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ABSTRACT

This paper describes the development of an Arabic speech recogni-
tion system based on a phonetic dictionary. Though phonetic sys-
tems have been previously investigated, this paper makes a num-
ber of contributions to the understanding of how to build these sys-
tems, as well as describing a complete Arabic speech recognition
system. The first issue considered is discriminative training when
there are a large number of pronunciation variants for each word. In
particular, the loss function associated with Minimum Phone Error
(MPE) training is examined. The performance and combination of
phonetic and graphemic acoustic models are then compared on both
Broadcast News (BN) and Broadcast Conversation (BC) data. The
final contribution of the paper is a simple scheme for automatically
generating pronunciations for use in training and reducing the pho-
netic out-of-vocabulary rate. The paper concludes with a description
and results from using phonetic and graphemic systems in a multi-
pass/combination framework.

Index Terms— Large vocabulary speech recognition, Arabic, dis-
criminative training.

1. INTRODUCTION

In recent years there has been interest in transcribing Arabic Broad-
cast news [1, 2]. Compared to English there are a number of issues
in automatically transcribing Arabic speech [2]. In Arabic texts the
short vowels are not normally marked, this is also true for languages
such as Farsi and Hebrew. This means that each “word” in the text
may have a large number of pronunciations, with the pronunciations
being associated with different, but possibly related, meanings. In
addition, Arabic is a highly inflected agglutinative language. This
results in a large vocabulary, as words are often formed by attaching
affixes to triconsonantal roots. Techniques such as morphological
analysis may be used to handle this problem [3]. This paper is pri-
marily concerned with the first issue, handling the modelling of short
vowels in Arabic.

There are two approaches to handling the lack of vowel-markings
in written Arabic. The first is to rely on the acoustic models to im-
plicitly model the vowels. Here the pronunciations can be simply
based on the orthographic form of the word. This is referred to as
a graphemic system. Alternatively a dictionary that explicitly in-
cludes the vowels can be constructed. This is a phonetic system.

This work was supported in part under the GALE program of the De-
fense Advanced Research Projects Agency, Contract No. HR0011-06-C-
0022. Many thanks to BBN for supplying segmentations, lightly supervised
and unsupervised transcriptions for the BNO3 data and the intial GALE Ara-
bic data releases. Also the authors would like to thank BBN and LIMSI for
many helpful discussions about initial pronunciation generation for the pho-
netic system.

In this case it is necessary to generate pronunciations for each or-
thographic transcription, in a similar fashion to English. This paper
considers some of the design issues and options when constructing
these phonetic systems. In particular the following issues are ad-
dressed: the impact of having large numbers of pronunciations on
discriminative training (section 4.1); the interaction/combination of
phonetic and graphemic systems (section 4.3); and automatically de-
riving pronunciations (section 5.1).

2. GRAPHEMIC AND PHONETIC DICTIONARIES

There are two forms of Arabic system that are commonly constructed;
graphemic and phonetic systems. In the graphemic system a dic-
tionary is generated using one-to-one letter-to-sound rules for each
word. Note for all this work the Arabic text is romanised and the
word and letter order swapped to be left-to-right. Thus the dictio-
nary entry for the word %’t{’ “book” in Arabic, is

ktAb /x/ /t/ /A/ /b/

This scheme yields 28 consonants, four alif variants (madda and
hamza above and below), ya and wa variants (hamza above), ta-
marbuta and hamza. Thus the total number of graphemes is 36 (ex-
cluding silence).

In Arabic the short vowels (fatha /a/, kasra /i/ and damma
/u/) and diacritics (shadda, sukun) are commonly not marked in
texts. Additionally, nunation can result in a word-final nun (/n/)
being added to nouns and adjectives in order to indicate that they are
unmarked for definiteness. In graphemic systems the acoustic mod-
els are required to model the implied pronunciation variations im-
plicitly. An alternative approach is to use a phonetic system where
the pronunciations for each word explicity include the short vowels
and nun. Note in this work the other diacritics are not considered
and are required to be implicitly modelled. In phonetic systems it is
necessary to hypothesise the forms of the pronunciations that can be
used. The baseline process used in this work is to use the Buckwal-
ter Morphological Analyser (version 2.0)', referred to as Buckwalter
in this paper. All initial recognition dictionaries were based on this
analysis. However for training data Buckwalter was used in combi-
nation with the Treebank and the FBIS pronunciations (similar to the
procedure described in [1]). Here the following strategy is used:

