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Abstract Many discriminative classification algorithms
are designed for tasks where samples can be represented
by fixed-length vectors. However, many examples in the
fields of text processing, computational biology and speech
recognition are best represented as variable-length se-
quences of vectors. Although several dynamic kernels
have been proposed for mapping sequences of discrete
observations into fixed-dimensional feature-spaces, few
kernels exist for sequences of continuous observations.
This paper introduces continuous rational kernels, an ex-
tension of standard rational kernels, as a general frame-
work for classifying sequences of continuous observations.
In addition to allowing new task-dependent kernels to
be defined, continuous rational kernels allow existing
continuous dynamic kernels, such as Fisher and genera-
tive kernels, to be calculated using standard weighted
finite-state transducer algorithms. Preliminary results
on both a large vocabulary continuous speech recogni-
tion (LVCSR) task and the TIMIT database are pre-
sented.

1 Introduction

In many applications, such as text processing, computa-
tional biology and speech recognition, the objects being
studied are not fixed-length vectors, but variable-length
sequences of observations. One such task, motivating this
work, is speech recognition. In its simplest form, this in-
volves classifying sequences of continuous observations
into discrete classes (words/phones). Traditionally, this
has been performed using generative models and Bayes
decision rule. In recent years, however, interest has fo-
cused upon discriminative techniques. For speech recog-
nition, training criteria—such as maximum mutual infor-
mation (MMI) and minimum phone error (MPE)—are
often used to estimate parameters for standard genera-
tive models [1]. Alternatively, kernel methods, such as
support vector machines [2], can be used. These use a

kernel mapping function to efficiently transform input
examples into a high-dimensional feature-space, suitable
for classification. Examples of kernels that map variable-
length sequences of observations into a fixed-dimensional
feature-space are: string kernels [3], marginalised count
kernels [4], Fisher kernels [5] and generative kernels [6].
Whereas string kernels and marginalised count kernels
are restricted to sequences of discrete observations, both
Fisher and generative kernels can be applied to sequences
of either discrete or continuous observations.

Recently, rational kernels [7] were proposed as a gen-
eral technique for defining and calculating kernel feature-
spaces for variable-length sequences of discrete obser-
vations. Unlike many other kernels, rational kernels do
not prescribe a feature-space mapping to use. Instead,
they offer a general framework for defining and calcu-
lating feature-spaces using weighted finite-state trans-
ducers. Through careful selection of transducers, many
standard string and marginalised count kernels can be
calculated within the rational kernel framework [7,8].
This allows calculations to be performed using efficient
weighted finite-state transducer composition instead of
custom dynamic programming algorithms. Kernels can
also be defined on lattices of observations, represent-
ing multiple alternative hypothesises, allowing effective
classification where observation labels are uncertain. In
[8-10], rational kernels were used in the construction
of a large vocabulary speech recognition system. Here,

HMMs mapped continuous observations into a one-dimensional

log-likelihood space—the output of each HMM—and a
label identifying the HMM. The labels and scores were
then passed to the recogniser. Rational kernels, trained
upon the recogniser output, were then used to disam-
biguate sequences of words [8]. Unfortunately in the sys-
tem, after the initial (HMM) stage of recognition, all
acoustic and HMM state-space information is discarded,
potentially limiting performance of later stages.

In this paper, continuous rational kernels are pro-
posed. These extend standard rational kernels to allow
sequences and lattices of continuous observations to be



classified. Continuous rational kernels consist of two parts:
a latent-variable generative model and a kernel. Sequences
of continuous or discrete observations are first processed
using the generative model and the most likely sequence(s)
of latent states through the model are recorded. Rational
kernels are then used to classify these sequences of la-
tent states. For speech recognition, this allows the HMM
state-space information to be retained and used as part
of classification. Using this framework, many continu-
ous dynamic kernels (including Fisher and generative
kernels) can be defined and calculated. For both Fisher
and generative kernels, this allows derivative-specific dy-
namic programming algorithms to be replaced by stan-
dard transducer operations—different derivatives are cal-
culated by varying the transducers.

This paper is structured as follows. First, an intro-
duction to finite-state transducers and standard (dis-
crete) rational kernels is given. Continuous rational ker-
nels are then presented as an attractive extension for
classifying sequences of continuous observations. Calcu-
lation of Fisher and generative kernels within the con-
tinuous rational kernel framework are then discussed.
Examples of calculating first- and second-order HMM
derivatives are given. Preliminary results on both a large
vocabulary speech recognition task and the TIMIT data-
base [11] are then discussed.

2 Dynamic kernels

Many algorithms for statistical classification are based
upon the simplifying assumption that examples are rep-
resented by fixed-dimensional vectors. For many appli-
cations, however, this is not true. Instead examples of-
ten consist of a variable-length sequence of observations,
prohibiting direct usage of many standard algorithms.
Researchers have therefore concentrated on developing
feature-space mappings that are capable of converting
sequences of observations into fixed-dimensional vectors
suitable for use with standard algorithms. Examples of
these mappings are: String kernels [3], marginalised count
kernels [4], Fisher kernels [5], generative kernels [6,12].

2.1 String kernels

String kernels [3] are a form of dynamic kernel that
operates on sequences (strings) of discrete observations
(typically sequences of letters that form words). Differ-
ent strings are compared by considering the number of
shared sub-strings. These sub-strings need not be con-
tiguous and are often weighted according to the degree of
contiguity. For example, the sub-string ‘c-a-r’ is present
in both the word ‘card’ and also the word ‘custard’,
but with a lower weight. Although, for many tasks, enu-
merating all possible sub-strings yields a very high di-
mensional feature-space, this feature-space is sparse with
non-zero entries being calculated using efficient dynamic
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programming algorithms. Many extensions to this basic
concept have been researched, however all suffer from
the same problem: they are all restricted to sequences of
discrete observations. When continuous observations are
used other techniques must be used.

