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Abstract

The use of Support Vector Machines (SVMs) for speaker verifi-
cation has become increasingly popular. To handle the dynamic
nature of the speech utterances, many SVM-based systems use
dynamic kernels. Many of these kernels can be placed into
two classes, parametric kernels, where the feature-space con-
sists of parameters from the utterance-dependent model, and
derivative kernels, where the derivatives of the utterance log-
likelihood with respect to parameters of a generative model are
used. This paper contrasts the attributes of these two forms of
kernel. Furthermore, the conditions under which the two forms
of kernel are identical are described. Two forms of dynamic
kernel are examined in detail, based on MLLR-adaptation and
mean MAP-adapted models. The performance of these kernels
is evaluated on the NIST SRE 2002 dataset. Combining the two
forms of kernel together gave a 35% relative reduction in Equal
Error Rate compared to the best individual kernel.

Index Terms: Speaker Verification, Support Vector Machines,
dynamic kernels.

1. Introduction

Speaker verification is a binary classification task in which the
objective is to determine whether or not a speech utterance was
uttered by a specific claimed speaker. The standard approach
to text-independent speaker-verification uses Gaussian Mixture
Models (GMMs) as the acoustic model. Normally, a Universal
Background Model (UBM) is trained to represent all speakers
using a large amount of development data. A speaker-dependent
model is then obtained by using Maximum A-Posteriori (MAP)
adaptation to robustly adapt the UBM using a small amount of
enrolment data associated with each speaker. The verification
data is then classified, as to whether the claimed identity is cor-
rect, using Bayes’ decision rule[1].

Recently, there has been considerable interest in the use
of Support Vector Machines (SVMs) for speaker verification.
SVMs are general purpose classifiers that have been found to
perform well on a wide range of classification tasks. However,
SVMs are normally only able to classify data of fixed dimen-
sionality whereas speech utterances are typically parameterised
as variable length sequences of observation vectors. This has
led to the use of dynamic kernels, also known as sequence ker-
nels. Dynamic kernels implicitly map variable length obser-
vation sequences into a fixed-dimensional vector and are often
based on generative models.

This paper describes how many proposed dynamic kernels
for speaker verification can be classified into one of two types,
parametric kernels and derivative kernels. These two forms
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of kernel generally extract different speaker-dependent features
and thus may be complementary to one another. However, un-
der certain conditions the features expressed by the kernels are
identical. The nature of the kernels is also dependent on the
generative model used to represent the individual speakers. Two
forms of dynamic kernel speaker models are examined in detail
in this paper. The first is based on parameters of the GMM,
related to the GMM/mean-supervector kernel [2] and genera-
tive kernels [3]. The second uses MLLR-adaptation similar to
the MLLR kernel described in [4]. This paper is organised as
follows. The next section introduces dynamic kernels and de-
scribes common examples of parametric and derivative kernels.
It is then shown that under certain restricted conditions, the fea-
tures generated by the two forms of kernel are identical. In
Section 3, experimental results on the NIST 2002 SRE dataset
are presented. Finally, conclusions are drawn.

2. Dynamic kernels

SVMs have been successfully applied to a wide range of ma-
chine learning problems. One reason for this popularity is that
they can be kernelised. In SVM training and inference all refer-
ences to data are in the form of inner-products between data ex-
amples. It is then possible to define a kernel function K (x;, x ;)
that implicitly calculates the inner-product between two vectors
in some, possibly very high dimensional, feature-space. One
issue when applying SVMs to speech processing tasks is that
the SVM can only perform classification on data of fixed di-
mensionality. However speech utterances are typically variable
length sequences. This has led to the development of dynamic
kernels, also known as sequence kernels. These kernels are of-
ten based on generative models and have the form

K(0i,05;A) =< ¢(0i; A), ¢(05; ) > M
where ¢(O; ) is a function that maps a speech utterance into
a fixed dimensional feature space and A is the set of parameters
associated with the generative model. The kernel also defines

the distance metric between two feature vectors. One such met-
ric that is maximally non-committal is

K(04,04; ) = $(0;;A)'Q ™ ¢(0;; A) 2

where @ is the Fisher information matrix defined as
Q = £{(d(0:N) — pe)(B(O0:N) — o)’} (3)
pe = E{p(O;N)} “4)
where £{} is the expectation with respect to O. A number
of different dynamic kernels of this form have been proposed
for speaker verification, for example the MLLR-kernel [4],
GMM/mean-supervector kernel [2] and Fisher kernel [S]. These
kernels can be characterised into two broad classes depending

upon the form of ¢(O; X). These will be referred to as para-
metric kernels and derivative kernels.



2.1. Parametric kernels

Parametric kernels are a form of dynamic kernel where the
feature-space is the parameters A associated with the generative
model trained to represent the verification utterance O". Thus

6x(0") = [A]. A =argmax{logp(0 i N)}  (5)

One property of this form of kernel is that the derivative at the
ML estimate is zero, i.e.

