
University of Cambridge
Engineering Part IIB & EIST Part II

Paper I10: Advanced Pattern Processing

Handouts 4 & 5: Multi-Layer
Perceptron: Introduction and Training

Inputs

First
Second

Output
layer

layer
layer

xd y (x)K

y (x)2

1

x2

x1 y (x)

Outputs

Mark Gales
mjfg@eng.cam.ac.uk

October 2001

4 & 5. Multi-Layer Perceptron: Introduction and Training 1

Multi-Layer Perceptron

From the previous lecture we need a multi-layer perceptron
to handle the XOR problem. More generally multi-layer per-
ceptrons allow a neural network to perform arbitrary map-
pings.

Inputs

First
Second

Output
layer

layer
layer

xd y (x)K

y (x)2

1

x2

x1 y (x)

Outputs

A 2-hidden layer neural network is shown above. The aim is
to map an input vector x into an output y(x). The layers may
be described as:

• Input layer: accepts the data vector or pattern;

• Hidden layers: one or more layers. They accept the out-
put from the previous layer, weight them, and pass through
a, normally, non-linear activation function.

• Output layer: takes the output from the final hidden layer
weights them, and possibly pass through an output non-
linearity, to produce the target values.

2 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

Possible Decision Boundaries

The nature of the decision boundaries that may be produced
varies with the network topology. Here only threshold (see
the single layer perceptron) activation functions are used.

(3)(2)(1)

There are three situations to consider
1. Single layer: this is able to position a hyperplane in the

input space.

2. Two layers (one hidden layer): this is able to describe a
decision boundary which surrounds a single convex re-
gion of the input space.

3. Three layers (two hidden layers): this is able to to gener-
ate arbitrary decision boundaries

Note: any decision boundary can be approximated arbitrar-
ily closely by a two layer network having sigmoidal activa-
tion functions.

4 & 5. Multi-Layer Perceptron: Introduction and Training 3

Number of Hidden Units

From the previous slide we can see that the number of hid-
den layers determines the decision boundaries that can be
generated. In choosing the number of layers the following
considerations are made.

• Multi-layer networks are harder to train than single layer
networks.

• A two layer network (one hidden) with sigmoidal activa-
tion functions can model any decision boundary.

Two layer networks are most commonly used in pattern recog-
nition (the hidden layer having sigmoidal activation func-
tions).

How many units to have in each layer?

• The number of output units is determined by the number
of output classes.

• The number of inputs is determined by the number of
input dimensions

• The number of hidden units is a design issue. The prob-
lems are:

– too few, the network will not model complex decision
boundaries;

– too many, the network will have poor generalisation.

4 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

Hidden Layer Perceptron

The form of the hidden, and the output, layer perceptron is
a generalisation of the single layer perceptron from the pre-
vious lecture. Now the weighted input is passed to a general
activation function, rather than a threshold function.

Consider a single perceptron. Assume that there are n units
at the previous level.

Σ

win

wi2

wi1

1

x

x

x

1

2

n

wi0

yi
zi

function
Activation

The output from the perceptron, yi may be written as

yi = φ(zi) = φ(wi0 +
d∑

j=1
wijxj)

where φ() is the activation function.

We have already seen one example of an activation function
the threshold function. Other forms are also used in multi-
layer perceptrons.

Note: the activation function is not necessarily non-linear.
However, if linear activation functions are used much of the
power of the network is lost.

4 & 5. Multi-Layer Perceptron: Introduction and Training 5

Activation Functions

There are a variety of non-linear activation functions that
may be used. Consider the general form

yj = φ(zj)

and there are n units, perceptrons, for the current level.

• Heaviside (or step) function:

yj =





0, zj < 0

1, zj ≥ 0

These are sometimes used in threshold units, the output is
binary.

• Sigmoid (or logistic regression) function:

yj =
1

1 + exp(−zj)

The output is continuous, 0 ≤ yj ≤ 1.

