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Abstract

Hidden Markov Models (HMMs) are the most commonly used acoustic model for
speech recognition. In HMMs, the probability of successive observations is assumed
independent given the state sequence. This is known as the conditional indepen-

dence assumption. Consequently, the temporal (inter-frame) correlations are poorly
modelled. This limitation may be reduced by incorporating some form of trajectory
modelling. In this paper, a general perspective on trajectory modelling is provided,
where time varying model parameters are used for the Gaussian components. A dis-
criminative semi-parametric trajectory model is then described where the Gaussian
mean vector and covariance matrix parameters vary with time. The time variation is
modelled as a semi-parametric function of the observation sequence via a set of cen-
troids in the acoustic space. The model parameters are estimated discriminatively
using the Minimum Phone Error (MPE) criterion. The performance of these mod-
els is investigated and benchmarked against a state-of-the-art CUHTK Mandarin
evaluation systems.

Key words: speech recognition, trajectory model, discriminative training,
minimum phone error

1 Introduction

Hidden Markov Models (HMMs) [18] are widely used as the acoustic model
in speech recognition. A series of assumptions underlie the use of HMMs to
model the speech data, some of which are poor. In particular, the “conditional
independence assumption” implies that the observation output probability is
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conditionally independent of all other observations given the current state.
This yields a constant trajectory within an HMM state. Existing ways to over-
come this limitation include the use of switching linear dynamical system [19],
stochastic segment model [13, 12], polynomial segment model, buried Markov
model [2] and trajectory HMM [21, 22]. In general, all these models are collec-
tively known as trajectory models. To date, maximum likelihood training of
these models has had very little success in large vocabulary continuous speech
recognition. In this paper, a discriminative semi-parametric trajectory model
will be presented. This model represents the Gaussian mean vectors and covari-
ance matrices as time varying parameters. These time dependent parameters
are modelled as a function of the location of the current observation (and the
neighbouring observations) in the acoustic space, which is represented by a
series of centroids. Model parameters are discriminatively estimated using the
Minimum Phone Error (MPE) [17] criterion.

One form of temporally varying mean vector is obtained by applying a time
dependent bias to the static Gaussian mean. This time dependent bias is
a weighted contribution from the bias vectors associated with each centroid
(to be estimated discriminatively). The contribution weights are calculated
as the posteriors of the centroids given the observation (and neighbouring
observations). The resulting model yields an fMPE model [16, 15]. This was
originally presented as a feature transformation, but may also be described
in the semi-parametric trajectory framework described here. The variance of
each dimension may also be scaled by a positive time dependent factor to yield
a temporally varying covariance matrix. This model will be referenced to as
pMPE [20]. Similar to fMPE, the time dependent scale factor is a weighted
contribution from the centroid specific scales where the weights are given by
the posteriors of the observations given the centroids. Both of these models and
their combination may be described as a semi-parametric trajectory model.

This paper is organised as follows. Section 2 introduces several forms of trajec-
tory models applied to speech recognition and establishes a general formulation
of time varying model parameters for trajectory models. This formulation is
then used to introduce a semi-parametric trajectory model in Section 3. Next,
Section 4 derives the parameter estimation formulae of this form of model
using the Minimum Phone Error (MPE) criterion. Section 4.4 discusses the
implementation issues. In Section 6, experimental results are given based on
a large vocabulary conversational telephone speech recognition task. Finally,
conclusions are given in Section 7.
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2 Trajectory Models

There are a number of modelling approaches that have attempted to over-
come the HMM conditional independence assumption. These include the use
of switching linear dynamical systems [19], stochastic segment models [13,
12], polynomial segment models, buried Markov models [2] and trajectory
HMM [21, 22]. All these models have a common aim of relaxing the “condi-
tional independence assumption” by allowing the state output distribution to
vary with time. This time variation is achieved by adding dependency on the
observation sequence, OT

1 , either directly or indirectly using latent variables.
The model parameters for the state output probability are now viewed as time
dependent such that

p(OT
1 |Q

T
1 , θt) =

T
∏

t=1

p(ot|θt) (1)

where the time dependent parameter set, θt, is expressed as a function of the
observation sequence, OT

1 , state sequence, QT
1 , and the time, t, i.e.

θt = f
(

OT
1 , QT

1 , t; θ
)

(2)

The form of function, f(.), with parameters, θ, defines the type of model used.
As with standard HMMs, it is convenient to represent the output density
function as a Gaussian Mixture Model (GMM) [8] as it can be used to model
any arbitrary non-Gaussian distribution and its model parameters may be
estimated efficiently. In this case, the GMM parameters are time dependent:

p(ot|θt) =
M
∑

m=1

csmtN (ot; µsmt,Σsmt) (3)

where θt = {csmt, µsmt,Σsmt}. These time varying Gaussian parameters may
be expressed as a general function of the form given in equation (2). Therefore,

{csmt, µsmt,Σsmt} = f
(

OT
1 , QT

1 , t; θc, θµ, θΣ

)

(4)

where θc, θµ and θΣ denote the model parameters for the component weight,
mean and covariance matrix respectively.

In the following sections, several trajectory and segmental models will be de-
scribed within the time varying parameter formulation given by equations (1)
and (2).
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2.1 Explicit Temporal Correlation Modelling

One of the earliest work on explicit time correlation modelling was carried out
by Wellekens [23] where correlations between adjacent frames are explicitly
modelled. This yields a time varying mean of the following form:

µst = µs + ΣsuΣ
−1
uu (ot−1 − µu) (5)

where s and u denote the current and previous states. µs and Σss are the mean
vector and covariance matrix respectively of state s. Σsu is the cross covariance
matrix between state s and u. This is a special form of equation (4) where
θµ = {µs, µu,Σss,Σuu,Σsu}.

Vector linear prediction (VLP) is also a trajectory model [24], where the state
output probability of ot is conditionally independent of other parameters given
the current state, qt, and observation dependencies, Ht. The resulting mean
vector becomes time dependent of the form

µst = µ(0)
s +

P
∑

p=1

A(p)
s

(

ot+τp
− µ(τp)

s

)

(6)

where P is the number of predictors. The mean vector given the HMM state
is dependent on the observation history, Ht = {ot+τp

: 1 ≤ p ≤ P, 1 ≤ t+ τp ≤
T}. This form of model is again a specific form of a time varying parameter
formulation given by equation (4) with θµ = {µ(0)

s , A(p)
s , µ(τp)

s }.