Buckwalter — Treebank — FBIS pron.

where — means if the word is not found in the left dictionary search
in the the right dictionary. This expands the coverage for the training
data and is not felt to be a major issue as inconsistencies in the dictio-
naries will minimally impact other words as training is an alignment

! Available at http://www.qamus.org/index.html.



process. In contrast for decoding, an inconsistent dictionary may af-
fect both the word in question and the surrounding words. Again
taking the example of the dictionary entry for the word gT}\.:.{

ktAb /k/ /i/ /t/ /A /b/

Some simple mapping rules were used to reduce the number of
“phones” given the explicit vowel modelling. The four variant forms
of alif and hamza were mapped to the simple alif, and ya and wa
variants were both mapped to their respective simple forms. Thus
the total number of “phones” is 32, again excluding silence.

3. TRAINING DATA AND TEST SETS

FBTD | BNO3 | GALE-Y1/P2R{1,2,3} Total
Sys.

supv | usupv [ supv [ Isupv | usupv (Hrs)
GO 100.7 — — — — 100.7
Gl 109.6 | 791.0 — 39.8 | 287.6 1228.0
G2 109.6 | 791.0 | 655.0 | 39.8 | 219.8 1815.2
G3 109.6 — 655.0 | 39.8 219.8 1024.2
VO 101.8 — — — — 101.8
V1 101.8 | 791.0 — 39.8 | 287.6 1220.2
V2 101.8 — 4393 | 39.8 | 219.8 800.7
V3 101.8 — 653.7 | 39.8 | 219.8 1015.1

Table 1. Training data used for all the system evaluated in this paper,
hours of supervised (supv), unsupervised (usupv) and lightly super-
vised (Isupv) are given for FBIS and TDT4 (FBTD), EARS BNO03
(BNO03) and the GALE data.

The training data, summarised for each of the systems in Table 1,
was used in three distinct stages. The first stage, was used for all the
initial phonetic system development in section 4. The data consists
of the FBIS data for which detailed transcriptions (including short
vowels and diacritic markings) are available and the TDT4 Arabic
data which was used in a lightly supervised fashion, where a biased
language model is generated and the training data recognised [4].
If a phonetic system is used for the recogniser then it is guaranteed
that all pronunciations are available for all the light-supervision data.
However, for the TDT4 data a graphemic system was used, as this
was the “best” system available. This resulted in approximately 7.8
hours of TDT4 data not being available for the phonetic system. The
graphemic GO system was built on a reduced subset to give approxi-
mately the same amount of training data as the initial VO system.

The second block of training data was used to generate the G1
and V1 acoustic models. This data consisted of the BNO3 data
(data collected for the EARS programme in 2003) and the GALE-
Y1Q{1,2} data releases. None of this data was used in a supervised
fashion. 39.8 hours of the data had lightly supervised transcriptions
from BBN?, the remaining data had unsupervised transcriptions also
supplied by BBN. As lightly supervised and unsupervised training
was used, very few segments did not have phonetic pronunciations
available (BBN used slightly different mappings for their phonetic
system). This was used to build the G1 and V1 acoustic models. The
final block of data consisted of the GALE-Y1Q{3,4} and GALE-
P2R{1,2,3} data. Some of the transcriptions available with this data
overlapped with the unsupervised transcriptions in the second-block

2The segmentation supplied with the transcription was not sufficiently
accurate to allow them to be directly used. For further details of the data see
the LDC web-site - http://projects.ldc.upenn.edu/gale/data/DataMatrix.html.

of data. In this case the supervised transcriptions were used. This
final block of data was used in a supervised fashions.

Two test sets defined by BBN were used for evaluating the sys-
tems. The first, bnat 06, consists of about 3 hours of Broadcast
News (BN) style data collected in November 2005 and January 2006.
The second, bcat 06 is about 3 hours of Broadcast Conversation
(BC) style data collected in January 2006. It was ensured that there
was no overlap between this training and test data. The test data had
to be segmented and speaker clustered. The initial segmentation and
clustering used will be referred to as the CU segmentation. For a
description of the language models and training data see section 5.2.