• Softmax (or normalised exponential or generalised logis-
tic) function:

yj =
exp(zj)

∑n
i=1 exp(zi)

The output is positive and the sum of all the outputs at
the current level is 1, 0 ≤ yj ≤ 1.

• Hyperbolic tan (or tanh) function:

yj =
exp(zj)− exp(−zj)

exp(zj) + exp(−zj)

The output is continuous, −1 ≤ yj ≤ 1.

6 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

Notation Used

Consider a multi-layer perceptron with:

• d-dimensional input data;

• L hidden layers (L + 1 layer including the output layer);

• N (k) units in the kth level;

• K-dimensional output.

Σwi2

wi1

1

x

x

x

1

2

wi0

yi
zi

function
Activation

(k)

(k)

(k) (k)

(k)

(k)

(k)

(k)

(k)wiN(k−1)

N(k−1)

The following notation will be used

• x(k) is the input to the kth layer

• x̃(k) is the extended input to the kth layer

x̃(k) =




1

x(k)




• W(k) is the weight matrix of the kth layer. By definition
this is a N (k) ×N (k−1) matrix.

4 & 5. Multi-Layer Perceptron: Introduction and Training 7

Notation (cont)

• W̃(k) is the weight matrix including the bias weight of the
kth layer. By definition this is a N (k)× (N (k−1) + 1) matrix.

W̃(k) =
[
w

(k)
0 W(k)

]

• z(k) is the N (k)-dimensional vector defined as

z
(k)
j = w̃

(k)
j x̃(k)

• y(k) is the output from the kth layer, so

y
(k)
j = φ(z

(k)
j)

All the hidden layer activation functions are assumed to be
the same φ(). Initially we shall also assume that the output
activation function is also φ().

The following matrix notation feed forward equations may
then used for a multi-layer perceptron with input x and out-
put y(x).

x(1) = x

x(k) = y(k−1)

z(k) = W̃(k)x̃(k)

y(k) = φ(z(k))

y(x) = y(L+1)

where 1 ≤ k ≤ L + 1.

The target values for the training of the networks will be de-
noted as t(x) for training example x.

8 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

Training Criteria

A variety of training criteria may be used. Assuming we
have supervised training examples

{{x1, t(x1)} . . . , {xn, t(xn)}}
Some standard examples are:

• Least squares error: one of the most common training
criteria.

E =
1

2

n∑

p=1
||y(xp)− t(xp)||2

=
1

2

n∑

p=1

K∑

i=1
(yi(xp)− ti(xp))

2

This may be derived from considering the targets as be-
ing corrupted by zero-mean Gaussian distributed noise.

• Cross-Entropy for two classes: consider the case when
t(x) is binary (and softmax output). The expression is

E = − n∑

p=1
(t(xp) log(y(xp)) + (1− t(xp)) log(1− y(xp)))

This expression goes to zero with the “perfect” mapping.

• Cross-Entropy for multiple classes: the above expres-
sion becomes (again softmax output)

E = − n∑

p=1

K∑

i=1
ti(xp) log(yi(xp))

The minimum value is now non-zero, it represents the
entropy of the target values.

4 & 5. Multi-Layer Perceptron: Introduction and Training 9

Network Interpretation

We would like to be able to interpret the output of the net-
work. Consider the case where a least squares error criterion
is used. The training criterion is

E =
1

2

n∑

p=1

K∑

i=1
(yi(xp)− ti(xp))

2

In the case of an infinite amount of training data, n →∞,

E =
1

2

K∑

i=1

∫ ∫
(yi(x)− ti(x))2p(ti(x),x)dti(x)dx

=
1

2

K∑

i=1

∫ [∫
(yi(x)− ti(x))2p(ti(x)|x)dti(x)

]
p(x)dx

Examining the term inside the square braces
∫
(yi(x)− ti(x))2p(ti(x)|x)dti(x)

