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Abstract

An important aspect of SVM-based speaker verification sys-
tems is the choice of dynamic kernel. For the GLDS kernel,
a static kernel is used to map each observation into a higher or-
der feature space. Features are then obtained by taking a simple
average over all frames. Derivative kernels, such as the Fisher
kernel, use a generative model as a principled way of extract-
ing a fixed set of features from each utterance. However, the
model and features are defined using the original observations.
Here, a dynamic kernel is described that combines these two ap-
proaches. In general, it is not possible to explicitly train a model
in the feature space associated with a static kernel. However, by
using a suitable metric with approximate component posteriors,
this form of dynamic kernel can be computed. This kernel gen-
eralises the GLDS and derivative kernel as special cases and
is also closely related to parametric kernels such as the GMM-
supervector kernel. Preliminary results using this kernel are pre-
sented on the 2002 NIST SRE dataset.

Index Terms: Speaker Verification, Support Vector Machines,
Dynamic kernels.

1. Introduction

Speaker verification (SV) is a binary classification task in which
the objective is to determine whether or not a speech utterance
was spoken by a specific claimed speaker. There has been con-
siderable interest and success in applying Support Vector Ma-
chines (SVMs) to this task. SVMs are general purpose classi-
fiers that have been found to perform well on a wide range of
classification tasks. Many kernels used with SVMs only han-
dle data of fixed dimensionality allowing the inner-product, or
associated static kernel, to be simply computed. In contrast,
speech utterances are typically parameterised as variable length
sequences of observation vectors. This has led to the use of dy-
namic kernels, also known as sequence kernels. These dynamic
kernels map variable length sequences into a fixed dimensional-
ity in which the inner product, or static kernel, can be computed.

One early form of dynamic kernel that was found to be ef-
fective for the SV task is the Generalised Linear Discriminant
Sequence (GLDS) kernel [1, 8]. Under this kernel, a static ker-
nel mapping is applied to each observation vector. A fixed di-
mensional set of features is then obtained by taking the sum of
the expanded observations over all frames. However, this has
an averaging effect and useful information may be lost. More
recent approaches [2] [3] have examined dynamic kernels based
upon generative models. Many kernels, such as the Fisher ker-
nel [4], belong to the family of derivative kernels [5]. Given a
generative model, such as a Gaussian Mixture Model (GMM),
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the features extracted are the derivatives of the utterance log-
likelihood with respect to the model parameters. Unlike the
GLDS kernel, for each feature the observations are weighted by
the component occupancy. This effectively uses the generative
model to extract structure from the utterance.

This paper introduces a kernel that combines static and dy-
namic kernel approaches. The generalised derivative kernel
(GDK) is a form of derivative kernel where, instead of calcu-
lating derivatives in the original observation space, the deriva-
tives are calculated in the feature space associated with a static
kernel defined between pairs of observations. Verification may
be based on higher-order observation level features while ex-
ploiting the nature of the generative model to obtain a fixed set
of features. This kernel generalises both the standard derivative
kernel and also the GLDS kernel, when the model is a standard
Gaussian distribution, providing a theoretical link between the
two forms of kernel. In general, it is not possible to explicitly
train a generative model in the feature space associated with
a static kernel. However, such a model can be approximated.
In this paper, a kernel metric is selected that normalises the
variance term from the features, avoiding explicit calculation
of these parameters. Furthermore, the component posteriors in
the feature space are approximated by posteriors derived in the
observation space. This paper is organised as follows. In the
next section, SVM-based speaker verification is described and
two forms of dynamic kernel, the GLDS kernel and the family
of generative kernels, are briefly reviewed. Next the GDK is de-
scribed and various required approximations are discussed. In
section 4 results are presented for the GDK on the NIST 2002
SRE dataset. Finally, conclusions are drawn.

2. SVM-based Speaker Verification

SVMs have been successfully applied to a wide range of ma-
chine learning problems. One reason for this is that they can be
kernelised. In SVM training and inference all references to data
are in the form of inner-products between data examples. It is
then possible to define a kernel function k(x;, x ;) that implic-
itly calculates the inner-product between two vectors in some,
possibly very high dimensional, feature space. Standard forms
of kernel, such as the polynomial or Gaussian kernel, have been
found to provide gains over linear kernels on a range of tasks.
One issue when applying SVMs to speech processing tasks is
that most standard forms of kernel only operate on data of fixed
dimensionality. However, speech utterances are typically vari-
able length sequences O = {01, ...,or}. This has led to the
development of dynamic kernels. These kernels operate on se-
quences and have the form