2.2 Fisher and generative kernels

One of the earliest dynamic kernels to embed generative
models within a kernel-based framework was the Fisher
kernel [5]. This combines the generative (base) model’s
ability to process variable-length sequences with the ker-
nel machine’s flexibility and generalisation performance.
Given a set of observation sequences, O = {Oy,...,0,},
O; = {o1,...,01,}, parameters of a single generative
model, p(O; A), are first estimated. The output of this
model is a one-dimensional log-likelihood. To capture the
differences in generative process between different exam-
ples, each example is then mapped to the log-likelihood
gradient-space. This is known as the Fisher score-space,

@ (O;A) = Valnp(O; N) (1)

The resulting kernels (normalised by the Fisher Infor-
mation matrix) have yielded good performance on some
tasks [5,13]. However, when mixture models are used for
the base model, ‘wrap-around’ can occur [6]. This arises
when multiple points in the observation-space map to
the same point in the score-space, resulting in increased
confusion. To minimise this, Smith and Gales proposed
generative kernels. Instead of utilising a single shared
model, these use separate base models for each class,

p(0; A1) and p(0; X?)). To further reduce confusion,

the log-likelihood ratio of the two classes is also included
as a feature. The generative score-space is thus given by,

I p(0; AM) = Inp(0; A?)
VaomInp(0; A1) (2)
—VaoInp(0; A?)

(0 ) =

Note that Fisher score-spaces are a special case of gener-
ative score-spaces where the base model parameters A1)
and A are tied.

2.8 Marginalised count kernels

In [4] Tsuda et al. proposed marginalised kernels, an-
other method of combining generative models with tradi-
tional kernel classification techniques. Similarly to Fisher
kernels, a latent-variable generative model, p(O; ), is
first estimated on the training examples. Next, for each
observation O;, instead of extracting features from the
generative model, marginalised kernels extract only the
posterior probability of latent-state sequence, P(0;|O;; X).
These state posterior probabilities are then used as weights
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for a second kernel (which must be able to process variable-
length sequences). Marginalised kernels are thus defined

by,
K"™(0;,05;\) = (3)
> > P(6:]0:;M)P(6;]0;; N K ({0;,6:},{0;,6,})

0,€cO Oj €O

where @; denotes the state sequence associated with an
observation O; and K ({O;,0;},{0;, 0;}) is a kernel that

measures distances between the points {O;, 6;} and {O;, 6;}.

The inclusion of latent-state posteriors in the ker-
nel yields feature-spaces that resemble first-order gen-
erative score-spaces. However, whereas Fisher and gen-
erative score-spaces explicitly define the feature-space,
marginalised kernels require a second dynamic kernel
to perform the actual mapping from a variable-length
sequence to a fixed-dimensional feature-space. Unfortu-
nately, this approach suffers from two major disadvan-
tages. First, unlike generative kernels, there is no indi-
cation as to which features should be extracted from a
sequence. Second, the computational cost of summing
over all possible state sequences severely restricts the
set of kernels K(-,-) that can be used. Only kernels
that simplify the summation in (3) are possible. One
such kernel is the count kernel. First- and second-order
marginalised count kernels are defined using the feature-
spaces ¢"°*(0) and @¢"?(0) respectively [4]. Elements
of these are given by,

¢MCl (4&)

ZP (#710)

ik ( ZP (67,61110) (4b)

where 6/ denotes 6; = j. Marginalised count kernel feature-

spaces are related to generative score-spaces. In partic-
ular, the first- and second-order feature-spaces are very
similar to the score-spaces obtained by differentiating an
HMM with respect to its mixture-component priors, ¢,,,
and transition probabilities, a;;,

T
P(™ :
Ve, In (05 ) :ZM P(0!|O; \)  (5a)
t=1 €jm
T-1
P(0i,67,,10; A .
Vo, (0 3) = 3" LVl ON)  pig0,5)

t=1 @ij

(5b)

Equations (4a) and (4b) and equations (5a) and (5b)
yield functionally similar feature-spaces (but with differ-
ent scaling and origins). Note that the term P(67]|O; X)
in both (5a) and (5b) arises from the Lagrange multipli-
ers used to enforce the sum-to-one constraint on c¢;,, and
ai; respectively. Whereas dependency selection in count
kernels is ad-hoc, the method of feature extraction that

underlies generative kernels offers a systematic method
for justifying such dependencies. In addition, although
marginalised count kernels are restricted to modelling
linear chain dependencies in sequences of discrete obser-
vations, ¢, (0)= U P05,60], ..., 08, ,]0), gen-
erative kernels offer a natural framework for modelling
complex non-contiguous dependencies between continu-

ous observations.

3 Rational kernels

Rational kernels [8,7] are another type of dynamic ker-
nel. Unlike the kernels discussed above, however, ratio-
nal kernels do not prescribe a feature-space to use. In-
stead, they provide an easy-to-use framework that allows
task-dependent feature-spaces to be defined. This frame-
work is based around weighted finite-state transducers.
With careful transducer selection, many of the discrete-
observation kernels from the previous section can be cal-
culated within the rational kernel framework.