=
∫
(yi(x)− E{ti(x)|x} + E{ti(x)|x} − ti(x))2p(ti(x)|x)dti(x)

=
∫
(yi(x)− E{ti(x)|x})2 + (E{ti(x)|x} − ti(x))2p(ti(x)|x)dti(x)

+
∫

2(yi(x)− E{ti(x)|x})(E{ti(x)|x} − ti(x))p(ti(x)|x)dti(x)

where

E{ti(x)|x} =
∫

ti(x)p(ti(x)|x)dti(x)

We can write the cost function as

E =
1

2

K∑

i=1

∫
(yi(x)− E{ti(x)|x})2p(x)dx

+
1

2

K∑

i=1

∫ (
E{ti(x)2|x} − (E{ti(x)|x})2

)
p(x)dx

The second term is not dependent on the weights, so is not
affected by the optimisation scheme.

10 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

Network Interpretation (cont)

The first term in the previous expression is minimised when
it equates to zero. This occurs when

yi(x) = E{ti(x)|x}
The output of the network is the conditional average of the
target data. This is the regression of ti(x) conditioned on x. So

y(x)i

xi x

y(x)t(x)

p(t(x))i

the network models the posterior independent of the topol-
ogy, but in practice require:

• an infinite amount of training data, or knowledge of cor-
rect distribution for x (i.e. p(x) is known or derivable
from the training data);

• the topology of the network is “complex” enough that
final error is small;

• the training algorithm used to optimise the network is
good - it finds the global maximum.

4 & 5. Multi-Layer Perceptron: Introduction and Training 11

Posterior Probabilities

Consider the multi-class classification training problem with

• d-dimensional feature vectors: x;

• K-dimensional output from network: y(x);

• K-dimensional target: t(x).

We would like the output of the network, y(x), to approxi-
mate the posterior distribution of the set of K classes. So

yi(x) ≈ P (ωi|x)

Consider training a network with:

• means squared error estimation;

• 1-out-ofK coding, i.e.

ti(x) =





1 if x ∈ ωi

0 if x 6∈ ωi

The network will act as a d-dimensional to K-dimensional
mapping.

Can we interpret the output of the network?

12 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

Posterior Probabilities (cont)

From the previous regression network interpretation we know
that

yi(x) = E{ti(x)|x}
=

∫
ti(x)p(ti(x)|x)dti(x)

As we are using the 1-out-of-K coding

p(ti(x)|x) =
K∑

j=1
δ(ti(x)− δij)P (ωj|x)

where

δij =





1, (i = j)

0, otherwise

This results in

yi(x) = P (ωi|x)

as required.

The same limitations are placed on this proof as the interpre-
tation of the network for regression.

4 & 5. Multi-Layer Perceptron: Introduction and Training 13

Compensating for Different Priors

The standard approach to described at the start of the course
was to use Bayes’ law to obtain the posterior probability

P (ωj|x) =
p(x|ωj)P (ωj)

p(x)

where the priors class priors, P (ωj), and class conditional
densities, p(x|ωj), are estimated separately. For some tasks
the two use different training data (for example for speech
recognition, the language model and the acoustic model).

How can this difference in priors from the training and the
test conditions be built into the neural network framework
where the posterior probability is directly calculated? Again
using Bayes’ law

p(x|ωj) ∝ P (ωj|x)

P (ωj)

Thus if posterior is divided by the training data prior a value
proportional to the class-conditional probability can be ob-
tained. The standard form of Bayes’ rule may now be used
with the appropriate, different, prior.

14 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

Error Back Propagation

Interest in multi-layer perceptrons (MLPs) resurfaced with
the development of the error back propagation algorithm. This
allows multi-layer perceptons to be simply trained.

Inputs

xd

x2

x1

Hidden
layer

Output
layer

y (x)K

y (x)2

1y (x)

Outputs

A single hidden layer network is shown above. As previ-
ously mentioned with sigmoidal activation functions arbi-
trary decision boundaries may be obtained with this network
topology.