2.2 Implicit Temporal Correlation Modelling

Another type of trajectory modelling approach is to model the temporal cor-
relations implicitly via some form of latent structures. An example of this
approach is the Buried Markov Model (BMM) [2]. This model defines an ad-
ditional latent variable, buried under the hidden states of HMMs. This latent
variable defines the class of dependencies of emitting an observation, ot, at
time t. In [2], a Gaussian-mixture BMM was described where the state output
density function is modelled by a mixture of Gaussian of the form

p(ot|ht, qt = s, θ)=
M
∑

m=1

V
∑

v=1

P (m|s, v)P (v|ht)N (ot; µsmvt,Σsmv)

=
M
∑

m=1

V
∑

v=1

csmvtN (ot; µsmvt,Σsmv) (7)
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where ht is a column vector defining the entire collection of dependencies vari-
ables any element of ot might use and v denotes the class of ht. M and V are
the number of components and classes respectively. P (m|s, v), the prior of
component m, given the state s and class v, is a discrete probability table and
P (v|ht) is the probability of class v given the continuous vector ht. This for-
mulation yields a time varying Gaussian mean vector and component weight,
given by

µsmvt =Asmvht + bsmv (8)

csmvt =P (m|s, v)p(v|ht) (9)

where Asmv, bsmv and P (m|s, v) are model parameters that can be estimated
efficiently using the EM approach [2]. These expressions are dependent on time
via the vector of dependency variables, ht. The term Asmvht may be viewed
as a time varying bias applied to bsmv, the mean of component m, given the
state s and class v.

The Switching Linear Dynamical System (SLDS) [19] also belongs to the tra-
jectory model family. The generative model of an SLDS is given by the fol-
lowing state-space formulation

xt = Asxt−1 + ws

ot = Csxt + vs

where











ws ∼ N
(

ws; µ
(x)
s ,Σ(x)

s

)

vs ∼ N
(

vs; µ
(o)
s ,Σ(o)

s

)
(10)

where s denotes the discrete state generated by the underlying Markov chain
within the HMM. As and Cs are state dependent linear transformation ma-
trices while ws and vs are random vectors whose mean vectors and covariance
matrices are also dependent on s. Therefore, the mean of observation given
by this model is of the following time varying form

µst = Cs

(

Asxt−1 + µ(x)
s

)

+ µ(o)
s (11)

The time varying property arises due to the dependency on the continuous
latent state variable, xt−1. The trajectory is modelled implicitly by the state
evolution process. Note, the latent state variable, xt, can be expressed as a
function of As and xt0 , where t0 is the time of entering state s, by applying
the first expression in equation (10) recursively. Thus, the trajectory within a
state depends on the initial latent state when entering that state. This initial
latent state is a function of the previous states visited and the durations spent
in those states. The trajectory is therefore an implicit function of the historical
state sequence.

Up to this point, a generic formulation of time varying parameters has been
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used to describe various existing trajectory models. In the following section,
a semi-parametric trajectory model is introduced using the same formulation.

3 Semi-parametric Trajectory Model

The form of semi-parametric trajectory model considered in this paper can be
formulated by expressing the mean vector and precision matrix as follows:

µsmt = Atµsm + bt (12)

P smt = ZtP smZt
′ (13)

where At and Zt are the time dependent linear transformations for the mean
vector, µsm, and precision matrix, P sm, respectively. Precision matrix is de-
fined as the inverse of the covariance matrix (P sm = Σ−1

sm). bt denotes a
time dependent bias vector for the mean. The form of time dependent lin-
ear transformations and bias considered in this work will be described later
in Section 3.1. When the linear transformations are set as identity matrices
(At = Zt = I) and the bias vector is set as a zero vector (bt = 0), the above
expressions degenerate to the mean and precision matrix of a standard HMM
system. The form of trajectory model described by equations 12 and 13 can
be viewed as applying a time varying affine transformation to the component
mean vectors and precision matrices in the system. An important question is
how to determine the appropriate form of time varying transformations. In
this section a semi-parametric representation will be described.

It is worth pointing out that using a full transformation matrices for equa-
tions (12) and (13) is impractical in many situations due to the high com-
putational cost in applying the transformation at each time to each Gaussian
component in the system (typical LVCSR systems comprise more than 100,000
Gaussian components). This problem may be alleviated by using diagonal
transforms. Transformations can then be applied independently per dimen-
sion. Equations (12) and (13) may then be expressed as scaling and shifting
of the mean and diagonal precision matrix elements for each dimension:

µsmtj = atjjµsmj + btj (14)

psmtj = z2tjjpsmj (15)

where µsmtj and btj are the jth element of µsmt and bt respectively. psmtj , and
ztjj denote the jth diagonal element of P smt, and Zt respectively and At is
assumed to be a diagonal matrix. µsmj and psmj denote the jth element of the
time independent mean and precision matrix respectively for component m in
state s. In this work, only diagonal covariance matrix systems are considered,
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with the additional constraint that At is an identity matrix. In Section 4,
the semi-parametric trajectory model parameters estimation will be presented
based on the use of an identity matrix for the mean transformation, At and
a diagonal transform for the precision matrix, Zt. The latter transformation
will be referred to as the pMPE model.

3.1 A Semi-parametric Representation

Modelling of the time variation in the linear transformation is an important
aspect for these trajectory models. A semi-parametric representation will be
considered here. First, a series of centroids is defined to represent the regions
of interest in the acoustic feature space. Associated with the ith centroid, the
following parameters are defined:

• A(i): a linear transformation matrix for the mean vector
• Z(i): a linear transformation matrix for the precision matrix
• b(i): a bias vector for the mean vector

The corresponding time varying affine transformations discussed above will be
modelled as a weighted contribution from all the centroids:

At = I +
n
∑

i=1

hi(t)A
(i) (16)

bt =
n
∑

i=1

hi(t)b
(i) (17)

Zt = I +
n
∑

i=1

hi(t)Z
(i) (18)

where hi(t) denotes the contribution weights from the i centroid at time t

and n is the total number of centroids. The resulting time varying mean bias
has a similar form to that of a Buried Markov Model (Asmvht), as shown in
equation (8). To be more precise, hi(t) is equivalent to the ith element of ht

and b(i) is the ith column of Asmv. The two methods differ by the way ht

is defined. Nonetheless, ht is used to capture the temporal variation in the
model parameters in both cases.