3.1 Weighted finite-state transducers

Weighted finite-state transducers [14] are a deterministic
approach for converting sequences of input symbols into
new (often more useful) sequences of output symbols.
An example transducer is shown in figure 1. This trans-
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Fig. 1 An example transducer

ducer has two states and five arcs. In general, however,
transducers can contain any number of distinct states,
labelled from 1 to IN. States are connected by directed
arcs, labelled in the form, ¢§ : v, where § and v are the
input and output symbols. These are selected from the
sets, 6 € {X U €} and v € {A U €}, where X' and A
are the input and output alphabets respectively. The
null symbol, €, denotes a transition that either does not
consume a symbol from the input or does not output
a symbol. In later sections, to simplify transducer defi-
nitions, some transitions have been grouped. These are
labelled as A: A or A:e and denote the sets of transitions
{6:6, V5 € A} and {d:¢, V6 € A} respectively. This no-
tation assumes that the input and output alphabets are
identical.

The combination of states and arcs allows paths through

transducers to be defined. Each path starts at state one!

L Since state numbering is arbitrary, the states of a trans-
ducer with starting state s # 1 can be simply renumbered so
that the s = 1.



and terminates in a designated end-state (denoted by a
double circle). These paths represent the transformation
of an input sequence into a new output sequence. When
cyclic transducers are used, such as in figure 1, the one-
to-one mapping between input and output sequences is
broken. For example, for the transducer in figure 1, both
of the input sequences {b} and {a,a,b,a} map to the
same output sequence, {b}.

In addition to input and output symbols, arcs may
be assigned a weight, w € K, where K is the set of all
valid weights. Arc weights are specified using the nota-
tion ¢ : y/w where 4, v and w are the input symbol,
output symbol and weight respectively. In the absence
of a specified weight, arcs are assigned a default weight
of 1 where 1 is defined by the transducer semi-ring. This
semi-ring defines the minimum set of basic operations
required for propagating arc weights through a trans-
ducer [15] and is written as (K, ®,®,0,1) [15] where
@ and ® denote operations of addition and multipli-
cation respectively. The zero value, 0, and the identity,
1, are selected to satisfy the identity axioms of addition,
x ® 0 = z, and multiplication, z ® 1 = x. Some stan-
dard semirings are the Real, Log and Tropical semirings
(Table 1).

Table 1 Popular semi-rings for transducers

| Semi-ring | K & ® 0 1
Real R + X 0 1
LOg RU {:lZOO} @log + +o00 0
Tropical | RU{£oo} min + 4o 0

where = @iog y = — log(exp(—z) + exp(—y))

For transducers, sequences and lattices, weights in
the real semiring represent probabilities: they are multi-
plied along paths and summed when paths merge. When
arcs are assigned small weights, however, calculations
performed in the real semi-ring can underflow due to lim-
ited machine precision. To avoid this, log-probabilities
are often used. The log semiring, an isomorphism of the
real semiring, allows these log-probabilities to be propa-
gated through transducers and lattices. An extension of
this, the tropical semi-ring, enables efficient calculation
for large transducers by applying the Viterbi approxi-
mation (only the most likely path is considered). For
clarity, all transducers in this paper are defined in the
real semiring.

A special case of the general transducer is the accep-
tor. In contrast to transducers which label arcs with both
an input and an output symbol, acceptor arcs have only
a single symbol, §. This makes them a natural method
of representing sequences or lattices of discrete obser-
vations. For example, the sequence {a,a,b,a} discussed
earlier can be written as in Figure 2. Depending on con-
text, acceptor arc labels can act as either input or output
symbols. Similarly to transducers each arc also has an
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O OO ON 0
Fig. 2 An acceptor corresponding to the input sequence
{a,a,b,a}

assigned weight w, specified using the notation, § /w. Arc
weights default to 1 unless otherwise specified.

The advantage of representing sequences as accep-
tors and sequence transformations as transducers is that
many useful calculations can be performed using a small
number of standard, and efficient, transducer algorithms.
Examples of these algorithms are: inversion, composi-
tion [9] and shortest-distance [15] (transducer weight).
The inverse, U; 1 of a general transducer, Uy, is cal-
culated by transposing input and output symbols along
all transducer arcs. Transducer composition allows com-
plex transducers to be constructed from simpler compo-
nent parts. The composition of two transducers, U, and
U,, is written as Uy o Uy and is defined as the trans-
ducer that, given any input sequence, generates an out-
put sequence equivalent to that generated from passing
the input through U; and the output of that through
Us. The final operator, weighted transducer shortest dis-
tance, calculates the total weight from all possible paths
through the transducer [15]. Using these operations, ra-
tional kernels can be defined.

3.2 Rational kernels

Using the weighted finite-state transducer framework dis-
cussed above, rational kernels [8] can be defined. These
allow high-dimensional kernel feature-spaces to be de-
fined and calculated using only simple transducer op-
erations on discrete sequences (or lattices) of observa-
tions. The efficiency of this mapping arises from the
fact that distances in the feature-space can be calcu-
lated using standard transducer operations on the input
sequences/lattices. It is not necessary to explicitly cal-
culated the feature-space.