The error back propagation algorithm is based on gradient
descent. Hence the activation function must be differentiable.
Thus threshold and step units will not be considered. We need
to be able to compute the derivative of the error function with
respect to the weights of all layers.

All gradients in the next few slides are evaluated at the cur-
rent model parameters.

4 & 5. Multi-Layer Perceptron: Introduction and Training 15

Single Layer Perceptron

Rather than examine the multi-layer case instantly, consider
the following single layer perceptron.

Σ

wd

w2

w1

1

x

x

x

1

2

d

0

y(x)z

function
Activation

w

We would like to minimise (for example) the square error be-
tween the target of the output, t(xp), and the current output
value y(xp). Assume that the activation function is known to
be a sigmoid function. The cost function may be written as

E =
1

2

n∑

p=1
(y(xp)− t(xp)

′(y(xp)− t(xp)) =
n∑

p=1
E(p)

To simplify notation, we will only consider a single observa-
tion x with associated target values t(x) and current output
from the network y(x). The error with this single observation
is denoted E.

The first question is how does the error change as we alter
y(x).

∂E

∂y(x)
= y(x)− t(x)

But we are not interested in y(x) - how do we find the effect
of varying the weights?

16 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

SLP Training (cont)

We can calculate the effect that a change in z has on the error
using the chain rule

∂E

∂z
=




∂E

∂y(x)






∂y(x)

∂z




However what we really want is the change of the error rate
with the weights (the parameters that we want to learn).

∂E

∂wi
=


∂E

∂z





 ∂z

∂wi




The error function therefore depends on the weight as

∂E

∂wi
=




∂E

∂y(x)






∂y(x)

∂z





 ∂z

∂wi




All these expressions are known so we can write

∂E

∂wi
= (y(x)− t(x))y(x)(1− y(x))xi

This has been computed for a single observation. We are in-
terested in terms of the complete training set. We know that
the total errors is the sum of the individual errors, so

∇E =
n∑

p=1
(y(xp)− t(xp))y(xp)(1− y(xp))x̃p

So for a single layer we can use gradient descent schemes to
find the “best” weight values.

However we want to train multi-layer perceptrons!

4 & 5. Multi-Layer Perceptron: Introduction and Training 17

Error Back Propagation Algorithm

Now consider a particular node, i, of hidden layer k. Using
the previously defined notation, the input to the node is x̃(k)

and the output y
(k)
i .

Σwi2

wi1

1

x

x

x

1

2

wi0

yi
zi

function
Activation

(k)

(k)

(k) (k)

(k)

(k)

(k)

(k)

(k)wiN(k−1)

N(k−1)

From the previous section we can simply derive the rate of
change of the error function with the weights of the output
layer. We need to now examine the rate of change with the
kth hidden layer weights.

A general error criterion, E, will be used. Furthermore we
will not assume that y

(k)
j only depends on the z

(k)
j . For exam-

ple a softmax function may be used. In terms of the deriva-
tions given the output layer will be considered as the L + 1th

layer.

The training observations are assumed independent and so

E =
n∑

p=1
E(p)

where E(p) is the error cost for the p observation and the ob-
servations are x1, . . . ,xn.

18 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

Error Back Propagation Algorithm (cont)

We are required to calculate ∂E

∂w̃
(k)
ij

for all layers, k, and all rows

and columns of W̃(k). Applying the chain rule

∂E

∂w̃
(k)
ij

=
∂E

∂z
(k)
i

∂z
(k)
i

∂w̃
(k)
ij

= δ
(k)
i x̃

(k)
j

In matrix notation we can write
∂E

∂W̃(k)
= δ(k)x̃(k)′

We need to find a recursion for δ(k).