Each centroid is modelled using a Gaussian component. Let gi denote the ith
centroid represented by the Gaussian component N (ot; µi,Σi) such that the
likelihood of gi given a d-dimensional observation, ot, is given by

p(ot|gi) =
1

√

(2π)d|Σi|
exp

{

−
1

2
(ot − µi)

′
Σ−1

i (ot − µi)
}

(19)
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The weights, hi(t) is then computed as the posterior probability of gi given
ot,

hi(t) = P (gi|ot) =
p(ot|gi)P (gi)

∑n
j=1 p(ot|gj)P (gj)

(20)

where P (gi), the prior probability of gi, is assumed to be uniformly distributed
in this work. Consider a two-dimensional example in Figure 1. The centroids

o

g1

P (g1|ot)

g2

P (g2|ot)

g3

P (g3|ot)

g4

P (g4|ot)

g5

P (g5|ot)

g6

P (g6|ot)

g7

P (g7|ot)

g8

P (g8|ot) Centroid

Observation

Fig. 1. Obtaining interpolation weights from the posterior of a set of centroids given
the observation sequence

may be considered as a Vector-Quantisation (VQ) codebook representing the
acoustic space. The posterior probabilities, P (gi|ot), would then be the proba-
bilistic quantisation of ot. Thus, the interpolation formulae given in equations
(16), (17) and (18) can be viewed as the weighted contribution from the trans-
formations associated with each centroid given the position of the observation
in the acoustic space. This formulation is analogous to the way the output
probabilities are computed for semi-continuous HMMs, which leads to the
interpretation of the above trajectory model as a semi-parametric model.

Figure 2 depicts the visualisation of the semi-parametric trajectory model us-
ing a two-dimensional example. The interpolation weights are computed as a
probabilistic VQ feature at each time t (see Figure 1) which tracks the ob-
servation as a smoothed trajectory. Interpolation using these time-dependent
weights yields a trajectory of the Gaussian parameters, µsmt and Σsmt, con-
ditioned upon the observation sequence, as given by equations (12) and (13)
respectively.
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t=1 t=2 t=3 t=T

(µsm1,Σsm1) (µsm2,Σsm2) (µsm3,Σsm3) (µsm4,Σsm4)

Fig. 2. A semi-parametric representation of the Gaussian parameters

3.2 Context Expansion for Semi-parametric Trajectory Model

In the semi-parametric trajectory model formulation, context expansion can be
viewed as increasing the modelling power of the trajectory. All the discussions
so far have been considering only the observation vector at the current time, t.
It is possible to extend the dependency to a window of observations around t

to allow for context expansion. Equations (16), (17) and (18) may be expressed
in a more generic form as follows:

At = I +
C
∑

τ=−C

w(τ)
n
∑

i=1

hi(t + τ)A(i)
τ (21)

bt =
C
∑

τ=−C

w(τ)
n
∑

i=1

hi(t + τ)b(i)
τ (22)

Zt = I +
C
∑

τ=−C

w(τ)
n
∑

i=1

hi(t + τ)Z(i)
τ (23)

where w(τ) is the window function of length 2C +1, i.e. considering C frames
on either side of the current frame. C can be viewed as the context of the
trajectory. The window function used in this work follows the same as that
introduced in [16], where

w(τ) =







































1 τ = 0

1
2

τ = ±1,±2
...

1
N

τ = ±N(N−1)
2

,±
(

N(N−1)
2

+ 1
)

, . . . , C

(24)
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and

C =

(

N(N − 1)

2
+ N − 1

)

(25)

When a window function that spans a large number of frames is used, it is
necessary to tie the dynamic parameters to prevent over-training issue. This
work adopts the same window length and tying scheme introduced in [16]. In
that paper, a window length of 19 frames (N = 4, C = 9) was used. Without
parameter tying, the number of dynamic parameters will be 19 times more
than those without context expansion. To reduce the total number of free
parameters, the dynamic parameters are tied across frames {1,2}, {3,4,5} and
{6,7,8,9} to the left and right of the current frame, according to the partitions
shown in equation (24). From the definitions of w(τ) in equation (24), this is
equivalent to taking the average posteriors within the partitions so that the
true expansion in terms of the dynamic parameters is only ±3 (7 times more
than that without context expansion).

Though, it appears as if context expansion is essential to modelling trajectory
since it takes into consideration neighbouring observation, this is not the case.
The key element of this semi-parametric trajectory model lies in the fact that
the position of the acoustic vector at each time is tracked in a semi-parametric

way by using a set of centroids representing the acoustic space. Thus trajectory
information is maintained by the observation vector itself. Context expansion
simply extends the modelling power of the trajectory model by also considering
the position of the neighbouring observation vectors. This allows the short
term movement of the observation vectors to be captured, at the expense of
increased model parameters.

4 Parameter Estimation

The parameterisation of the semi-parametric trajectory model can be broadly
divided into those associated with the standard HMMs (θh) and those asso-
ciated with the centroids (θc). In the rest of this discussion, θh and θc will
be referred to as the static and dynamic parameters respectively to empha-
sise that the latter capture the temporally varying attributes of the trajectory
model. This section derives the estimation formulae for these parameters using
the MPE criterion [17]. The MPE objective function is a measure of the ex-
pected phone accuracy of recognising the training data given the HMM model.
This is given by

Rmpe(θ) =
U
∑

u=1

∑

w∈Wu

P (w|OT
1 , θ)PhoneAcc(w, ŵ) (26)
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where θ encompasses both θh and θc. PhoneAcc(w, ŵ) denotes the measure
of phone accuracies of hypothesis w given the reference ŵ and Wu is the set
of competing hypotheses for sentence u. U is the total number of sentences
in the training set. It is difficult to directly maximise this objective function
directly. Instead, a weak-sense auxiliary function [17] is used. The weak-sense
auxiliary function to be optimised is given by

Qmpe(θ, θ̂) =
T
∑

t=1

S
∑

s=1

M
∑

m=1

γmpe
sm (t) log p(ot|θ) (27)

where the log likelihood of component m in state s is given by,

log p(ot|θ) = Ksm −
1

2

d
∑

j=1

{

log(σ2
smtj) +

(otj − µsmtj)
2

σ2
smtj

}

(28)

Ksm subsumes all terms that are independent of the model parameters. T

is the total number of training speech frames, M is the number of Gaussian
components per state and S is the total number of states in the system.
γmpe

sm (t) is a quantity computed for MPE training [14], which can be regarded
as the ‘MPE posterior’ of component m in state s at time t. This quantity is
computed as the difference between the numerator and denominator posteriors
of component m in state s at time t (γn

sm(t) and γd
sm(t) respectively). Typically,

these posteriors are also smoothed by using the D-smoothing and I-smoothing
techniques to obtain improved performance.