Consider a simple example. Let O = {o1,...,o0r}
be a sequence, of length T, with discrete observations
o; selected from the input alphabet Y. Since many dis-
criminative classification algorithms can only operate on
fixed-dimensional vectors, a mapping from this variable-
length sequence to a fixed-dimensional vector is desired.
One such mapping is the feature-space defined by the
counts of the occurrences of each symbol in the input
alphabet. This is similar to a Bag-of~-Words kernel [16]
and is known as the unigram feature-space. In vector
notation it is written as,

f(00) (6)
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where f(§]|O) represents the number of occurrences of
the symbol ¢ in O. The distance between examples in the
feature-space is given by the feature-space dot-product.
This is known as the unigram kernel. For two examples,
O; and Oj, this is written as,

K(0;,0;) = ¢(Oi)T¢(Oj)
=3 £(510.)£(610;) (7)

[J<pAY

In the above example, the unigram feature-space is cal-
culated explicitly. The computational cost of calculating
the kernel is therefore proportional to the dimensional-
ity of the feature-space (the number of elements in the
input alphabet). When large alphabets are used (e.g.
words in a large vocabulary speech recognition system),
the finite-state transducer framework in section 3.1 al-
lows an alternative approach.

First, acceptors A; are constructed to represent the
observation sequences O;; these have a structure similar
to that in Figure 2. Next, the unigram transducer, U, is
introduced,

Ae

o Bu

When an acceptor A;, representing the example O;, is
composed with this transducer, a lattice, A; oU, is gen-
erated. This lattice contains T; distinct paths of length
T; (where T; is the length of the observation sequence).
All output symbols in the ¢-th, t € [1,7;], path are null
except for the transition associated with o; which has
an output label o; € A. The number of paths with a
particular output label, § € A, is equal to the number of
occurrences of § in the sequence. Since each path has a
weight of 1.0, the total weight of these paths is f(§|O)—
the unigram count.

In lattice form, these unigram features are difficult to
use. However, using transducer composition and short-
est distance calculation, the dot-product of these lattice-
based feature-spaces can be calculated. This feature-space
dot-product operation is known as the unigram rational
kernel [8] and is written as,

K(0;,05) = [[(AioU) o (A;0U)™ "
[[AicUoU "o Aj]] (8)

Inversion of the second operand transposes the input
and output symbols. The outputs of the first operand
therefore join with the inputs of the second, matching
feature-space dimensions.

Unfortunately the unigram kernel is not invariant to
sequence lengths: longer sequences have more observa-
tions and therefore higher counts associated with each
dimension. Sequence-length normalisation is therefore
preferable; the length-normalised unigram kernel is given

by,

)

[AioUoU o Ajll (9)
In addition to basic sequences of observations, rational
kernels can operate on lattices.When labelling of obser-
vations is uncertain, the use of lattices allows all pos-
sible sequences of labels to be represented.? Each path
in the lattice represents a single hypothesised label se-
quence and is assigned a weight according to its likeli-
hood. When the kernel is calculated, all information in
the lattice is utilised, potentially improving classification
performance. The rational kernel for lattices is identical
to that for linear sequences and so can be calculated
using only standard transducer operations.

Unfortunately, rational kernels can only be defined
for sequences of discrete observations whereas many prac-
tical tasks require classification of sequences of continu-
ous observations. A method of processing these sequences
is required. In this paper, continuous rational kernels are
proposed as a powerful extension of rational kernels that
enables sequences of continuous observations to be clas-
sified.

4 Continuous Rational Kernels

As discussed in the previous section, finite-state automata
provide an attractive framework for defining kernels on
variable-length sequences of discrete data. Unfortunately
many tasks require classification of sequences of con-
tinuous observations. A method of mapping variable-
length sequences of continuous observations to a fixed-
dimensional feature-space is therefore required.

Continuous rational kernels, proposed in this paper,
offer an attractive solution. Similarly to Fisher and gen-
erative kernels, continuous rational kernels are defined
using a combination of two different approaches: gen-
erative models and transducer-based rational kernels.
This combination allows them to define complex, task-
dependent, metrics for sequences of continuous obser-
vations. Similarly to generative kernels, latent-variable
class-conditional base models must be defined. Base model
parameters are typically estimated using either ML [17]
or MMI [18] estimation. For clarity, the discussion in
this section will only consider derivatives of a single base
model.

Continuous rational kernels consist of two separate
stages. The first stage converts sequences of continuous
observations into a corresponding sequence of discrete
observations. This conversion is achieved by recording
the latent-state sequences (corresponding to the obser-
vation sequences) through the base model. Viterbi de-
coding yields a single sequence (the most likely) whereas

2 To reduce memory and CPU requirements, lattices are
often pruned to remove highly unlikely paths.



Forwards-Backwards decoding yields multiple sequences
(corresponding to different state alignments). Both can
be compactly represented using a weighted finite-state
acceptor, L, with arcs labelled with probabilities and
state/mixture-component pairs. When calculating base
model derivatives, Forwards-Backwards decoding must
be used (the resulting acceptor has an identical struc-
ture to the standard HMM ‘trellis diagram’ [19]). Next,
given these weighted acceptors (with discrete labels), ra-
tional kernels can be defined. We call them continuous
rational kernels. The kernel feature-space is defined by
a transducer operating on the latent-state acceptor, L.

In this paper, n-gram and gappy-n-gram transduc-
ers are described. In addition to allowing many forms
of string kernel to be defined (for discrete observations),
these allow many different latent-state-posterior prob-
abilities to be calculated. With appropriate weighting,
this allows both first and higher-order derivatives of the
base acoustic models with respect to their parameters
to be computed within the continuous rational kernel
framework. Unlike direct calculation of generative ker-
nels, custom dynamic programming algorithms are not
required.