δ(k) =


 ∂E

∂z(k)




=



∂z(k+1)

∂z(k)





 ∂E

∂z(k+1)




=



∂y(k)

∂z(k)






∂z(k+1)

∂y(k)


 δ(k+1)

But we know from the forward recursions

∂z(k+1)

∂y(k)
=

∂z(k+1)

∂x(k+1)
= W(k+1)′

This yields the recursion

δ(k) = Λ(k)W(k+1)′δ(k+1)

4 & 5. Multi-Layer Perceptron: Introduction and Training 19

Backward Error Recursion

where we define the activation derivative matrix for layer k as

Λ(k) =
∂y(k)

∂z(k)
=




∂y
(k)
1

∂z
(k)
1

∂y
(k)
2

∂z
(k)
1

. . .
∂y

(k)
N(k)

∂z
(k)
1

∂y
(k)
1

∂z
(k)
2

∂y
(k)
2

∂z
(k)
2

. . .
∂y

(k)
N(k)

∂z
(k)
2...

∂y
(k)
1

∂z
(k)
N(k)

∂y
(k)
2

∂z
(k)
N(k)

. . .
∂y

(k)
N(k)

∂z
(k)
N(k)




This has given a matrix form of the backward recursion for the
error back propagation algorithm.

We need to have an initialisation of the backward recursion.
This will be from the output layer (layer L + 1)

δ(L+1) =
∂E

∂z(L+1)

=



∂y(L+1)

∂z(L+1)





 ∂E

∂y(L+1)




= Λ(L+1)




∂E

∂y(x)




Λ(L+1) is the activation derivative matrix for the output layer.

20 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

Error Back Propagation

To calculate ∇E(p)
∣∣∣∣θ[τ]

(θ[τ] is the set of “current” (training
epoch τ) values of the weights) we use the following algo-
rithm.

1. Apply the input vector xp to the network and use the feed
forward matrix equations to propagate the input forward
through the network. For all layers this yields y(k) and
z(k).

2. Compute the set of derivative matrices Λ(k) for all layers.

3. Compute ∂E
∂y(x)

∣∣∣∣θ[τ]
(the gradient at the output layer).

4. Using the back-propagation formulae back propagate the
derivatives through the network.

Having obtained the derivatives of the error function with
respect to the weights of the network, we need a scheme to
optimise the value of the weights.

The obvious choice is gradient descent

4 & 5. Multi-Layer Perceptron: Introduction and Training 21

Gradient Descent

Having found an expression for the gradient, gradient de-
scent may be used to find the values of the weights.

Initially consider a batch update rule. Here

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ]− η

∂E

∂w̃
(k)
i

∣∣∣∣∣∣∣θ[τ]

where θ[τ] = {W̃(1)[τ], . . . ,W̃(L+1)[τ]}, w̃(k)
i [τ] is the ith row of

W̃(k) at training epoch τ and

∂E

∂w̃
(k)
i

∣∣∣∣∣∣∣θ[τ]

=
n∑

p=1

∂E(p)

∂w̃
(k)
i

∣∣∣∣∣∣∣θ[τ]

If the total number of weights in the system is N then all N

derivatives may be calculated inO(N) operations with mem-
ory requirements O(N).

However in common with other gradient descent schemes
there are problems as:

• we need a value of η that achieves a stable, fast descent;

• the error surface may have local minima, maxima and sad-
dle points.

This has lead to refinements of gradient descent.

22 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

Training Schemes

On the previous slide the weights were updated after all n

training examples have been seen. This is not the only scheme
that may be used.

• Batch update: the weights are updated after all the train-
ing examples have been seen. Thus

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ]− η




n∑

p=1

∂E(p)

∂w̃
(k)
i

∣∣∣∣∣∣∣θ[τ]




• Sequential update: the weights are updated after every
sample. Now

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ]− η

∂E(p)

∂w̃
(k)
i

∣∣∣∣∣∣∣θ[τ]

and we cycle around the training vectors.
There are some advantages of this form of update.

– It is not necessary to store the whole training database.
Samples may be used only once if desired.

– They may be used for online learning

– In dynamic systems the values of the weights can be
updated to “track” the system.