Maximising the above weak-sense auxiliary function with respect to all the
model parameters (θh and θc) is not trivial. Hence, these two sets of model
parameters will be updated separately, each time keeping the other parameter
set constant.

4.1 Static Parameters Estimation

First, consider the update of the static parameters given that the dynamic pa-
rameters are held constant. The weak-sense auxiliary function in equation (27)
may be rewritten in terms of the trajectory model parameters as

Qmpe(θ, θ̂) = K −
1

2

S
∑

s=1

M
∑

m=1

T
∑

t=1

d
∑

j=1

γmpe
sm (t)

{

log(σ2
smtj) +

(otj − µsmtj)
2

σ2
smtj

}

(29)

where K subsumes all the constant terms. The new parameters are found such
that the differential of the auxiliary function with respect to the parameters
at the new estimates equals to zero. Thus,
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∂Qmpe(θ, θ̂)

∂µsmj

=
T
∑

t=1

(

∂Qmpe(θ, θ̂)

∂µsmtj

∂µsmtj

∂µsmj

)

=
T
∑

t=1

γmpe
sm (t)

(otj − µsmtj)

σ2
smtj

= 0 (30)

∂Qmpe(θ, θ̂)

∂σ2
smj

=
T
∑

t=1

(

∂Qmpe(θ, θ̂)

∂σ2
smtj

∂σ2
smtj

∂σ2
smj

)

=
1

2

T
∑

t=1

γmpe
sm (t)







σ2
smtj − (otj − µsmtj)

2

(σ2
smtj)

2







z2tjj = 0 (31)

Solving the above equations yields the update formulae for the jth element of
the mean and variance as

µsmj =
x
mpe

smj

β̃
mpe

smj

and σ2
smj =

w
mpe

smj

β
mpe
sm

(32)

where the sufficient statistics are given by

βmpe
sm =

T
∑

t=1

γmpe
sm (t) (33)

β̃
mpe

smj =
T
∑

t=1

γmpe
sm (t)z2tjj (34)

x
mpe

smj =
T
∑

t=1

γmpe
sm (t)z2tjj

(

otj − btj

)

(35)

w
mpe

smj =
T
∑

t=1

γmpe
sm (t)z2tjj

(

otj − btj − µsmj

)2
(36)

Note that βmpe
sm is already accumulated in the standard HMM parameters up-

date for MPE training. x
mpe

smj and w
mpe

smj are the jth element of the mean and
covariance matrix statistics given by equation (44), with the exception that
the component posterior is scaled by z2tjj and the observation is shifted by btj

for each dimension j. The additional statistics required is the d-dimensional
β̃
mpe

smj .

4.2 Dynamic Parameters Estimation

Having estimated the static parameters, the dynamic parameters may be es-
timated by keeping the static parameters constant. Here, the update of the
centroid specific bias, b

(i)
j , and scaling factor, z

(i)
j , for the jth element of the

mean vector and precision matrix will be described. Due to the large number
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of posteriors (ranging from thousands to hundreds of thousands), it is not
feasible to accumulate the full second order statistics. Thus, a simple gradient
optimisation approach, similar to that proposed in [16], will be used for fMPE.
This approach may also be used to estimate the pMPE parameters. For both
cases, an important value is the gradient of the weak-sense auxiliary function
with respect to the dynamic parameters, b

(i)
j and z

(i)
j for all i. These gradients

are given by

dQmpe

db
(i)
j

=
T
∑

t=1

S
∑

s=1

M
∑

m=1

dQmpe
smt

db
(i)
j

and
dQmpe

dz
(i)
j

=
T
∑

t=1

S
∑

s=1

M
∑

m=1

dQmpe
smt

dz
(i)
j

(37)

respectively, where Qmpe
smt is defined such that Qmpe =

∑

s,m,t Q
mpe
smt and

dQmpe
smt

db
(i)
j

=
∂Qmpe

smt

∂b
(i)
j

+
∂Qmpe

smt

∂µsmj

∂µsmj

∂b
(i)
j

+
∂Qmpe

smt

∂σ2
smj

∂σ2
smj

∂b
(i)
j

(38)

dQmpe
smt

dz
(i)
j

=
∂Qmpe

smt

∂z
(i)
j

+
∂Qmpe

smt

∂µsmj

∂µsmj

∂z
(i)
j

+
∂Qmpe

smt

∂σ2
smj

∂σ2
smj

∂z
(i)
j

(39)

Equations (38) and (39) represent the complete differential of Qmpe
smt with re-

spect to b
(i)
j and z

(i)
j respectively 1 . In addition to finding the direction that

maximises Qmpe
smt , the last two terms in the right hand side of equations (38)

(referred to as the indirect differentials in [16]) and (39) also take into account
the fact that the global shifting and scaling of the mean should be reflected
by updating the static parameters. A proof of this is given in Appendix A. If
only the partial differentials, rather than the complete differentials were used,
the gains from dynamic parameter update tend to disappear when the static
parameters are updated [16].