4. INITIAL PHONETIC SYSTEM DEVELOPMENT

This section describes the initial phonetic system development. The
baseline phonetic (V0) and graphemic systems (GO) were used. Both
these systems are state-clustered decision-tree triphone systems with
approximately 4K distinct states and an average of 16 Gaussian com-
ponents per state. The baseline 65K vocabulary-size language mod-
els, LM1 for the graphemic system and LM2 for the phonetic sys-
tem, are used in these initial experiments, for details of these see
section 5.2.

4.1. Discriminative Training with Multiple Pronunciations

One interesting aspect of phonetic models for Arabic is that each
of the “words” has a large number of pronunciations. The average
number of pronunciations, using a 250K word vocabulary and Buck-
walter, is 4.3 per word. In contrast, using a 59K word vocabulary En-
glish system there are only 1.1 pronunciations per word. In addition
to this approximately four-fold increase in the number of pronunci-
ations, the nature of the pronunciations is fundamentally different.
In Arabic the multiple pronunciations are really distinct words, but
all mapped to the same vocabulary entry. This may be expected to
have an impact on discriminative training. Two forms of discrimi-
native training are examined, Maximum Mutual Information (MMI)
and Minimum Phone Error (MPE) training.
The training criterion for MMI training can be expressed as

PO [Wrri A) P(Wiez)
e szg<z o w NP ) Y

where X is the set of model parameters, O(™ is the r*"

sequence and wfeg is the associated word-sequence reference. When

using multiple pronunciations the likelihood may be expressed as

observation

POV wid) = Y P(viw)p(0|v; \) )

VEVw

where V is the set of all possible pronunciation sequences for the

word sequence w and P(v|w) is obtained from the pronunciation

probabilities. The set of possible word sequences in the denominator

is determined from a lattice. Thus there is little to consider as the

multiple pronunciations can be directly handled in the criterion.
The basic MPE criterion [5] can be expressed as

Fape(N) = 3 ZZP 0™ ) L(w, w')) A3)

r=1 w
where L£(w, Wig) is the loss function of word sequence w against
the reference measured at the phone level. When multiple pronunci-
ations are used there are a number of variations that can be used for



the loss function. The most direct approach is to take the minimum
between the phone sequences specified by the words.

Liw,w)) =

min {L(v,V)} @)

vev(D) vevy,

Here, as the number of pronunciations increases so the phone-accuracy

must increase. Alternatively the loss function may be expressed at
the phone sequence level. Here

R
1 . .
FueN) = S5 N Pwlv)POT N L(v, W) (5)
r=1 w vEVyw
where
Lv,w)) = min {L(v,V)} ©6)
vev(®)

ref

This is the multiple pronunciation implementation used in this work.
In HTK V3.4 [6] used in this work, the homophone issue, the effect
of P(w|v) # 1, does not need to be considered as the pronunciation
sequence is linked with the word sequence in the lattices. Note in
the HTK implementation there is no check that the pronunciations
chosen are consistent with pronunciations selected earlier [5]. An
alternative to the use of multiple pronunciations is to select the best
single reference pronunciation, given the current model-parameters.

v =arg max {P(vwii)p(0"[v;A)} %)

v GVE;;)

The loss function is then simply £(v, V). When used with equa-
tion 5, this is the single pronunciation system in this work. The sin-
gle pronunciation derived in equation 7 may also be used for systems
trained with MMI. This is the single pronunciation MMI system.

An alternative way of addressing multiple pronunciations is to
use the expected loss over all the pronunciations, rather than taking
the minimum. Thus the loss function is modified to

Low(v,wi)) = > PEIWLDL(Y,Y) ®)
vevy)
Note by definition
Low(v, WD) > L(v, W) > L(v,¥) ©)

where the differences increase with the number of pronunciations.
This summation form of loss function is not examined further in this
work. In this work no pronunciation probabilities, P(v|w), were
used during training. When pronunciation probabilities were used in
training there was little difference in recognition performance.

Two forms of the VO model were built, multiple and single ref-
erence pronunciations. The front-end processing was the same as
that used for the English systems in [7]. Figure 1 shows the differ-
ence in the normalised MPE criterion, 1 — RFnpe () /Npnone (Nphone
is the total number of phones in the R observation sequences), be-
tween MPE training with multiple and single reference pronuncia-
tions. As expected the multiple reference pronunciations has a larger
MPE score than the single one.