Valogp(O¥;A)| =0 (6)
A

The precise nature of the parametric kernel is determined by the
generative model used to represent the speaker.

One parametric kernel that has been successfully used for
speaker verification is the GMM/mean-supervector kernel [2].
In this kernel, the feature-space is the concatenated means of an
utterance-dependent GMM. As there are typically not enough
observations per component to robustly estimate the parame-
ters, MAP adaptation, using the UBM as a prior, is used instead.
Here .

A = argmax{log p(O”; A) + log p(A)} ©)

where p(A) is based on the UBM parameters. For a GMM the
ML, or MAP estimate, has no closed-form solution. Multiple it-
erations of model adaptation using EM are therefore used. This
iterative approach means that equation 6 does not necessarily
hold for limited numbers of iterations. For component m the
MAP-adapted mean at iteration k is given by
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where fi.,, are the UBM means associated with component m

®)

(which are also used as the initial parameters gt )) 'y(k) (t) =
P(m|o¥; X)), the posterior probability of component m at
time ¢ given observation o} and A, and 7 is the standard
MAP adaptation constant that controls the influence of the prior
on the final model. If k-iterations of mean-only MAP adapta-
tion are performed the feature-space is

T
ox(0"AN) = [T, ] ©)

In [2], a distance metric is defined such that the kernel func-
tion is an upper bound on the KL divergence between the two
utterance-dependent models. This normalises each component
mean by the associated mixture weight and the inverse of the
covariance matrix. In this work the distance metric given in
equation 2 is used, which is consistent with the metrics used for
the other kernels.

Another parametric kernel proposed for speaker-
verification is the MLLR kernel [4]. MLLR is an adaptation
technique in which a linear transform of the canonical model
means, here the UBM means, is used to represent a speaker.
Like MAP, an iterative EM-based training scheme can be used
to gradually increase the likelihood of O. At iteration k the

adapted mean, ,15,’3 ), associated with component m is given by

ﬂgj) _ A(k)ﬂm +bu) = W(k)é-m (10)

where £, is the extended mean vector &,, = [fir, 1]7, and the
ith row, wgk), of the MLLR transform is

w = gF 1P (11)
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where G §k> and kﬁk) are sufficient statistics defined as
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The MLLR parametric feature-space is then defined as
DA (0"; WHR)) = [vec(W *))], where vee() converts the ma-
trix to a vector.

2.2. Derivative kernels

Derivative kernels provide an interesting contrast to paramet-
ric kernels. Rather than using model parameters as the feature-
space, the partial derivatives of the utterance log-likelihood with
respect to individual model parameters are used instead. For a
set of model parameters, A, the derivative feature-space gener-
ated from a verification utterance O" has the form

dv(0'; ) = 1 {VA logp(Ov;A)u (14)

T
where A is the model parameter value at which the derivative is
evaluated. Equation 14 includes an optional term to normalise
by the number of frames 7" in O". This is important if the utter-
ances in the dataset vary greatly in duration. A derivative kernel
may also include higher-order derivative terms in the feature-
space, however generally only first-order derivatives are used.
It is necessary to define the point around which the derivative
kernel feature-space will be evaluated. This may be based on
the UBM parameters, which is similar to using the Fisher kernel
[5]. Another possibility is to use the speaker-specific parame-
ters. As a GMM is typically used, iterative approaches are used
to obtain the speaker-specific parameters. To clearer specify the
iteration at which the derivative is evaluated, log p(O”; )\(k>),
will be used for the feature-space evaluated at the k" iteration.
This approach resembles the log-likelihood ratio kernel [3].
The precise nature of derivative kernels is again determined
by the generative model used to represent a speaker. Derivatives
with respect to the means of the GMM can be used [6]. Here

Y - D)
vI—Lm logp(07 ’ (k) Z’Vm m 0 I'Lm) (15)

Alternatively derivatives with respect to an MLLR transform
may also be used, effectively this is the derivative form of the
parametric MLLR-kernel. The derivatives of log p(O”; W)
with respect to the ith row of transform W evaluated at the
point W=D can be expressed as

=GP w* T kP (16)
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Vw,; logp(O"; W) ST
where G’Z(-k) and kik) are the sufficient statistics defined in equa-
tions 12 and 13. Note these statistics are identical to those used
for the MLLR parametric kernel. In this work a global trans-
form is used, the extension to multiple regression classes is triv-
ial. The MLLR derivative feature-space is then defined by sim-
ply mapping the derivatives corresponding to each element of
the MLLR transform into a single feature vector and optionally
normalising by the utterance duration. This MLLR-derivative
kernel is then given by

pv (0" W) = {Vec (VW log (0" W)‘Wm)]

Nl =



It is interesting to briefly contrast derivative kernels with
parametric kernels. From equation 6, the derivative of the para-
metric kernel features at the ML-estimate of the model parame-
ters will be zero for the verification data O". In general this will
not be the case for the derivative kernel. Instead the features of
the derivative kernel will be zero for the enrolment data at the
ML-estimate, i.e.