4.1 Component and transition probability kernels

First consider an M-component GMM base acoustic model

with parameters A. Derivatives of the GMM log-likelihood
with respect to its mixture-component priors, ¢,, C A,
are given by,

o5, (0O;X) =V,

Cm

_ i [P<m|ot;x> B 1]

c
t=1 m

Inp(O; )
(10)

where ¢, denotes the m-th element of the score-space
(corresponding to the derivative with respect to ¢,).
It is interesting to compare this component-prior score-
space with the feature-space generated using the uni-
gram transducer, U, described in section 3.2. Apply-
ing U to the lattice of latent-states, L (corresponding
to the observation sequence O), yields a feature-space
with elements given by the posterior probabilities of the
GMM mixture-components. For continuous rational ker-
nels, this unigram feature-space is given by,

=t P(my = M|O; \)

(11)

From equations (10) and (11), it is clear that the mixture-
component derivative score-space is simply a scaled ver-
sion of the unigram feature-space (the additional con-
stant in equation (10) can be ignored since it does not
affect classification). The GMM score-space can thus be
calculated using a scaled unigram transducer, U’S

gmma
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The corresponding component-prior continuous rational
kernel for GMMs (after sequence length-normalisation)
is therefore given by,

c 1
K (Ol,Oj,)\) = TT

ity

[Lio Ugnuo Ugiy, oLyl (12)

and is expressed entirely in terms of transducer opera-
tions, allowing standard algorithms to be used.

Using this framework, more complex derivatives can
be calculated. Consider, for example, derivatives of an
N-component, M-mixture-component HMM with respect
to the mixture-component priors,

im (05 ) = Ve, Inp(O; X) (13)
1 T
=—> Pl:={j,m}O;A) - > P(0:=s5;|0;))
Imp=1 t=1

where ¢%,, denotes the element of the score-space cor-
responding to the derivatives with respect to the HMM
mixture-component priors. Here, feature-space elements
consist of two terms. The first is the scaled posterior
probabilities of state/mixture-component pairings. This
is similar to the feature-space in equation (11) and can
be calculated using a scaled unigram transducer, U/S

Ae Ag
{11}:{1,1/(Vc) ‘
v = ()

{N,M}:{N,M}/(1/c,)

The second term in equation (13) is more complex to
calculate since the input acceptor (corresponding to the
observation sequence) has no concept of what P(6; =
5;]0; X) means. Instead, the state-posterior must be ex-

panded in terms of the posterior probabilities of state/mixture-

component pairs,

M
P(6,=5,10:X) = 3 P(6,={j,m}|O; \)

m=1

(14)

This yields a summation of the state/mixture-component
posteriors over the components in each state. Given the
unigram feature-space, a transducer, S, can be defined
to perform this summation. An example of S for a three-
state HMM with two mixture-components is,
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The state posterior, P(0; = s;|O;A), is therefore the
composition of the two transducers: Uypyg 0 S, where Upyy
is the unscaled version of U/S . The resulting component-
prior kernel for an HMM is given by,

K (0i, 055 A) (15)
1 . o
— o ([ 0 Ul 0 Ui o L]
ity

—2[[Li o Ui 0 87" 0 Uppmo L]
+[[Li o Upgno S0 8™ o Upito Lj]])

This kernel uses exactly the same framework and cal-
culations as the component-prior kernel for GMMs. The
only change required is the addition of a new transducer,
S, to calculate the state posteriors.

For HMM base models, derivatives with respect to
the transition probabilities can be calculated. These are
given by,

T
R 1
Vo, (O A) = — > POy = 5i,0141 = 5|05 N)
" op=1
T
=Y P(0: =s;l0;X)  (16)
t=1

The first term can be calculated using a modified form of
a bigram feature-space, calculated using the transducer,
B/%. An example of B/® for a two-state HMM is,

where input labels s; represent the set of all transitions
with a state ¢. Dimensions in the feature-space are in-
dexed by pairs of consecutive states, {7, j}, and labelled
x;5. The continuous rational kernel for the transition
probability score-space can therefore be calculated us-
ing an expression similar to (15).

4.2 Fisher and generative score-spaces

In the previous section, the use of modified unigram and
bigram transducers for the calculation of derivatives of

the base acoustic model with respect to the mixture-
component priors and transition probabilities was dis-
cussed. However, score-spaces can also be defined using
the derivatives with respect to the mixture-component
means, ;m,, and covariances, 3;,,. Consider the score-
space of derivatives with respect to the means [6],3

im (O3 A) = Vi, np(O; A) (17)

T
=Y P = {j;m}|O: M) X}, (0 — pjm)
=1

where @7, denotes elements of the score-space. Although,
given an acceptor of state-sequences, unigram transduc-
ers generate state/component posteriors, they cannot
weight them by the observations. This is because obser-
vations are vector quantities whereas transducer weights
are scalar. To overcome this, a new semiring, the vector
semiring, is introduced to allow weight wvectors to be
associated with transducer transitions. It is defined as
(R, 4, @vec, [0]%, [1]%) where [z] represents a vector of
length d with all elements equal to z. Both addition and
multiplication are performed on a per-dimension basis;
multiplication is defined as, £®vecy = {Z1Y1, T2Y2, - -
For easy comparison with the standard semi-rings (Table
1), this information is summarised in Table 2.