The partial differentials in the above equations are given by

∂Qmpe
smt

∂b
(i)
j

=
hi(t)γ

mpe
sm (t)(otj − µsmtj)

σ2
smj

(40)

∂Qmpe
smt

∂z
(i)
j

= hi(t)γ
mpe
sm (t)(σ2

smtj − (otj − µsmtj)
2) (41)

∂Qmpe
smt

∂µsmj

=

(

xn
smj − xd

smj − µsmtj

)

σ2
smj

(42)

∂Qmpe
smt

∂σ2
smj

=
(wn

smj − wd
smj) − σ2

smjβ
mpe
sm

2(σ2
smj)

2
(43)

1 The partial differential terms relating the bias, b
(i)
j and variance scaling, z

(i)
j , are

assumed to be small.
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where xn
smj and wn

smj are the jth element of the MPE sufficient numerator
statistics xn

sm and W n
sm respectively. These sufficient statistics are given by

xn
sm =

T
∑

t=1

γml
sm(t)ot and W n

sm =
T
∑

t=1

γml
sm(t) (ot − µsm) (ot − µsm)′ (44)

The denominator statistics, xd
smj and wd

smj, are defined in a similar fashion.

The forms of the remaining differentials ∂µsmj

∂b
(i)
j

,
∂σ2

smj

∂b
(i)
j

, ∂µsmj

∂z
(i)
j

and
∂σ2

smj

∂z
(i)
j

depend

on the update methods for the static parameters, µsmj and σ2
smj . Ideally, MPE

updates of all the parameters, including the static parameters, is preferred.
However, the use of the D-smoothing and the I-smoothing with dynamic
ML (or dynamic MMI) priors in standard MPE training [17] complicates the
calculation of the indirect differentials. The next section describes a simpler
form of update that yields efficient robust parameter estimation.

4.3 Interleaved Dynamic-Static Parameters Estimation

Simultaneous updates of both the static and dynamic parameters does not
yield a closed form solution. A standard approach to this problem is to adopt
an interleaved procedure where the static and the dynamic parameters are
alternately updated. This allows the use of the gradients defined in the Sec-
tions 4.1 and 4.2. However it is still necessary to obtain the partial differentials
of, for example,

∂µsmj

∂b
(i)
j

. To simplify this, and avoiding the issues of D-smoothing

and I-smoothing, ML updates of the static parameters are considered when
estimating the dynamic parameters. This makes the partial differentials simple
to specify. After the dynamic parameters have been estimated, discriminative
(MPE) training of the static parameters is then performed. This approach is
similar to that proposed by Povey et al. in [16] and will be described in more
detail below.

The interleaved parameter estimation procedure is summarised as follows:

1. Start from an ML trained model

2. Estimate dynamic parameters using MPE criterion

3. Estimate static parameters using ML criterion

4. When sufficient iterations performed, go to step 6

5. Go to step 2

6. Estimate static parameters using MPE criterion

Figure 3: The interleaved dynamic static parameter estimation procedure
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It may seem strange to interleave updates with two different objective func-
tions. However, provided that the appropriate static parameter update formu-
lae are used in the complete differentials, the resulting dynamic parameters
will capture the temporally varying aspect of the parameters. These complete
differentials are crucial to prevent oscillation when interleaving between two
different criteria [16].

The ML estimates of the static parameters are found by keeping the dynamic
parameters constant, as described in Section 4.1, but using ML, rather than
MPE, posteriors. The dynamic model parameters can then be estimated using
the gradient in equations (38) and (39). As the static parameters are found
using the ML criterion in the subsequent training iteration, the partial dif-
ferential of the mean and variance with respect to the dynamic parameters
are evaluated by differentiating equations in (32) with respect to b

(i)
j and z

(i)
j ,

which yields

∂µsmj

∂b
(i)
j

=−
hi(t)γ

ml
sm(t)

β̃ml
smj

(45)

∂σ2
smj

∂b
(i)
j

=−
2hi(t)ztjjγ

ml
sm(t)(otj − µsmtj)

βml
sm

(46)

∂µsmj

∂z
(i)
j

=
2ztjjγ

ml
sm(t)(otj − µsmtj)

β̃ml
smj



hi(t) −
z2tjjγ

ml
sm(t)

β̃ml
smj



 (47)

∂σ2
smj

∂z
(i)
j

=
2hi(t)ztjjγ

ml
sm(t)(otj − µsmtj)

2

βml
sm

(48)

When ztjj = 1, equations (45) and (46) become those of the standard fMPE
presented in [16]. Once the gradient information is computed, the dynamic
parameters are updated as follows:

b̂
(i)
j = b

(i)
j + η

(i)
j

dQmpe

db
(i)
j

and ẑ
(i)
j = z

(i)
j + ν

(i)
j

dQmpe

dz
(i)
j

(49)

where b̂
(i)
j and ẑ

(i)
j denote the updated parameters for b

(i)
j and z

(i)
j respectively.

η
(i)
j and ν

(i)
j are the element specific learning rate for b

(i)
j and z

(i)
j which are

defined as

η
(i)
j =

ασ̄j

φ
(b)
ij + ρ

(b)
ij

and ν
(i)
j =

α

φ
(z)
ij + ρ

(z)
ij

(50)

respectively. α is a scalar parameter for adjusting the learning rate and σ̄j is

the average standard deviation of the Gaussian components in the system. φ
(b)
ij
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and ρ
(b)
ij are the sum of the positive and negative contributions to the gradient

of Qmpe
smt with respect to b

(i)
j at each time, t, as presented in [16]. A similar

approach may be used for φ
(z)
ij and ρ

(z)
ij , which determine the learning rate for

the precision scaling. Hence,

φ
(b)
ij =

T
∑

t=1

max







S
∑

s=1

M
∑

m=1

dQmpe

db
(i)
j

, 0







and ρ
(b)
ij =

T
∑

t=1

max







−
S
∑

s=1

M
∑

m=1

dQmpe

db
(i)
j

, 0







φ
(z)
ij =

T
∑

t=1

max







S
∑

s=1

M
∑

m=1

dQmpe

dz
(i)
j

, 0







and ρ
(z)
ij =

T
∑

t=1

max







−
S
∑

s=1

M
∑

m=1

dQmpe

dz
(i)
j

, 0







After updating the dynamic parameters (and the static parameters using ML),
the static parameters may be updated using MPE training. This is achieved
using the original update equations in (32).

It is possible to stop the training process after performing dynamic parameters,
without any additional MPE training of the static parameters. In this paper
to denote the difference, where only the dynamic parameters are updated this
will be denoted as, for example, pMPE. Where additional MPE training of the
static parameters has been performed this will be referred to as pMPE+MPE.