Given the differences in the MPE criterion in figure 1, both sys-
tems were evaluated. The MPE training for the multiple pronuncia-
tions system, VO, was stopped after 4 iterations as it was found to
degrade performance after that. In contrast the single pronunciations
system, V0, 6 iterations were performed. Table 2 shows the perfor-
mance of both MPE and MMI training. For both MMI and MPE
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Fig. 1. Training data normalised MPE criterion value for the single
pronunciation (V0) and multiple pronunciation (VOy) system.

Criterion Reference Test Set WER (%)
Pron. bnat06 | bcat06
Multiple 37.5 46.0
MML | ginete 376 462
Multiple™ 37.2 45.6
MPE
Single! 37.0 457

Table 2. %WER of unadapted decoding 16 using the CU segmenta-
tion and LM2, T indicates the VO baseline system, * the VO, system

training the differences between the single and multiple pronuncia-
tion were small. However using the NIST pair-wise significance test
(MAPSSWE), the probability that the two MPE systems were the
same was only about 0.3 on bnat 06. As this is based on the pattern
of errors, the two phonetic systems may be useful in combination.

4.2. Phonetic System Combination

As discussed in the previous section, it is interesting to combine
the single and multiple pronunciation systems together. The gen-
eral combination framework described in [7] was used. This is the
same as a single segmentation branch of the evaluation style con-
figuration in figure 2. The P1-stage is a fast decoding run with GI
models. The P2-stage uses GD models adapted using LSLR and
variance scaling using the P1 supervision. The P2-stage generates
trigram lattices which are expanded using a 4-gram language model
and then rescored in the P3 stage. The P3-stage models are again
GD, adapted using 1-best and lattice-MLLR as discussed in [7].
Table 3 shows the combination of the single and multiple pro-
nunciation phonetic systems either with or without pronunciation
probabilities. A number of observations can be made. First the
use of pronunciation probabilities shows good gains for recognition.
For example comparing the VO phonetic branch with (P2a—P3a)
and without (P2a—P3-) pronunciation probabilities, shows that pro-
nunciation probabilities give a 0.4% absolute gain on BN data and
0.9% on BC data. Pronunciation probabilities are therefore used
for all subsequent multi-pass/combination experiments. The use of
multiple reference pronunciations shows slight gains over the sin-
gle reference pronunciation. More interestingly cross-adapting the



System Pron Test Set WER (%)
Probs || bnat06 [ bcat06
P2a VO _pp 35.0 43.9
P2b V0, 35.0 43.9
| P2a—P3- VO [ -PP H 33.9 [ 43.6 ‘
P2a—P3a V0 PP 33.5 42.7
P2a—P3c VO, 32.9 42.2
P2b—P3b VO PP 333 42.5
P2b—P3d VO, 33.1 42.3
P3a+P3c 32.7 42.0
P3a+P3d CNC o 325 41.8

Table 3. Multi-pass/combination performance of multiple (V0,) and
single pronunciation (VO) MPE phonetic system combination with
(+PP) and without (-PP) pronunciation probabilities using LM2.

two systems (P2a—P3c) shows gains. However better performance
was obtained by using Confusion Network Combination (CNC) to
combine the two distinct branches (P3a+P3d) which yields a gain of
0.6% on BN and 0.5% on BC data over the best multiple (P2b—P3d)
or single (P2a—P3a) pronunciation system. It is interesting that in
other experiments gains were not observed when an MPE system
was combined with an MMI system using single pronunciations.

4.3. Phonetic/Graphemic System Combination

Rather than combining two phonetic systems together, it is possible
to combine the phonetic system with a graphemic system. This was
performed in a cross-adaptation mode in [8]. In this section both
cross-adaptation and CNC are examined in the same framework as
the previous section. Note, when the graphemic system is used for
cross-adaptation the phonetic language model and word-list (LM2)
must be used to enable pronunciations to be obtained for all words.