K(0;,0;) =< ¢(0:), $(0;) > M



Here ¢(0O) is a function that maps a sequence of observations
to a fixed dimensional vector. To distinguish between the two
forms of kernel, kernel functions that operate on fixed dimen-
sional vectors will be referred to as static kernels in this pa-
per. Static kernel functions are denoted k(0;, 0;) and dynamic
kernel functions are denoted K (O;, O;). For both static and
dynamic kernels, the form of kernel function also defines the
distance metric between two feature vectors. One such metric
that is maximally non-committal is

K(0;,0;) = ¢(0:)'Q '¢(0;) )
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where £{} is the expectation with respect to O. Alternatively
an identity metric, Q = I, may be used. A number of dynamic
kernels of this form have been proposed for speaker verifica-
tion. The GLDS kernel and the family of generative kernels are
briefly reviewed in the following sections.

2.1. GLDS Kernel

The Generalised Linear Discriminant Sequence (GLDS) ker-
nel [1] was one of the earliest forms of dynamic kernels success-
fully applied to speaker verification. The GLDS kernel effec-
tively maps each observation o; into a feature-space ¥(0:). A
duration-independent fixed-dimensional vector is then obtained
by taking the mean of the expanded observations ¢(O) =
% S I W(o). Typically an identity metric is used. The ker-
nel function is defined by taking the inner product of the means
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Standard forms of static kernel such as polynomial or Gaussian
kernels may be applied. One disadvantage to using this form
of kernel is that the static kernel function must be calculated
between all pairs of observations. For longer utterances this
can be computationally expensive. When k(o0;, 0;) is linear the
GLDS kernel may be simplified to

K(Oi,Oj) =< Wi, (b > (6)
where p; is the mean of the observations in O;.

2.2. Generative kernels

Generative kernels are a form of dynamic kernel where a gener-
ative model is used to map utterances into a fixed dimensional
space. For parametric kernels, such as the GMM-supervector
kernel [3], the features ¢p» (O) are the parameters A of a gener-
ative model trained to represent O. Thus

$2(0) = [A]. A=argmax{logp(O; N} ()

Parametric kernels are related to the GLDS kernel. When A
represents the means associated with a single-component GMM
the kernel has a form equivalent to Equation 6.

Many generative kernels, such as the Fisher kernel [4] and
log-likelihood ratio kernel [6], belong to the family of derivative
kernels [5]. For an utterance, O, the features associated with a
derivative kernel are the partial derivatives of the log-likelihood
of O with respect to the parameters of a generative model .
The feature space has the form

#e(0%) = | Valog(0 )| | ®

where A is the model parameter value at which the derivative is
evaluated. Derivatives with respect to the means of a GMM can
be used [7]. Here

T
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where ., and 3! are the mean and variance parameters as-
sociated with component m. Equation 9 includes an optional
term p" to provide duration normalisation. This may be set to
the number of frames 7" in O, or to the component occupancy,

= 37, ¥m(t), where ~,,,(t) is the posterior probability
of o being emitted by component m. This is important if the
utterances in the dataset vary greatly in duration. Derivative ker-
nels are also related to the GLDS kernel. When the model as-
sociated with the derivative kernel is a single component GMM
with zero-mean and unit variance the kernel has a form equiva-
lent to Equation 6. However, generally these kernels operate in
very different ways.

3. Generalised derivative kernel

The GLDS kernel exploits a static kernel to explicitly map each
observation into a more separable feature space. However, by
taking a direct sum over all observations useful information may
be ‘averaged out’. Also, the resultant features may lack robust-
ness to intermittent noise or long regions of silence. In con-
trast, generative kernels, such as the derivative kernel, provide a
well-motivated mapping to a fixed dimensional set of features.
However typically only a simple inner-product is calculated in
the dynamic feature space. Combining static and dynamic ap-
proaches may therefore yield gains. This may be achieved in
two ways. A dynamic function ¢(O) may be used to map ut-
terances into a fixed dimensional space, a static kernel can then
be applied in this space. Alternatively, like the GLDS kernel,
a static kernel may be defined at the level of individual obser-
vations. A model A can then be defined in the associated static
feature space.

The generalised derivative kernel (GDK) follows this sec-
ond approach. Here, the features are derivatives with respect
to the parameters of a model defined in the feature space. For
GMMs, derivatives with respect to each feature space compo-
nent mean are defined by
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where fi,, and 3 are the mean and covariance matrix respec-
tively associated with component m of the feature space GMM.
Am(t) is the posterior probability that WU (o;) was emitted by
component m of this GMM. When the feature space consists of
only mean derivatives, the kernel function has the form

M

(0170 Z mz Z’Ym ’Ym fm(olhojs)(ll)

pl p] t=1 s=1
fm(0i,05) = [W(oi)—um] 2500 20 [W(0)) — fim](12)

When the static kernel function is linear, the GDK has the
form of the standard derivative kernel in Equation 8. In the case
when the model is a single-component GMM with zero mean




and unit variance, the GDK has the form of the GLDS kernel
in Equation 5. Thus both the GLDS and derivative kernels are
special cases of the GDK.