4.4 Implementation Issues

First, the likelihood computation of fMPE and pMPE models will be exam-
ined. As fMPE may be implemented as a feature transformation, the additional
cost for the likelihood calculation of fMPE model is negligible compared to the
standard HMM system 2 . For pMPE there is a slight increase in this cost. The
likelihood of the model parameters, θ = {µsmj , σ

2
smj}, given the observation

vector, ot, is given by

log p(ot|θ) = K +
1

2

d
∑

j=1

{

log ztjj − log σ2
smj −

ztjj(otj − µsmj)
2

σ2
smj

}

(51)

This requires an extra d multiplications and 1 addition compared to the stan-
dard model. It also requires ztjj and

∑d
j=1 log ztjj to be cached for each frame.

2 The additional cost is due to the computation of the posterior probabilities for
the centroids, which can be achieved efficiently by using some kind of Gaussian
selection techniques [16]
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pMPE parameter estimation was found to be less robust than fMPE and was
more likely to be overtrained. This is not surprising as second order statis-
tics are used. To handle this problem, the values of α for precision scaling
estimation were typically set to be less than those for MPE (α < 1.0). Fur-
thermore, in some cases the temporally varying scale, z2tjj tended a value close
to zero. This was felt to be due to the wrap-around from squaring ztjj. For
example, if ztjj is close to zero, its value may oscillate and change sign over
time. However, squaring ztjj ignores the sign and may result in an undesirable
wrap-around effect to the trajectory of the precision scale factor. To prevent
this, a minimum value is applied to ztjj, similar to the concept of variance
flooring:

z̃tjj = max{ztjj, zmin} (52)

where z̃tjj is the floored scale factor and zmin is the scale floor. In this work,
zmin has been set to 0.1.

5 Relationship to Linear Adaptation and fMPE

The general form of semi-parametric trajectory modelling given in equations (12)
and (13) resembles that of linear transformation based speaker and environ-
ment adaptation, for example Maximum Likelihood Linear Regression (MLLR)
adaptation formulae for mean vector [10] and covariance matrix [6] respec-
tively. The semi-parametric formulation of equations (12) and (13) may be
viewed as a time-varying linear adaptation of model parameters, depending
on the position and movement of the observation vector in the acoustic space.

Instead of applying time varying transforms to the Gaussian parameters, they
may also be applied to the feature vectors.

ôt = Ctot + dt (53)

where ot and ôt are the original and transformed observation vectors. This
is equivalent to setting the case where the linear transformation matrices for
the mean vector and covariance matrices are the same. This is analogous
to viewing Constrained MLLR [4] as a restrictive form of MLLR mean and
variance adaptations.

It is interesting to note that equation (53) is identical to the fMPE model [16]
when Ct = I. In this case, a time varying bias, dt, is applied to the features.
This is equivalent to subtracting the same bias from the mean vectors (dt =
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−bt). In [16], the time varying feature offset is given by

dt = Mht (54)

where M is a projection matrix from the high dimensional vector of posteriors
(ht = [h1(t) h2(t) . . . hn(t)]′) to standard feature size. Comparing this to
equation (17), it is clear that the columns of M are given by −b(i).

6 Experimental Results

The experimental results presented in this section are based on a Conver-
sational Telephone Speech Mandarin (CTS-M) task. All the systems in these
experiments used 12 Perceptual Linear Prediction (PLP) coefficients [7] with
the C0 energy term and the first three derivatives. Heteroscedastic Linear Dis-
criminant Analysis (HLDA) [9] was then applied to project the feature down
to 39 dimensions. Pitch and its first two derivatives were appended to this
feature vector to yield a 42-dimensional feature-space. Finally, Gaussianisa-
tion [5] was applied to normalise the features per conversation side. For more
details of the system configuration, see [5].

The acoustic models were trained using 72 hours of ldc04 and swm03 data
provided by LDC. Decision tree state-clustered triphones were used. All the
systems used in this work had approximately 4000 distinct states. System eval-
uation was performed on two test sets: dev04 (2 hours) and eval04 (1 hour).

For the semi-parametric trajectory models, 4000 centroids were used to ob-
tain the time varying mean offset and precision scaling. These centroids were
obtained from the baseline system with 4000 distinct states and one Gaussian
component per states. This is considerably smaller than that used in fMPE [16]
(approximately 100,000 centroids). Preliminary experiments showed that us-
ing more centroids (obtained, for example, from the Gaussian components of
a 16-component per state ML system) leads to over-training problem due to
limited available training data. For each observation, most of the posterior
values were very small (close to zero). Gaussian clustering and minimum pos-
terior threshold were used as a simple Gaussian selection process to improve
the computational efficiency. It was empirically found that Gaussian compo-
nents with high posterior values are almost always found wihtin the 5 nearest
group. Furthermore, it was found that centroids with posterior value below
0.1 do not contribute very much to the trajectory modelling. These values
were used in all the experiments in this paper. Without context expansion,
there were on average about two non-zero posteriors per frame. The number
of nonzero posteriors increases to 14 per frame when a ±3 context expansion
was used.
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6.1 Single Component Systems

The first set of experiments were conducted on a simple single-component-
per-state systems. This allows semi-parametric trajectory modelling to be ex-
amined without the effect of implicit trajectory modelling due to the use of
multiple components. The baseline system was obtained by performing eight
MPE iterations, starting from an ML trained system. From the same ML
system, the fMPE and pMPE systems were trained with 4 iterations using
the interleaved update (see Section 4.3). These systems were furthered refined
with 8 MPE iterations to yield the fMPE+MPE and pMPE+MPE systems.

Figure 4 shows the improvement in the MPE criterion with increasing training
iterations for various single component systems. The top and bottom graphs
correspond to systems without and with ±3 context expansions respectively.
The initial dotted lines indicate fMPE/pMPE training and the final solid lines
denote the 8 iterations of standard MPE training. The MPE criterion for the
baseline MPE system increases from 0.49 to 0.59. Without context expansion,
the fMPE and pMPE models yielded a much lower absolute MPE criterion
gain of 0.023 and 0.011 respectively after 4 iterations. However, with additional
eight MPE training iterations, the criterion obtained were slightly better than
the baseline (approximately 0.60).