System Lang. Test Set WER (%)
Model || bnat06 [ bcat06
P2 GO LM1 36.0 43.4
P2a VO LM2 35.0 43.9
P2c GO LM2 36.1 43.5
P2 —-P3 GO LM1 34.8 42.7
P2a—P3a VO LM2 335 427
P2c—P3e VO LM2 33.1 41.6
P3+P3a 31.8 40.2
P3+P3e CNC — 321 40.3
P3+P3c 31.6 40.1

Table 4. Multi-pass/combination performance of phonetic (V0) and
graphemic (G0) system combination.

Table 4 shows the performance when combining the phonetic
(V0) and graphemic (GO) systems. When cross-adaptation is per-
formed for the phonetic system (P2c—P3e) compared to the stan-
dard pass 3 performance (P2a—P3a) gains of 0.4% on bnat 06 and
1.1% on bcat06 were obtained. This shows the gains of cross-
adaptation between graphemic and phonetic (as observed in [8]). It
also highlights the difference in performance between the phonetic
and graphemic systems on BN and BC data. On BN the phonetic
system is better. However on BC the graphemic is comparable. This

performance difference is propagated through the cross-adaptation
stage. As expected, the implicit modelling of the graphemic sys-
tem seems to be more robust to the greater variability of BC-style
speech. Comparing the graphemic cross-adaptation (P2c—P3e) with
the phonetic cross-adaptation from Table 3 (P2a—P3c), shows gains
of 0.6% on the BC test set, but a degradation of 0.2% on the BN data.

It is also possible to do CNC between the graphemic P3 branch
(P2—P3) and the phonetic P3 branches. Combination of both the
straight phonetic system and cross-adaptation system were performed.
Though cross-adaptation yielded the best single-branch performance,
the best CNC performance was combining the separate branches
(P3+P3a). As an additional contrast the phonetic cross-adaptation
branch (P2a—P3c from Table 3) was combined with the graphemic
system (P3+P3c). This gave additional small gains.

5. PHONETIC SYSTEM REFINEMENT

This section examines the selection and use of additional training
data, in particular the use of unsupervised data, and how all this data
may be used with a phonetic system. All the acoustic models in this
section were state-clustered triphone models with approximately 7K
distinct states and an average of 36 Gaussian components per state.
Only the single pronunciation discriminative training was used, as
this is felt to be slightly more robust to automatically derived pro-
nunciations. This section also discusses schemes for reducing the
Out Of Vocabulary (OOV) rates for this basic LMs and the impact
of additional LM training data. Note, preliminary experiments using
a different number of states for short vowel modelling only yielded
small gains, unlike the large gains found in [8], so this was not fur-
ther investigated.

5.1. Phonetic Acoustic Model

The use of unsupervised training data for Arabic has been shown to
yield gains [9]. However the use of unsupervised data for discrimi-
native training when there is a mismatch between the supervised and
unsupervised data is less clear [10]. From Table 1 a large amount
of unsupervised data (BNO3) may be used for building the system.
This section examines the selection of training data. Graphemic sys-
tems are used as this allows all the data to be used without having to
consider how to generate the pronunciations (examined below).

Test Set WER (%)
System fhrs bnat06 | bcat06
GO 100.7 41.8 48.5
G1 1228.0 34.1 40.4
G2 1815.2 33.9 38.6
G3 1024.2 33.5 37.6

Table 5. %WER of unadapted decoding ML 36 components (16
components for GO) , CU segmentation and LM1.

Using the second block of data, the G1 system gave a large re-
duction in WER compared to the GO system. In preliminary experi-
ments with this second set of data, the large quantity of unsupervised
BNO3 data was found to aid performance. This was felt to be because
of the small amount of supervised training data. Using all the train-
ing data, the G2 system, gave only small gains on the BN data, but
1.8% absolute on the BC data. However removing the unsupervised
BNO3 data gave further performance gains. This is not surprising as
the gains from using unsupervised training are expected to decrease



as the quantity of supervised training data increases, and, as seen
here, may degrade performance if the amount of unsupervised data
is similar to that of the supervised data.