In practice forms of batch training are often used.

4 & 5. Multi-Layer Perceptron: Introduction and Training 23

Refining Gradient Descent

There are some simple techniques to refine standard gradient
descent. First consider the learning rate η. We can make this
vary with each iteration. One of the simplest rules is to use

η[τ + 1] =





1.1η[τ]; if E(θ[τ]) < E(θ[τ − 1])

0.5η[τ]; if E(θ[τ]) > E(θ[τ − 1])

In words: if the previous value of η[τ] decreased the value of
the cost function, then increase η[τ]. If the previous value of
η[τ] increased the cost function (η[τ] too large) then decrease
η[τ].

It is also possible to add a momentum term to the optimisa-
tion (common in MLP estimation). The update formula is

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ] + ∆w̃

(k)
i [τ]

where

∆w̃
(k)
i [τ] = −η[τ + 1]

∂E

∂w̃
(k)
i

∣∣∣∣∣∣∣θ[τ]

+ α[τ]∆w̃
(k)
i [τ − 1]

The use of the momentum term, α[τ]:

• smooths successive updates;

• helps avoid small local maxima.

Unfortunately it introduces an additional tunable parameter
to set. Also if we are lucky and hit the minimum solution we
will overshoot.

24 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

Quadratic Approximation

Gradient descent makes use if first-order terms of the error
function. What about higher order techniques?

Consider the vector form of the Taylor series

E(θ) = E(θ[τ]) + (θ − θ[τ])′g

+
1

2
(θ − θ[τ])′H(θ − θ[τ]) +O(3)

where

g = ∇E(θ)|θ[τ]

and

(H)ij = hij =
∂E(θ)

∂wi∂wj

∣∣∣∣∣∣∣θ[τ]

Ignoring higher order terms we find

∇E(θ) = g + H(θ − θ[τ])

Equating this to zero we find that the value of θ at this point
θ[τ + 1] is

θ[τ + 1] = θ[τ]−H−1g

This gives us a simple update rule. The direction H−1g is
known as the Newton direction.

4 & 5. Multi-Layer Perceptron: Introduction and Training 25

Problems with the Hessian

In practice the use of the Hessian is limited.

1. The evaluation of the Hessian may be computationally
expensive asO(N 2) parameters must be accumulated for
each of the n training samples.

2. The Hessian must be inverted to find the direction,O(N 3).
This gets very expensive as N gets large.

3. The direction given need not head towards a minimum
- it could head towards a maximum or saddle point. This
occurs if the Hessian is not positive-definite i.e.

v′Hv > 0

for all v.

4. If the surface is highly non-quadratic the step sizes may
be too large and the optimisation becomes unstable.

Approximations to the Hessian are commonly used.

The simplest approximation is to assume that the Hessian is
diagonal. This ensures that the Hessian is invertible and only
requires N parameters.

The Hessian may be made positive definite using

H̃ = H + λI

If λ is large enough then H̃ is positive definite.

26 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

Improved Learning Rates

Rather than having a single learning rate for all weights in
the system, weight specific rates may be used without using
the Hessian. All schemes will make use of

g
(k)
ij [τ] =

∂E

∂w̃
(k)
ij

∣∣∣∣∣∣∣∣θ[τ]

• Delta-delta: we might want to increase the learning rate
when two consecutive gradients have the same sign. This
may be implemented as

∆η
(k)
ij [τ] = γg

(k)
ij [τ]g

(k)
ij [τ − 1]

where γ > 0. Unfortunately this can take the learning
rate negative (depending on the value of γ)!

• Delta-bar-delta: refines delta-delta so that

∆η
(k)
ij [τ] =





κ, if g
(k)
ij [τ − 1]g

(k)
ij [τ] > 0

γη
(k)
ij [τ − 1], if g

(k)
ij [τ − 1]g

(k)
ij [τ] < 0

where

g
(k)
ij [τ] = (1− β)g

(k)
ij [τ] + βg

(k)
ij [τ − 1]

One of the drawbacks with this scheme is that three pa-
rameters, γ,κ and β must be selected.