The modelling power of the systems greatly improved when a ±3 context
expansion was used. This is clearly reflected from the criterion gain shown in
the figure. From the same figure, the variation is the MPE criterion for the
pMPE system with ±3 context expansion follows closely to that of the MPE
system. Furthermore, the gain from fMPE with context expansion is clearly
better than the baseline. The final systems, fMPE+MPE and pMPE+MPE,
were about 0.05 and 0.03 better in terms of MPE criterion.

System
dev04 eval04

0 ±3 0 ±3

MPE 44.4 42.2

fMPE+MPE 42.1 40.1 39.4 37.3

pMPE+MPE 43.3 41.3 40.4 38.6

fMPE+pMPE+MPE 41.6 38.9 39.2 36.6

Table 1
CER performance of 1-component fMPE and pMPE systems with 0 and ±3 context
expansion on dev04 and eval04 for CTS-M task

The Character Error Rate (CER) performance of the above systems on dev04

and eval04 is summarised in Table 1. The baseline single component MPE
alone system gave 44.4% and 42.2% CER on dev04 and eval04 respectively.
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Fig. 4. Change in MPE criterion with increasing training iterations for single com-
ponent systems without context expansion (top) and with ±3 context expansion
(bottom)
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The fMPE+MPE system improved the baseline by 2.3–2.8% without con-
text expansion. In the same configuration, pMPE+MPE system, gave smaller
gains, absolute improvements of 1.1–1.8%. In combination, fMPE+pMPE+MPE,
additional gains of 0.2–0.5% over the fMPE+MPE system were obtained.

If context expansion of ±3 was used both fMPE and pMPE showed gains
over the no context expansion cases. For the pMPE+MPE system absolute
improvements of 3.1–3.6% were obtained over the baseline MPE system. How-
ever, again the gains from pMPE+MPE were smaller than those using fMPE+MPE.
Combining the two approaches together gave total gains of about 5.5% abso-
lute over the baseline MPE system.

Several important conjectures can be made based on these results. First, when
a simple acoustic model was used, the gains obtained from the fMPE and
pMPE techniques became significantly larger. The loss in the modelling power
of the static parameters has been compensated by the dynamic parameters.
Moreover, the pMPE+MPE system combined well with context expansion.
This provides a clear indication that the pMPE+MPE with ±3 context ex-
pansion suffered from an over-fitting problem. In addition, promising gains
were also obtained by combining the fMPE and pMPE techniques to yield the
fMPE+pMPE+MPE system.

As previously mentioned, the fMPE and pMPE techniques may be viewed as
a semi-parametric trajectory model. From this perspective, the single com-
ponent fMPE and pMPE systems also provided an interesting account for
the trajectory modelling aspects of the system. Because the systems under
consideration have only one Gaussian component per state, the observations
associated with each state in a standard HMM are independent and iden-
tically distributed (i.i.d.) with a normal distribution. Thus, the trajectory
within each HMM state is piece-wise constant. By incorporating the fMPE
and pMPE techniques to the single component systems, promising improve-
ments as shown in Table 1 were obtained.

Figures 5 and 6 show the trajectory of the fMPE+MPE and pMPE+MPE
models. Note that the standard MPE system models the observation sequence
with a piece-wise linear trajectory. Both the fMPE+MPE and pMPE+MPE
systems were capable of model more flexible trajectories. Because the model
parameters were estimated using discriminative training, the resulting trajec-
tories may not follow that of the observation. The actual time varying mean
offset and precision scale are depicted in the bottom graphs of Figures 5 and
6 respectively. The mean offset has a range between -0.2 to 0.3 while the
precision scale falls between 0.7 to 1.6.
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6.2 Multiple Component Systems

As with the single component systems, the same set of experiments were also
conducted on 16-component systems to examine the gains from fMPE and
pMPE on more complex systems. Table 2 summarises the CER results. The

System
dev04 eval04

0 ±3 0 ±3

MPE 36.0 33.9

fMPE+MPE 35.6 34.4 33.7 32.5

pMPE+MPE 35.9 35.4 33.7 33.8

fMPE+pMPE+MPE 35.3 34.7 33.5 33.1

Table 2
CER performance of 16-component fMPE and pMPE systems with 0 and ±3 context
expansion on dev04 and eval04 for CTS-M task

CER of the baseline MPE system was 36.0% and 33.9% on dev04 and eval04

respectively. As expected, the gains from the fMPE+MPE and pMPE+MPE
systems were found to be smaller compared to the single component systems.
The former yielded gains of 0.2–0.4% without context expansion and 1.4–1.6%
with ±3 context expansion. There is a large improvement to the CER per-
formance when context information is considered. Unfortunately, apart from
the 0.6% absolute improvement on dev04, the gains from the pMPE+MPE
system almost disappeared compared to the gains obtained for the single com-
ponent systems. When combining fMPE and pMPE, the 0.2% absolute gain
was obtained on both test sets when without having context expansion. How-
ever, a degradation of 0.3–0.6% in performance was observed when ±3 context
expansion was used. Clearly, the pMPE parameters cannot be reliably esti-
mated when used with systems with high complexity. In the next section, an
alternative approach to combining fMPE and pMPE is pursued.

6.3 Systems Combination

From the above results, it was found that directly combining fMPE and
pMPE did not yield good performance for 16-component systems. Another
method of combining these techniques is using Confusion Network Combina-
tion (CNC) [11]. CNC is performed by first generating a set of hypotheses
(in lattices format) for each individual system. These lattices are converted
to sausage nets of word alternatives with confidence scores assigned to each
word (known as confusion networks). Confusion networks from multiple sys-
tems are combined and rescored to obtain the word sequence with the highest
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confidence score.