Evaluating Equation 11 requires training a generative
model in the static feature space. In general, this is not pos-
sible and approximations must be used. Two key issues are
how to obtain suitable component posteriors and how to esti-
mate fr,(0i, 0;). These are discussed in the following sections.

3.1. Component posterior estimation

To estimate Equation 11, a kernel function must be computed
between each pair of observations. For long utterances this may
be infeasible. A more efficient approach is to perform a Viterbi
alignment of each observation to a component. Here the kernel
function is approximated by

M
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where t € S if 1 = argmax,,jm(t). GMMs tend to-
wards hard component alignments as the dimensionality of the
space increases, therefore this approximation will be more ro-
bust when the dimensionality of ¥(o) is large. This is related
to an approach used in [8], where a kernel function is only com-
puted between a frame and its ‘closest’ frame in the other se-
quence. Here the generative model is used as a principled ap-
proach to identify sets of close frames.

An important issue is how to obtain 4, (¢) when a genera-
tive model can not be trained in the feature space. One approach
is to use the posteriors from a model trained in the observation
space, A. Thus

5™ ~ 8™ where t € SU™ if i = arg maxym (t)  (14)

where 7y, (t) are the posteriors associated with A. This may
yield poor estimates when relative distances between observa-
tions differ greatly between the feature and input spaces.

3.2. Static kernel estimation

In Equation 12, f,,(0;,0;) is a function of the feature space
variance i?m and the metric Qm applied to the derivatives asso-
ciated with component m. Generally a generative model cannot
be trained in the feature space, nor the feature-space ¥ (o) ex-
plicitly generated. Thus it is not possible to directly obtain these
parameters. Schemes such as in [9] can be used when ¥(0)
does not have an explicit representation. Here f);léfnlfl,;l
is approximated by the identity matrix. This allows standard
forms of static kernel to be used and avoids explicitly estimating
.1 and Q.. This approximation is likely to be more robust
when observations are globally whitened. For the case when
[t represents the ML estimate over a set of background obser-
vations {0g, , . .., 087y }, fm(0i, 05) is approximated by

fm(0i,05) = k(oi,05) — k' (0i) — k' (05) + Ky, (15)
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where Cém) is the number of frames in Og aligned with com-
ponent m. Calculating fn,(0;, 0;) requires evaluating a static

kernel function between each observation and the entire back-
ground dataset. When 7'z is large, this may not be feasible. In-
stead, the mean normalisation in the feature space, ¥ (0) — fim,
can be approximated by a normalisation evaluated in the obser-
vation space V(o — py,). Again, when distances vary greatly
between the observation and feature space, this approximation
may not be robust. In this paper, fn(0;,0;) is approximated
by

fm(oi70j) Q-‘Jk([al _Nm},[oj _IJ"nL]) (18)

3.3. Relationship to parametric kernels

Derivative and parametric kernels are known to be related and,
under certain conditions discussed in [5], the functions obtained
will be identical. A similar approach may be used to approx-
imate a parametric kernel, where the model is defined in the
feature space of a static kernel. If the feature space consists of
GMM means only, an identity metric is used, and hard compo-
nent alignments are estimated using a linear model A, the kernel

will have the form
m>Z > D koiw050) (19)
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This is similar to Equation 13 when component-occupancy nor-
malisation is used. If the GDK is computed using the approx-
imation in Equation 18, and k(0;,0;) is stationary, the two
forms of kernel will be identical.

4. Experimental results

Various forms of kernel were evaluated on the 2002 NIST
SRE one-speaker detection task [10]. This task contains cel-
lular data with speech from 139 male and 191 female speakers.
Each utterance was parameterised using a frame rate of 10ms
and a window size of 30ms. 31 features were extracted per
frame, these consisted of 15 static, 15 delta Mel-PLP coeffi-
cients and the delta energy. Initially SVM classifiers were eval-
vated using the GLDS kernel defined in Equation 5. For each
speaker, an imposter training set was created using all the non-
speaker enrollment utterances. For this experiment, spectral-
based normalisation techniques were not used since they typi-
cally normalise each utterance mean to zero. A maximally non-
committal metric was also not used since over long utterances
the mean of the APLP coefficients tends to zero. Using a linear
static kernel, the Equal Error Rate (EER) of the GLDS kernel
was 23.74%. When a second-order polynomial kernel was used
this dropped to 22.40%. This gain is partly due to the fact that
the SVM is able to use information from the delta coefficients.

