images from human models for given pose (joint-angle)
information. Only these synthetically created silhouettes
were used in the training stage of our approach, meaning
that we could easily vary the ratio of labelled to unlabelled
samples. Some experiments were performed using simi-
lar synthetic images that were not used in the training and
motion captured on a different person. We also tested real
images from video sequences of real humans performing a
number of motions. We chose to use silhouettes as they
yield one-to-many mappings.

The following subsections describe the experimental
setup and the results obtained from applying our method on
several types of motion. We proceed by explaining various
error measures used to evaluate the results.

Interpreting Errors The error measures used during our
tests can be classified into two, namely the error from the
very first/most likely hypothesis (Type 1) and the mini-
mum error between the first few hypotheses and the ground
truth (Type 2). Each of these contain two subcategories.
They are the average per-frame RMS error in pose (Epose)
and the average per-joint RMS angular error across frames
(Eangle).

Walking sequence The motion considered in this exper-
iment is a person walking parallel to the image plane. The



Method #J #M∗
Average RMS error

All hypotheses First hypothesis
Pose Angle Pose Angle

JMM

8 0 3.82 3.02 6.91 6.06
8 8 3.68 2.90 6.78 5.90
8 16 3.55 2.80 6.41 5.79
8 32 3.83 3.04 8.05 6.67
16 0 3.71 2.89 6.01 5.39
16 16 3.60 2.71 5.88 5.17
32 0 3.66 2.86 6.48 5.87
32 32 3.45 2.65 6.41 5.79

NN
8 0 4.18 3.82 7.87 6.56
16 0 3.95 3.63 6.70 5.87
32 0 3.91 3.39 6.61 5.97

S06
8 0 - - 8.63 7.11
16 0 - - 8.49 7.02
32 0 - - 7.48 6.93

H05
8 0 - - 9.50 6.65
16 0 - - 7.63 5.39
32 0 - - 7.42 5.88

S06*

8 8 - - 8.45 6.95
8 16 - - 8.28 6.81
8 32 - - 8.75 7.37
32 32 - - 7.01 6.59

H05*

8 8 - - 8.49 6.21
8 16 - - 8.12 5.80
8 32 - - 7.75 5.37
32 32 - - 6.98 5.48

Table 1. Walking sequence results.
input image descriptor z is constructed from shape con-
texts of silhouette points. To work in a common coordi-
nate system, these features are clustered into 40 clusters
and each feature point is projected onto the common ba-
sis by weighted voting into the cluster centers [3, 16]. All
the feature vectors for a silhouette are added to create a fea-
ture histogram to represent the image descriptor z for that
silhouette. The pose θ is represented by a vector composed
from 29 joint-angles. Since walking is a cyclic motion, a
2 dimensional latent space is used. The dimensionality is
confirmed separately by looking at the residual variance on
applying Isomap [18] on a larger data set. Two of the com-
peting methods, GMM and ME, were not tested in this ex-
periment as only small numbers (8, 16 and 32) of labelled
samples were used.

Some results from real images are illustrated in Fig.5.
This was obtained by training our model on 16 joint-
samples only. It can be seen that both (left-right) flipped
hypotheses were correctly identified. A comparison of our
approach against other algorithms is tabulated in table 1.
The test was repeated 5 times for 30 different images at
each iteration. Our approach has consistently lower error
and introducing unlabelled lowers the error further.

Golf swing sequence The motion considered in this ex-
periment is a person performing a golf swing facing the im-

Method #J #M∗
Average RMS error

All hypotheses First hypothesis
Pose Angle Pose Angle

JMM

8 0 8.78 7.74 15.36 13.73
8 16 6.77 5.78 11.16 10.07
8 32 8.83 7.58 15.15 14.06

16 0 7.22 6.94 14.16 13.42
16 16 6.82 6.02 14.25 12.24
32 0 6.98 6.40 12.26 10.65
32 32 6.55 6.27 11.18 9.54