System dev04 eval04

S1 MPE 35.0 33.4

S2 fMPE+MPE 33.9 32.2

S3 fMPE+pMPE+MPE 34.0 32.6

S1+S2
CNC

34.1 32.2

S2+S3 33.3 31.6

Table 3
CER performance of confusion network decoding and combination of 16-component
fMPE and pMPE systems with ±3 context expansion on dev04 and eval04 for
CTS-M task

Table 3 shows the confusion network (CN) decoding [3] results on dev04 and
eval04. Similar to the Viterbi decoding results, the fMPE+MPE system (S2)
was found to be about 1.1–1.2% better than the MPE alone system (S1) while
the fMPE+pMPE+MPE system (S3) was 0.1–0.4% worse than S2. In addi-
tion, the effect of 2-way system combination using CNC was examined. Due to
the large performance gap between S1 and S2, the combination performance
was at most the same as the best individual system. However, despite the
poorer performance of S3 compared to S2, a further absolute improvement
of 0.6–0.8% was obtained when these two systems are combined. This indi-
cates that the errors made by the two system are considerably different. The
resulting trajectory modelled by fMPE and pMPE are also different (see Fig-
ures 5 and 6). Therefore, shifting the mean vector and scaling the variance
temporally model different aspects of the trajectory which are complimentary.

7 Conclusions

This paper has introduced a discriminative semi-parametric trajectory model.
In this model, the state output probability density function is represented by a
Gaussian Mixture Model (GMM) where the Gaussian mean vector and the di-
agonal covariance matrix varies with time. The time dependency is modelled
as a smoothed function of the observation sequence using a basis superpo-
sition formulation. Each basis is associated with a centroid representing a
position (or movement) in the acoustic space. The corresponding basis coef-
ficients are derived from the posterior of its centroid given the current and
possibly the surrounding observations. Hence, the basis coefficients are time
dependent which results in temporally varying model parameters. It was also
shown that this semi-parametric trajectory model is the same as the fMPE
technique if only the mean vectors are being modelled. In addition, a novel
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approach of pMPE was also introduced where the precision matrix elements
are modelled as temporally varying parameters. Both fMPE and pMPE were
found to give gains over the MPE alone system on a conversational telephone
speech Mandarin task. It was also found that combining fMPE and pMPE
could be beneficial in some cases.
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A Appendix

This section provides the proof that using the complete differentials in equa-
tion (37) to update the dynamic parameters, as described in Section 4.2,
does not result in global shifting and scaling of the static parameters. This is
achieved by showing that the complete differentials are zero when only one
centroid is used. This is because with only one centroid, there is only one
contributing factor and the mean bias and variance scale factors will be the
same for all time frames. Therefore, to prevent global shifting or scaling, the
complete differentials should be zero yield no update in the dynamic parame-
ters.

A.1 Proof of Non-global Shifting for fMPE Update

First, consider the complete differential for fMPE (first part of equation (37)).
Using equations (38), (40), (42), (43), (45) and (46), the complete differential
for fMPE is given by

∑

s,m,t

dQmpe
smt

db
(i)
j

=
∑

s,m,t





∂Qmpe
smt

∂b
(i)
j

+
∂Qmpe

smt

∂µsmj

∂µsmj

∂b
(i)
j

+
∂Qmpe

smt

∂σ2
smj

∂σ2
smj

∂b
(i)
j





=
∑

s,m,t





γmpe
sm (t)(otj − µsmtj)

σ2
smj

−

(

xn
smj − xd

smj − µsmtj

)

σ2
smj

γml
sm(t)

β̃ml
smj





=
∑

s,m

(

xn
smj − xd

smj − µsmtj

σ2
smj

−
xn

smj − xd
smj − µsmtj

σ2
smj

)

= 0 (A.1)
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using the fact that

hi(t) = 1,
T
∑

t−1

γml
sm(t) = β̃ml

smj ,
T
∑

t−1

γmpe
sm (t)otj = xn

smj − xd
smj (A.2)

and

∑

s.m.t

∂Qmpe
smt

∂σ2
smj

∂σ2
smj

∂b
(i)
j

=−
∑

s,m,t

(

(wn
smj − wd

smj) − σ2
smjβ

mpe
sm

(σ2
smj)

2

)(

ztjjγ
ml
sm(t)(otj − µsmtj)

βml
sm

)

=
∑

s,m

(

(wn
smj − wd

smj) − σ2
smjβ

mpe
sm

(σ2
smj)

2

)

× 0 (A.3)

The final term simplifies to zero by using the static mean update with the
mean shifts and variance scale factors initialised to zeros and ones respectively
(btj = 0 and ztjj = 1), i.e.

µsmtj = µsmj =

∑T
t=1 γml

sm(t)otj
∑T

t=1 γml
sm(t)

=

∑T
t=1 γml

sm(t)otj

βml
sm

(A.4)

The ML statistics used in the above equation correspond to those collected
in the previous iteration to obtain the current estimate of µsmj. Since the
complete differential for fMPE equals to zero when there is only one centroid,
therefore the fMPE update does not yield a global shifting of the static mean
vectors.

A.2 Proof of Non-global Scaling for pMPE Update

Similarly, consider the complete differential for pMPE (second part of equa-
tion (37)). Using equations (39), (41), (42), (43), (47) and (48), the complete
differential for pMPE is given by

∑

s,m,t

dQmpe
smt

dz
(i)
j

=
∑

s,m,t





∂Qmpe
smt

∂z
(i)
j

+
∂Qmpe

smt

∂µsmj

∂µsmj

∂z
(i)
j

+
∂Qmpe

smt

∂σ2
smj

∂σ2
smj

∂z
(i)
j





=
∑

s,m,t

γmpe
sm (t)(σ2

smj − (otj − µsmtj)
2)

σ2
smtj

+
∑

s,m,t

(

(wn
smj − wd

smj) − σ2
smjβ

mpe
sm

(σ2
smj)

2

)(

ztjjγ
ml
sm(t)(otj − µsmtj)

2

βml
sm

)

=
∑

s,m

(

βmpe
sm −

(wn
smj − wd

smj)

σ2
smj

+
(wn

smj − wd
smj)

σ2
smj

− βmpe
sm

)

= 0 (A.5)
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using the fact that hi(t) = 1 and that the variance scale factors are initialised
to unity (ztjj = 1), then

σ2
smtj = σ2

smj =

∑T
t=1 γml

sm(t)(otj − µsmtj)
2

βml
sm

(A.6)

(wn
smj − wd

smj) =
T
∑

t=1

γmpe
sm (t)(otj − µsmtj)

2 (A.7)

where the ML statistics in the above equation are again obtained the previous
iteration. Therefore, the complete differential for pMPE update does not result
in a global scaling of the variances.
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