Table 2 The Vector semiring

’ Semi-ring H K+ ‘ ® ‘ & ‘ 0 ‘ 1 ‘
’ Vector H R? ‘ + ‘ ®vee | {0} ‘ {13 ‘
where & ®vec ¥y = {T1Y1, Z2Y2, ..., Taya}

The second problem with weighting posteriors by
observations is that observations are time-dependent,
whereas transducer weights must be constant. One so-
lution is to expand the self-transitions in the unigram
transducer to create time-dependent transducer paths.
These time-dependent paths are then be weighted by a
function of the ¢-th observation, Zj_nll(ot —Wjm). The ex-
panded unigram transducer with vector weights is given

by,

This is known as the Fisher transducer. The Fisher ker-
nel with acoustic model derivatives with respect to the

3 Covariance derivatives have a similar functional form to
derivatives with respect to the mean. For brevity, they are
omitted.

. axdyd}'



means is given by,

K"(0;,0;;\) = [LioFoF1 o Lj]] (18)

Covariance derivatives are obtained simply by setting

the Fisher transducer path weights to —1 [E{%JrE;wll (01—

tim) (01 — pim) T 501

4.8 Second and higher-order derivatives

Previous sections have concentrated on the use of con-
tinuous rational kernels for the calculation of the first-
order derivatives of GMM and HMM acoustic models
with respect to their parameters. Additional informa-
tion, that may be useful for classification, is contained
within the higher-order derivatives of the acoustic mod-
els. When these higher-order derivatives are considered,
rational kernels offer significant benefits over their dy-
namic programming counterparts. Consider, for exam-
ple, the second derivatives of an HMM with respect to
its component priors,

Ve, Vo npO;A) = (19)
1 T T _ _
ST (D6 657 - i D(6]. 087
CimChn 27 73
— ckn D™, 08) + Cimern D0, 9’;’))
2 & ,
CimCkn =1
where
D(6]™,05") = P(6]™, 057105 A)— (20)

P(6]™|0; \) P(6%"O; A)

and 6!™ and 6/ denote 0; = {j,m} and s, = j respec-
tively. Dynamic programming algorithms for calculating
the joint posterior of being in state {j, m} at time ¢ and
state {k,n} at time 7 are complex. This makes direct
calculation of second derivatives difficult. However, when
calculated within the continuous rational kernel frame-
work, standard algorithms are reused with new trans-
ducers. In particular, the transducer for calculating the
joint probability, P(87™,0%"|O; M), is given by the gappy
bigram transducer, G. This generates the feature-space,

(2P
¢§:n,kn(0; )‘) = (21)

> PO = {4,m}, 0. = {k,n}|O; \)

t=171=1
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Scaling the arcs of this transducer by 1/¢jmCrn (sim-
ilarly to the unigram and bigram transducers) yields
a transducer that calculates the first term in equation
(20). All other terms can be generated using combina~
tions of the HMM unigram (Upm,), gappy-bigram (G),
and summation (S) transducers. For example, the term,
P(6]™|O0; X)P(6%"|O; M), is given by the product of two
unigram feature-spaces, (L; 0 Unpn) ® (Lj 0 Upm), where
® denotes transducer concatenation. The second-order
component-prior kernel can thus be written as a sum
of the kernels of the parts; for brevity it is omitted. In
addition to second derivatives with respect to the com-
ponent priors, second derivatives with respect to other
parameters can be calculated. These derivatives take a
similar form to equation (19) and may be calculated us-
ing the transducers introduced in this section. Higher-
order derivatives are calculated using other gappy-n-
gram transducers, for example, the gappy-trigram trans-
ducer for third-derivatives.

4.4 Generative score-spaces and kernels

In the previous sections, continuous rational kernels have
been proposed as a systematic method for calculating
derivatives of HMM base models with respect to the
transition probabilities and mixture-component priors,
means and variances. Thus far they have been calcu-
lated separately. In practice, however, Fisher and gen-
erative score-spaces are formed from a combination of
these derivatives. For example, a typical first-order gen-
erative score-space is given by,

[np(0; AM) —Inp(0; X))

P05 A) = Ve Inj(

~V,»np(0; A2
—VE<2)lnﬁ(O; A(Q))

where V. ), V,Al) and V1) denote the vector of deriva-
tives with respect to the mixture-component priors, means
and variances respectively. The corresponding kernel,

K™ (0,05 X) = ¢™(0;X)"¢™(0j;X)  (23)

can be written as a sum of the kernels of the individual
parts,

K™ (0;,04;\) = K*(0;,04;\) + K¢(0;,0;; A1)
+ K"(0;,0;; A1) + ... (24)

where K*(O;, Oj; A) is the dot-product of the log-likelihood
ratios and K°(0;,0;; A1), K®(0;,0,; AY), etc., are
the individual derivative kernels (calculated using the
continuous rational kernel framework and the transduc-
ers discussed earlier). Note that the summation of ker-
nels can be performed using the union operator on the
individual transducers.
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5 Experimental Results

Preliminary experiments were performed to examine the
use of generative kernels in speech recognition. Data
from two different databases were used. The first is a
set of confusable words, extracted from the £sh2004sub
data set[20]. This is used both within a cross-validation
framework and with a held-out test set, the eval03 data
set [20]. The second database is a set of phone pairs ex-
tracted from the TIMIT phone classification task [11].

5.1 LVCSR

Generative kernels (calculated using either the continu-
ous rational kernel framework or dynamic programming)
are a powerful form of acoustic model. Unfortunately, the
distance-learning algorithms, in particular SVMs, used
to train these models are binary classifiers whereas large
vocabulary continuous speech recognition (LVCSR) has
a vast number of possible classes. In order to apply con-
tinuous rational kernels to LVCSR, it is necessary to map
this highly complex problem into a small set of binary
classification problems. An approach related to that de-
scribed in [13] is used.