• Quickprop. Here

∆w̃
(k)
ij [τ + 1] =

g
(k)
ij [τ]

g
(k)
ij [τ − 1]− g

(k)
ij [τ]

∆w̃
(k)
ij [τ]

4 & 5. Multi-Layer Perceptron: Introduction and Training 27

Conjugate Directions

Assume that we have optimised in one direction, d[τ].

What direction should we now optimise in?

We know that
∂

∂λ
E(θ[τ] + λd[τ]) = 0

If we work out the gradient at this new point θ[τ+1] we know
that

∇E(θ[τ + 1])′d[τ] = 0

Is this the best direction? No.

What we really want is that as we move off in the new direc-
tion , d[τ + 1], we would like to maintain the gradient in the
previous direction, d[τ], being zero. In other words

∇E(θ[τ + 1] + λd[τ + 1])′d[τ] = 0

Using a first order Taylor series expansion

∇ (E(θ[τ + 1]) + λd[τ + 1]′∇E(θ[τ + 1]))
′
d[τ] = 0

Hence the following constraint is satisfied for a conjugate
gradient

d[τ + 1]′Hd[τ] = 0

28 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

Conjugate Gradient (cont)

d

d

θ

θ

[τ]

[τ+1]

[τ]

[τ+1]

Fortunately the conjugate direction can be calculated without
explicitly computing the Hessian. This leads to the conjugate
gradient descent algorithm (see book by Bishop for details).

4 & 5. Multi-Layer Perceptron: Introduction and Training 29

Input Transformations

If the input to the network are not normalised the training
time may become very large. The data is therefore normalised.
Here the data is transformed to

xpi =
xpi − µi

σi

where

µi =
1

n

n∑

p=1
xpi

and

σ2
i =

1

n

n∑

p=1
(xpi − µi)

2

The transformed data has zero mean and variance 1.

This transformation may be generalised to whitening. Here
the covariance matrix of the original data is calculated. The
data is then decorrelated and the mean subtracted. This results
in data with zero mean and an identity matrix covariance
matrix.

30 Engineering Part IIB & EIST Part II: I10 Advanced Pattern Processing

Generalisation

In the vast majority of pattern processing tasks, the aim is not
to get good performance on the training data (in supervised
training we know the classes!), but to get good performance
on some previously unseen test data.

E
ro

or
 r

at
e

Training set

Future data

Number of parameters

Typically the performance actually goes as above. As the
number of model parameters, N , increase the training data
likelihood is guaranteed to increase (provided the parameter
optimisation scheme is “sensible”). The associated classifica-
tion error rate usually decreases. However the test (future)
set performance has a maximum in the likelihood and asso-
ciated minimum in error rate. Then the likelihood decreases
and the error rate increases.

The objective in any pattern classification task is to have the
minimum test set (future data) error rate.

4 & 5. Multi-Layer Perceptron: Introduction and Training 31

Regularisation

One of the major issues with training neural networks is how
to ensure generalisation. One commonly used technique is
weight decay. A regulariser may be used. Here

Ω =
1

2

N∑

i=1
w2

i

where N is the total number of weights in the network. A
new error function is defined

Ẽ = E + νΩ

Using gradient descent on this gives

∇Ẽ = ∇E + νw

The effect of this regularisation term Ω penalises very large
weight terms. From empirical results this has resulted in im-
proved performance.

Rather than using an explicit regularisation term, the “com-
plexity” of the network can be controlled by training with
noise.

For batch training we replicate each of the samples multiple
times and add a different noise vector to each of the sam-
ples. If we use least squares training with a zero mean noise
source (equal variance ν in all the dimensions) the error func-
tion may be shown to have the form

Ẽ = E + νΩ

This is a another form of regularisation.