A = argmax{logp(O% N}, ¢v(0%A) =0 (7

In addition the derivative kernels commonly use a length nor-
malisation term. This is not necessary for parametric kernels,
where there is an implicit normalisation for the lengths. A con-
sequence of this is that when a component, or generally a trans-
form class, is not observed ML-based parametric kernels are
undefined, whereas derivative kernels tend to zero.

2.3. Conditions for complementary feature sets

Both parametric and derivative kernels have been used success-
fully for speaker-verification. The respective feature-spaces can
express different types of speaker-discriminant information and
thus may be complementary. It is useful to establish under what
conditions the two forms of kernel are the same, as this yields
information as to how to make the features complementary to
one another. The parametric kernel feature-space at the kth it-
eration of training can be expressed in the form of a gradient
ascent update.

e (07 A = {)‘(k) +7Vlog p(07; '\)‘ (kj 4
A

where 7 is the learning rate. This may additionally be expressed
as a function of a derivative feature-space evaluated at AR

2(0" A ) = AW 4 npe (07 A (19)

where 1 = T'rj if duration normalisation is used in equation 14,
otherwise n = 7). The two classes of dynamic kernel are thus
related to each other. Compared to the derivative kernel feature-
space, the parametric kernel features includes a term A" which
introduces a translation of the feature space. If a kernel that
is invariant to translation is used, such as a stationary kernel,
this will have no effect. Note stationary kernels have the gen-
eral form K(O;,0;) = F (¢(0;) — ¢(0;)) where F() is
the function that defines the kernel.

Even if a stationary kernel is used, it is not sufficient to en-
sure that the two sets of features will be identical. Equation 19
contains a learning rate. Using an appropriate metric, the ker-
nels will not depend on the learning rate if the learning rate is
independent of the observation sequence since this dependency
is removed by the metric (the metric used in equation 2 has this
property but is not stationary). However this is not generally the
case. To illustrate this consider the situation where the paramet-
ric kernel is obtained using an EM-based ML-estimation of the
mean. At iteration k + 1 the mean parametric feature-space for
component m can be expressed as

TS 1
(k+1) _ ), (k) m 1V, loen(O': A\ ‘
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m
(20)
EM is thus equivalent to gradient ascent using the derivative
features with a learning rate that depends upon the total com-
ponent occupancy for that observation sequence as well as the
length of the observation sequence (when length normalisation
is being used).

If both parametric and derivative features are to be used, it
is important that the features differ. This can be achieved using
a non-stationary kernel, such as the kernel in equation 2, evalu-
ating the derivative terms at a different point to the parametric
features (effectively using a different number of iterations), or
simply using the standard EM updates. Combinations of these
may increase how complementary the features are.

3. Experimental results

The parametric and derivative dynamic kernels were evaluated
on the 2002 NIST SRE one-speaker detection task[7]. Each
utterance was parameterised using a frame rate of 10ms and a
window size of 30ms. 31 features were extracted per frame,
these consisted of 15 static, 15 delta Mel-PLP coefficients and
the delta energy. Cepstral Mean Subtraction was performed on
each utterance followed by Cepstral Feature Warping[8] using a
three second window to introduce additional robustness to chan-
nel noise. This setup is identical to that used in [9]. System per-
formance was primarily evaluated using the Equal Error Rate
metric. NIST SRE evaluations are evaluated by means of a De-
tection Cost Function (DCF) This is the weighted sum of the
False alarm and Miss probabilities at a defined threshold. The
normalised cost used in this paper takes the form [7]

DCF = PMiss + 9-9PFalse Alarm (21)

To aid comparison with other work the minDCF score, obtained
a-posteriori by adjusting the decision threshold, is quoted in ad-
dition to the EER.