Given an utterance, a standard LVCSR Viterbi de-
coder is used to generate a word lattice. This repre-
sents the most likely word sequences for that utterance.
The arcs are labelled with words and the language and
acoustic model likelihoods; nodes are labelled with time-
stamps. Next, word lattices are converted to confusion
networks [21]. These consist of a series of nodes with a
linear graph. Each arc is labelled with a word, start and
end times and a log-posterior, F(w;). Finally the confu-
sion networks are pruned so that at each time instance,
only two words remain. Acoustic models and continuous
rational kernels are then trained on these word pairs.

The database used for the LVCSR experiments was
a 400 hour subset of the Fisher LDC data. This is the
fsh2004sub data set used for initial system develop-
ment of the system described in [20]. The model set
used in experiments was based upon the standard mod-
els and front-end described in [20]. Confusion networks
were generated, using a bigram language model (LM),
on the same 400 hours of training data.

Classifier performance was evaluated using 8-fold cross-

validation on the training data. All experiments used di-
agonal covariance matrix GMMs, trained on the acoustic
data using the longest time-stamps from the confusion
networks? for the two confusable words. The number of
positive and negative examples within each word pair
were equalised by sampling — random selection yields
an error rate of 50%. A number of pairwise classifiers

4 The earliest time of the two words and the latest time of
the two words are used for the start and end time respectively.
This ensures that the full acoustic data for both words is
included.

Table 3 8-Fold cross validation results (% error) using
GMDMs with a variable number of mixture components

Word Pair Training CN || # Components
(examples) post. || 1 [ 2 [ 4

ML 18.3|14.0| 12.0

SVM ¢" - 113.6] 11.1

CAN/CAN'T | SVM ¢™ 215 16.1|12.4| 10.6

(7,522) SVM ¢ : ~ |12.3] 104
SVM ¢P™ 114199 | 87

SVM ¢Fe - 1991 85

ML 31.6(30.6| 29.2

SVM ¢" - 130.7] 28.1

KNOW/NO | SVM ¢™ 16.9 30.7128.2| 26.4

(8,950) SVM g™ || 27 | — |28.3] 26.1

SVM ¢ 15.1|14.7| 13.7

SVM ¢Pme — |14.7] 137

Score-space elements are denoted by:
m  Derivatives w.r.t. means
¢ Derivatives w.r.t. covariances
w  Derivatives w.r.t. mixture-component priors
p  Confusion network posterior ratio

were then trained; two examples are shown in table 3.
The baseline performance of the LVCSR system for each
confusable pair is given by the confusion network (CN)
posteriors—the baseline error rate is approximately 20%.

Standard ML estimated GMMs with one, two and
four Gaussian mixture-components were used as base-
line pairwise classifiers. Given these, a number of SVMs
were trained using generative score-spaces of the log-
likelihood ratio plus derivatives. Different combinations
of derivatives with respect to the mixture-component
priors (w), means (m) and covariances (c) were con-
sidered. In almost all cases, SVMs gave performance
gains over the ML estimated GMMs. As the number of
derivatives increased, performance increased. Best per-
formance was achieved when all derivatives (¢™°) were
included. Similar trends were observed in [6,22] for the
Deterding and Isolet datasets. For the CAN/CAN’T pair,
the GMM and SVM systems obtained better results than
the baseline confusion network score. However in general,
this was not the case.

Classifier accuracy was improved when the confusion
network posterior ratio, F(wy) — F(w2), was included in
the score-space; this added context information from the
LVCSR language model. In all cases, SVMs with con-
fusion network posteriors in their score-spaces outper-
formed both the confusion network baseline and SVMs
without the posterior ratio—significant gains were ob-
served for word pairs where both GMM and SVM per-
formance was poor.

Experiments with second- and higher-order score-
spaces were not performed due to the high-dimensionality
(39-dimension) of the observation-space. This has the ef-
fect of polarising the state/mixture-component posteri-
ors to be either one or zero. Since, as shown in equa-
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tions (19) and (20), second derivatives are expressed in
terms of the joint posterior of two states minus the prod-
uct of the posteriors of the two states, they are always
zero®. In general this is not always the case. When low-
dimensional observation-spaces are used, state/mixture-
component posteriors assume a range of values, allowing
second derivatives to assume non-zero values.

Unfortunately, with ~65,000 possible words there are
vast number (~ 2 x 10%) of possible word pairs. This
means that training data is scarce, limiting the num-
ber of pairwise classifiers that can be trained (to ~30).
This restricts the proportion of any test set that can
be rescored, limiting the potential gains. This is easily
demonstrated on the 6-hour eval0O3 test set [20]. SVMs
were trained to disambiguate ten of the most confusable
pairs. Of the 1,250 word pairs rescored, 56 corrections
were obtained (4.5%). However, in comparison to whole
test set (76,157 words), this corresponds to an improve-
ment of < 0.1%. This is too small to consider including
pairwise rescoring in any standard LVCSR system. How-
ever, for tasks where there are a much smaller number of
confusions, allowing a greater proportion of the test data
to be rescored, results suggest that reasonable gains can
be achieved.

5.2 TIMIT

The TIMIT phone classification task [11] consists of ap-
proximately 3 hours of training data, transcribed with
phone markings and time stamps. There are 142,910
phone segments, each of which is labelled with one of
48 phone labels. This results in a total of 1,128 possi-
ble phone confusion pairs (compared to ~2 x 10° word
pairs for the LVCSR task). With a large number of train-
ing examples and few phone pairs it is possible to train
robust classifiers to disambiguate a much larger percent-
age of the test data than was possible for the previous
LVCSR task. Rescoring is therefore expected to yield a
much larger improvement in the overall error rate.