If all the training data used for the G3 graphemic system is to be
used for the phonetic system then pronunciations are required for all
words. In contrast to the previous systems with mainly lightly super-
vised and unsupervised data, there was large amounts of supervised
data (655 hours) with only the standard orthographic transcriptions.
If the procedure described in the section 2 is used then about 216
hours of data (about a third of the data) has at least one word in a
segment that does not have a pronunciation. There are a number of
approaches that have been adopted in the literature to deal with this.
As previously discussed, one approach is to use the training data in a
lightly/unsupervised fashion [9]. Alternatively it is possible to back-
off to the graphemic pronunciation and build a combined system [8].
Finally in [2] a series of expert rules are used to derive pronuncia-
tions.

In this work rather than using expert derived rules a series of
rules were automatically generated from a 250K Buckwalter derived
phonetic dictionary. Though this derives many of the standard ex-
pert rules, it ensures that the rules were consistent with pronuncia-
tions from Buckwalter. The pronunciations were derived in a “right-
associative” fashion and the start (_S) and end (-E) of word pronun-
ciations were kept distinct from standard variations (_V) (this also al-
lows inter-word silence to be correctly added to the pronunciations).
The pronunciation and derived rules for S are

ktAb /kx/ /i/ /t/ /BA/ /b/
k_S /k/

tV /i/ /t/

AV /B/

b_E /b/

This yielded 889 derived pronunciations which were guaranteed to
yield a pronunciation for each word. The vast majority resulted from
nunation at the end of words.

Test Set WER (%)
System #5527 66 | boat06
Gl 12280 | 3038 372
G3 10242 | 292 333
VI 12202 || 304 38.0
V2 800.7 || 29.1 34.9
V3 10151 || 285 33.9

Table 6. %WER of unadapted decoding MPE 36 components, CU
segmentation, and LM2.

Table 6 shows the performance of MPE trained graphemic and
phonetic systems. The V1 and G1 systems are comparable. Again
the general trend of the graphemic system performing better on the
BC data is observed, whereas the phonetic system performs better
on the BN data. The V2 system was built using all the training data
segments for which pronunciations could be obtained using the stan-
dard approach. Though reductions in WER were obtained they were
less than for the graphemic system (G3). The automatic pronuncia-
tion scheme was then used. This gave gains similar to those seen for
the graphemic system, showing the efficacy of this simple approach.

5.2. Language Model Development

The initial language models used in the previous sections, LM1 a
65K graphemic word-list and LM2 using a 65K phonetic word-list,

were constructed using 422 million words of LM training data. The
graphemic word-list was obtained using weighted frequencies from
the training data. The phonetic word-list consisted of the top 65K
words, ranked by frequency, that phonetic pronunciations could be
obtained using Buckwalter.

Language | Vocab OOV Rate (%)
Model Size bnat06 [ bcat06

LMI1 65K 4.9 6.4

— 130K 2.6 3.8

- 250K 1.6 2.6

LM2 65K 53 8.0

— 130K 3.4 6.1

— 210K 2.7 5.4

Table 7. OOV rates for Various Language Model Word-Lists, the
210K phonetic word-list is the subset of the 250K graphemic word-
list for which pronunciations could be generated.

Table 7 shows the impact of increasing the vocabulary size with
these initial word-lists. As observed in other work [1, 8] increasing
the vocabulary size from 65K dramatically reduces the OOV rate. As
expected the OOV rate for the phonetic word-list is higher. For the
210K phonetic word-list, which is the subset of the 250K graphemic
word-list that Buckwalter could generate pronunciations for, the dif-
ference in OOV rate was 2.8% for BC. Irrespective of how large the
word-lists are made this difference can only grow.

Language | Vocab Pron OOV Rate (%)
Model Size | Source || bnat06 | bcat06
[ LM3 [ 35K [ — ] 1.1 [ 20 ]
— 258K buck 2.5 5.0
— +1670 map 2.4 4.9
— +734 auto 2.0 3.5
LM4 +50 hand 1.9 32

Table 8. OOV rates for Various Language Model Word-Lists.

As additional data was made available for the new LMs, a new
word-list was generated again using weighted word frequencies. The
total available training data for the LM3 and LM4 language mod-
els was 1013 million words. A 350K graphemic word-list was con-
structed. Of this 350K word-list, approximately 258K were able to
be directly handled by Buckwalter (buck). On the BC data this re-
sulted in an OOV rate about 3.0% absolute greater than the graphemic
one. These pronunciations were then augmented in three stages, see
Table 8. First, since alif and other variants will be mapped to simple
forms, all words that only differ by the form of the alif, for exam-
ple, from a word that Buckwalter could derive a pronunciation were
included with the mapped pronunciation (map). Second automatic
pronunciations from section 5.1 that occurred more than five times
and in the 350K word-list, were then added (aut o). Finally the most
common 50 words that were still missing were then added by hand
(hand). This reduced the OOV rate to about 1.2% worse than the
graphemic word-list on BC data and 0.8% worse on BN data.