Initially, gender-dependent UBMs were trained by EM us-
ing all SRE 2002 enrolment utterances of the appropriate gen-
der. Each UBM consisted of a 128-component GMM with each
component having diagonal covariance matrices. For the MAP-
adapted mean kernels, speaker-dependent GMMs were con-
structed by MAP adapting the means of the appropriate gender-
dependent UBM. Two iterations of static prior MAP were used
with 7 set at 25. These speaker specific models were used for
the parametric kernels and the point at which the derivative ker-
nels were evaluated'. Dynamic kernels based upon MLLR fea-
tures were also evaluated. For these kernels, a single iteration
of MLLR adaptation was used to adapt the means of the appro-
priate UBM. Preliminary experiments showed that additional
iterations of adaptation provided only negligible gains. During
adaptation, a full transform was trained, tied over all compo-
nents. For both the MAP-adapted mean based kernels and the
MLLR-based kernels, the non-stationary kernel given in equa-
tion 2 was used. A diagonal approximation was used for the
Fisher information matrix, estimated based on the covariance
matrix features extracted from the enrolment utterances. For
each speaker, an imposter training set was created using all the
non-speaker enrolment utterances. When combining multiple
feature space-types, the features were simply concatenated to-
gether to form a single feature-space. Unlike [10], weights were
not assigned to individual feature sets. In addition to the use of
SVM for verification, baseline results were obtained using stan-
dard verification with either the MAP-adapted mean speaker
models or the MLLR-adapted speaker models and the UBM.
In this setup, non-stationary kernels were used, parametric and
derivative terms were evaluated at different points and standard
EM updates were used. This was intended to increase the com-
plementariness of the parametric and derivative feature sets.

IFrom equation 19 the parametric and derivative kernel features
were evaluated at different iterations.



MAP MLLR

Feature Set | —prrz) [ minDCF || EER(%) | minDCF

[ GMM [ 1217 | 05014 [ 1751 | 0.5855 |
o 9.89 | 04220 [ 20.12 | 0.7755
ov 862 | 03723 || 1536 | 0.5825

drtov | 560 | 02416 || 1499 | 0.5817

Table 1: Performance for parametric (¢ ), derivative (¢pv) and
composite (¢ + ¢v) MAP and MLLR feature sets.

Evaluation performance with the baseline systems and the
various dynamic kernels are presented in Table 1. Both para-
metric and derivative MAP kernels gave significant gains com-
pared to the baseline GMM system. This is consistent with pre-
vious work such as [2] and [6]. For both MAP and MLLR adap-
tation, the derivative kernel outperformed the parametric kernel.
Note for the parametric MAP-adapted mean kernel, a different
metric was used compared to the results in [2]. When the MAP
parametric and derivative feature sets were combined into a sin-
gle kernel, a further 35% relative reduction in EER was obtained
compared to the MAP derivative kernel indicating that the fea-
ture sets are complementary. Although overall performance was
significantly worse for MLLR-based kernels combining para-
metric and derivative features still produced gains.

In addition to the results in Table 1 it is possible to com-
bine mean MAP-based kernels and MLLR-based kernels>. A
combined MAP and MLLR derivative kernel gave an EER of
8.02% representing an 7% relative reduction in EER compared
to the MAP derivative kernel alone. Additionally combining
this system with the MAP parametric kernel gave an improved
performance of 6.36% EER. However this did not exceed the
performance obtained by combining only the MAP parametric
and derivative kernels. Overall, the best performing dynamic
kernel was the composite MAP kernel.®, which gave a 55% rel-
ative reduction in EER compared to the Baseline system.

40 + ' 5 . Baseline 4
v
L
20 b B . 5 : 4
SIRLES :
£
=
25 1
3
[=}
=
8
= 2 T
1 o
05 R : : . 4
0.2 T
0.1 T
i i i i i i i i
01 02 05 1 2 5 10 20 40

False Alarm probability (in %)

Figure 1: DET curve comparing baseline against derivative and
composite MAP dynamic kernels.

2Combining likelihood features with parametric or derivative gave
little change in performance due to maximally non-committal metric
being used.

3The composite MAP kernel also outperformed the results reported
in [9] which were obtained using much larger 1024-component GMMs

Figure 1 shows the DET curve for the baseline mean MAP-
adapted system, the associated derivative kernel and combina-
tion of the derivative and parametric kernel. It is clear from
the graph that on this task the combined kernel outperforms the
derivative kernel at all operating points.

4. Conclusions

This paper has discussed two general forms of dynamic ker-
nel, parametric and derivative kernels. The two sets of features
produced have different properties and are generally comple-
mentary. However, under certain conditions, discussed in Sec-
tion 2.3, the feature-spaces produced will be identical. Various
dynamic kernels were evaluated using the NIST 2002 evalua-
tion data. Both parametric and derivative MAP-based kernels
individually provided gains compared to the baseline GMM
system. Furthermore when the feature sets were combined a
further 35% relative reduction in EER was observed compared
to the best single feature set. MLLR-based dynamic kernels
were also investigated. Although overall performance for these
MLLR-based kernels was worse than for MAP-kernels, MLLR-
based parametric and derivative kernels were again found to be
complementary. The experimental results shown here are in-
tended as an illustration of the merits of combining paramet-
ric and derivative feature sets rather than as an example of an
evaluation-level system as the imposter and UBM training ut-
terances were not obtained from an auxiliary dataset. Further
performance gains should be achievable. For example, by im-
plementing RASTA filtering, using larger Gaussian models or
conducting T-normalisation.
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