The acoustic data was coded using the experimental
setup described in [23]. Results are reported on the MIT
development test set [24] and the NIST core test set.
The baseline HMM-based phone classification system
was estimated using maximum likelihood estimation and
3-state, 10-mixture-component monophone HMMs. As a
classification task (the time alignment is known), pruned
confusion networks are trivial to construct: the confusion
pair for each example is simply given by the two most
likely phones according to the HMM baseline system.
Next, pairwise augmented models were trained to disam-
biguate the twenty most confusable pairs. These used 3-

5 If either of the posteriors, P(0;={j, m}|O; ) or P(0, =
{k,n}|O;\) are zero, then the joint posterior, P(6; =
{j,m},0- ={k,n}|O;A) will also be zero. However, if both
posteriors are one, the joint posterior will also be one and so
the difference will be zero.
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state, 4-mixture-component class-conditional HMMs as
base models.

The pairwise phone classifiers showed similar trends
to those described in the LVCSR experiments above.
Additionally, since confusion networks were generated
without the benefit of a language model, almost all aug-
mented models outperformed the CN decoding baseline—
the few that underperformed appeared to be over-trained.
Without a language model there is little benefit in using
the augmented model/confusion network combinations
discussed previously (section 5.1). The baseline systems
are therefore rescored using only the generative kernels.

Given the set of trained augmented models, perfor-
mance on the MIT development test set was evaluated.
Classifiers were sorted—best first—according to their
performance on this task. Cumulative performance is
shown in figure 3. Then, using this ordering, perfor-
mance on the NIST core test set was evaluated. This
is also shown in figure 3. From the graph, it is clear that

9% Accuracy

Core set
Development set ------

L L
0 5 10 15 20

Number of augmented models

Fig. 3 Rescoring of an ML baseline for the TIMIT phone
classification task

performances on both the development set and the core
test set peak at approximately 10 classifiers. Rescoring
10 phone pairs corrects 78 out of 1,487 phone pairs, an
improvement of 5.2%. This is comparable to the results
achieved in the LVCSR tasks. However, with approxi-
mately 20% of the test data rescored, an improvement
in accuracy of 1.1% (absolute) over the baseline ML sys-
tem is observed. As shown in the graph, the benefits from
rescoring with more than 10 augmented models are lim-
ited. This is believed to be due to over-training.%

Using an identical procedure to that used above for
the ML baseline, an MMI baseline can also be rescored.
Results are shown in figure 4. As before, rescoring the
baseline with augmented models yields improvements in
accuracy. The improvements, however, are much smaller

6 Although large quantities of training data exist for the
few first pairs, the number of training occurrences decreases
rapidly for later phone pairs. It therefore becomes increas-
ingly difficult to obtain robust classifiers that can reliably
separate the phones.
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Fig. 4 Rescoring of an MMI baseline for the TIMIT phone
classification task

than in the ML case. This is because the MMI base-
line performs much better than the ML baseline (24.7%
versus 28.8%). There are therefore many fewer errors for
the augmented models to correct. Rescoring using 8 aug-

mented models yields an improvement of 0.3% (absolute)
over the MMI baseline.

6 Conclusion

In this paper continuous rational kernels, an extension to
rational kernels, are proposed. These allow task-dependent
kernels for variable-length sequences of continuous ob-
servations to be defined. It is shown that, using the con-
tinuous rational kernel framework, n-gram and gappy-n-
gram transducers map observation sequences into feature-
spaces of state posteriors. With appropriate weighting,
these posteriors allows derivatives of base acoustic mod-
els, with respect to the component priors and transition
probabilities, to be calculated using only standard trans-
ducer operations. Derivatives with respect to the means
and covariances can be calculated using a vector semi-
ring. Combining these separate derivatives allows pow-
erful generative score-spaces and kernels to be defined
and calculated. Calculation using the continuous ratio-
nal kernel framework has a significant advantage over
direct calculation of score-space elements since it gen-
eralises well to higher dimensions—the same algorithms
are used with different transducers. Initial experiments
using SVM training and generative score-spaces on a
large vocabulary speech recognition task indicate that
the score-space and kernels detailed in this paper may
be useful for speech recognition.

A Fisher Derivatives

Consider an HMM as an example base acoustic model,

T
= Z Hagtfletp(OtWt; )\)

fcO t=1

(25)
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where 6 denotes the latent state sequence associated
with an observation O, selected from the set of all pos-
sible state sequences, @. Introducing a Lagrange multi-
plier to enforce the sum-to-one constraint on the compo-
nent priors, Zf\le ¢jm = 1, and considering the deriva-
tives of the log-likelihood of the acoustic model with re-
spect to the component prior, ¢j,,, and the Lagrange
multiplier, «, yields,

T .
. P ‘A
Op(O;X) _ 3oy PG, milons ) (26a)
aij Cim
1
anpO A) chk—l (26b)

Next, equating equations (26a) and (26b) to zero and
rearranging yields,

T M M
SN PimiosA) =a S Gm=a  (27)

Therefore the final, constrained, derivative is given by,

ZP at - Sj‘ota )

+— ZP (0 = {j, m} oy A)

Cim i3

\Y/

Cjm

lnp(O; A) (28)

Similarly, derivatives with respect to the transition prob-
abilities are given by,

Va,,Inp(O; X) ZP (0; = sjlo; A) (29)
, T2
+— ZP(Qt = 54,0141 = sj]04; A)
@ij 11
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