SVM classifiers using generalised derivative kernels were
also evaluated. For certain limited forms of static kernel, such
as linear and low-order polynomial kernels, it is possible to
evaluate the GDK kernel defined in Equation 11 by explicitly
training a generative model in the static feature space. Cep-
stral feature warping [11] was performed on each utterance us-
ing a three second window to introduce additional robustness
to channel noise. Each speech observation was then explicitly
mapped into the corresponding feature space. For each form
of static kernel, gender-dependent, diagonal-covariance GMM,
UBMs were trained by EM using all SRE 2002 enrollment ut-
terances of the appropriate gender'. Speaker-dependent GMMs

'The setup used did not conform to the NIST SRE protocol, since
enrollment data was used for both UBM training and imposter mod-
elling. This was necessary due to the limited amount of development
data available to the authors.



were constructed by MAP adapting the means of the appropriate
gender-dependent UBM. A diagonal approximation was used
for @Q, estimated based on the covariance matrix features ex-
tracted from the enrollment data. Derivatives were normalised
by the component occupancy.

Linear Polynomial
16 128 16 128
GMM-LLR 1740 12.04 1640 14.52
Explicit 12.14 838 1032 10.94
Viterbi 1230  9.15 1038 11.11
AppProx 1221 1020 9.25 10.29

System

Table 1: Performance of GDK systems based upon explicit
models (Explicit), explicit models using Viterbi alignments
(Viterbi) and using approximated models (Approx)

Table 1 shows the performance for linear and second-order
homogeneous polynomial kernels, using an GDK-based SVM
classifier for 16 and 128-component models. Baseline results,
using a LLR classifier with the same models, are also pre-
sented. In all cases, the SVM outperformed the LLR classi-
fier. In the linear case, LLR and SVM performance improved
for larger model sizes. During preliminary experiments further
small gains were observed up to 1024 components. By con-
trast, for the polynomial SVM classifier best performance was
obtained using 16-component models. This difference is due to
the significantly larger feature space associated with the poly-
nomial kernel, 527 versus 31 features per component. For the
given dataset, 128-component models were found to suffer from
over-training. Although the best polynomial system did not out-
perform the 128-component linear system, further small gains
were achieved when these two systems were combined. Apply-
ing a maximum-margin based Multiple Kernel Learning scheme
[12] gave a performance of 8.08%.

To examine the effect on performance of using Viterbi com-
ponent alignments, GDK systems (Viterbi) were trained as
defined in Equation 13. Using hard alignments degraded the
performance of all systems. The effect was less severe for
the polynomial kernels, since for GMMs trained in a high-
dimensional space, the component posteriors already tend to-
wards hard alignments. Lastly, GDK systems (Approx) using
approximated models were trained for these two forms of ker-
nel. Here the component posteriors were obtained using the
linear models, and fr,(0i,0;) was approximated using Equa-
tion 18. For the linear kernels, performance was worse for this
system, this is due to the approximation used for Q. For the
polynomial systems the performance improved indicating that
the posteriors associated with the linear models were more ro-
bust.

Kernel 16 128

Linear 12.21  10.20
Polynomial order2  9.25  10.29
Polynomial order 3  9.96  13.17
Gaussian 1429 1294

Table 2: GDK performance using 16 and 128-component mod-
els for various static kernels

Finally, the generalised derivative kernel was evaluated us-
ing other forms of static kernel. A third-order homogeneous
polynomial kernel and a Gaussian kernel were used. For the
Gaussian kernel o was set to 31, the dimensionality of the ob-
servations. For 128-components, no gains were observed using

non-linear kernels due to the limited amount of available train-
ing data. When 16-component models were used both poly-
nomial kernels gave gains over the linear case and also out-
performed the 128-component linear system. Overall best per-
formance was obtained using a second-order polynomial kernel
with a 16-component model.

5. Conclusion

This paper has introduced a new form of dynamic kernel that
combines a static kernel applied over individual observations
with a generative model based approach to obtain a fixed di-
mensional representation of each utterance. By choosing a suit-
able metric, and using approximate component posteriors, this
form of kernel may be computed. This dynamic kernel gener-
alises both the derivative kernel and the GLDS kernel as special
cases. The form of kernel obtained is also closely related to a
parametric kernel where the models are defined in the static ker-
nel feature-space. In preliminary experiments, using non-linear
static kernels gave gains. For tasks where more training speech
is available, further gains may be obtained using larger model
sizes.
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