Table 9 shows the WER using the MPE trained G3 system. As
well as having lower OOV rates, LM3 and LM4 yielded significantly
lower WERs. Note, the difference in performance between LM3
and LM4 was 0.1% absolute or less, consistent with the differences
obtained using LM1 and LM2.



Language | Vocab Test Set WER (%)
Model Size |[ bnat06 [ bcat06

LM1 65K 28.8 33.0
LM2 65K 29.2 333

— 130K 28.4 325

— 210K 28.0 322
LM3 350K 26.6 30.5
LM4 260K 26.6 30.6

Table 9. %WER of unadapted MPE G3 models, CU segmentation.

6. EVALUATION SYSTEM

Sub-System CU-seg

Sub-System BBN-seg

CU1 Segmentation BBN Segmentatior,

P1/P2a P1/P2b P1/P2a P1/P2b
! G3LM3 G3LM4 b G3LM3 G3 LM4
1 Fo T
o U O B t
| P3a-G3 P3b-V3 [ P3a-G3 P3b-V3| |
G3 LM3 V3 LM4 G3 LM3 V3 LM4

| |
CUa+CUb A’J‘*BN‘)

— lattice ROVER

— 1-best
confusion network ¢

Fig. 2. Evaluation System Configuration.

The phonetic V3 and graphemic G3 acoustic models were used
with the LM4 and LM3 language models in a full evaluation frame-
work. This is shown in figure 2. Two segmentations were used. The
first CU1 is a revised version of the CU segmentation used earlier
(this addressed an issue of deleting significant data from one of the
shows). The second segmentation was supplied by BBN. This is sim-
ilar to the CUED GALE’07 Arabic STT system and is based on the
dual segmentations RT04f English evaluation system [7]. The P1/P2
branches were run using the graphemic models, due to the speed/
software issues of using large word-lists with the large number of
phonetic pronunciations. The same general trends as the develop-
ment systems can be observed in the full system results, see Table 10.
The phonetic system is better on BN data, the graphemic system
is better on BC data, even though cross-adaptation yields gains for
the phonetic system. Cross segmentation combination yields small,
consistent, gains. As a contrast, combining the single pronuncia-
tion, V3, system with the multiple pronunciation, V3, system using
the CU1 segmentation gave 19.2% on BN and 26.3% on BC data.
The graphemic and phonetic combination (CUa+CUD) is again bet-
ter, though there are still gains combining the two phonetic systems.

7. CONCLUSIONS

This paper has described the development of a phonetic system for
Arabic speech recognition. A number of issues involved with build-
ing these systems have been discussed. First the impact of the large
number of pronunciations has on discriminative training, and how

System Se Test Set WER (%)
g bnat06 [ bcat06

CU1 211 27.6

P2a-G3 LM3 | ppy 20.4 27.3

CU1 21.3 278

P2b-G3 LM4 | gy |l 206 27.6

CUa CU1 20.4 272
BNa [oa-G3  LIM3 | ppy 19.9 26.9
CUb CU1 20.0 273
BNb P3b-v3  LM4 BBN 19.1 27.1
CUa + CUb one | QU 18.7 25.3
BNa + BNb BBN 17.9 252

[ CUat+CUb@GBNa+BNb | — [ 175 | 250 |

Table 10. Multi-pass/combination performance using the CU1 and
BBN segmentations, “@” indicates ROVER combination, “+” CNC.

the use of multiple and single pronunciation systems may be success-
fully combined together. The interaction of phonetic and graphemic
systems is then described, where it is found that CNC rather than
cross-adaptation is better. Also, graphemic systems perform at least
as well as phonetic systems on BC data. Finally a simple approach
that allows all the acoustic training data to be used is described. Fi-
nally the performance in a multi-pass combination framework simi-
lar to the one used for the GALE’07 evaluation is given.
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