NN
8 0 10.34 9.64 17.29 16.02

16 0 9.36 8.80 16.54 15.68
32 0 9.18 8.60 14.16 13.99

S06

8 0 - - 15.80 14.50
8 32 - - 15.29 13.94

32 0 - - 12.09 11.51
32 32 - - 11.93 10.17

H05

8 0 - - 15.59 12.98
8 32 - - 11.23 10.21

32 0 - - 12.48 11.22
32 32 - - 11.32 10.35

Table 2. Golf swing results

age plane. The input image descriptor z is constructed from
the 7 Hu moments [9]. In this case we do not have a back-
ground image, so the silhouettes were computed with some
user interaction. Thus our results are not intended to imply
that this image can be automatically processed, but do al-
low comparison of the various algorithms on this silhouette
data.

The pose θ is represented by a vector composed from
29 joint-angles. Since this motion is unidirectional, only a
single dimensional latent space is used. The test was re-
peated 5 times for 30 different images at each iteration. The
average errors are tabulated in table 2. This was obtained
by training our model on 16 joint-samples only. Since only
one of the 7 Hu moments is not invariant to reflection, some
mirrored poses are predicted as one of the possible hypothe-
ses although they accompanied by a low confidence on this
prediction. The ME used 5 experts.

Exercise sequence An exercise routine, the results of
which the reader is encouraged to consult at [14]. The se-
quence is rather more challenging than the previous exam-
ples as it is long, contains a variety of motions, and the sil-
houette extraction is made unreliable by wall markings the
same colour as the subject. We assumed a 3 dimensional
manifold for an exercise motion and applied JMM to learn
the mapping. As can be seen in [14], a qualitatively success-
ful track is obtained; the quantitative improvements in RMS
pose or angle over S06, H06, and ME are at worst 18%, on
average about 30%. Note that this is computed over the best
hypothesis, as S06 and H06 cannot return multiple hypothe-
ses.



5. Discussion

We have shown how the use of unlabelled examples in
a vision-by-regression (VBR) framework can improve the
learned mapping. We know of no work that deals with
this problem of semi-supervised learning of many-to-many
mappings between feature spaces. We believe that the com-
pelling results in figure 1 may apply even more strongly
in higher dimensions, and that there is considerable poten-
tial for these techniques to expand the scope of the VBR
paradigm.

On the other hand, the claims of semi-supervised meth-
ods are oft-heard, but the techniques not so often seen in
practice. One reason may be our observation that most
existing VBR techniques are semi-supervised, to the ex-
tent that they learn low-dimensional manifold representa-
tions before fitting a regressor. Therefore such systems
should be considered semi-supervised methods. Our tech-
nique (and [8, 15, 21], albeit without unlabelled samples)
improves on these because the jointly learned manifolds are
forced to be in correspondence, while separately learned
manifolds may be arbitrarily difficult to align post-hoc.

It should be noted that because our joint samples are ob-
tained from a computer-graphic simulation, we do not re-
ally have the limitation that labelled examples are hard to
obtain. However, this use of simulated training data (which
is verified on real-world sequences) does allow the benefit
of incorporating the unlabelled samples to be measured. We
hope now to reap this benefit by addressing harder pose es-
timation problems, where the silhouette is not available, and
natural image texture must be exploited instead.

Another criticism is that the model we propose does not
at first sight appear to be a regressor. In order to find θ
from z, one must first go through an optimization step, com-
puting mint p(z|t) by gradient-based search. This could be
mitigated by learning a one-to-many mapping from z to t,
for example using ME. Although ME does not model the
density particularly well, using it to seed a small number of
initial estimates could yield an efficient implementation of
the reverse model.

The tendency of additional marginal samples to ulti-
mately worsen the result is commonly associated with semi-
supervised techniques, and is normally explained by the in-
ability of the model to fit both the conditional and prior dis-
tributions. This is at odds, however, with the observation
that when manifold fitting is done separately, it is best to
use as many samples as possible. We hope to investigate
this further.
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