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Model-Based Approaches to Robust Speech Recognition

Overview

• Noise robust speech recognition

– adaptive approaches
– forms of the mismatch function

• Model based noise compensation

– vector-Taylor series approximation (VTS)
– joint uncertainty decoding (JUD)

• Predictive linear transforms

• Support Vector Machines (SVM)

– adapting SVMs to handle noise

• Experimental results

– Aurora2 continuous digit task
– Toshiba in-car task
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Example Application - In-Car Navigation
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Noise Compensation Approaches

Environment
Training

Clean Acoustic

Noisy Acoustic 
Models

Noisy Speech
Features

Clean Speech
Features Models

Compensation
Feature

Compensation
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Environment
Recognition

• Two main approaches:

– feature compensation: “clean” the noisy features yt → xt

– model compensation: “corrupt” the clean models λx → λy

• This work concentrates on model compensation approaches
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Model-Based Approaches to Robust Speech Recognition

“Adaptive” Linear Model Compensation

• A standard scheme for speaker/environment adaptation is linear transforms

Various forms used:

– MLLR Mean: µ
(m)
y = Aµ

(m)
x + b

– MLLR Variance: Σ(m)
y = AΣ(m)

x AT

– CMLLR: xt = Ayt +b (MLLR mean/variance transforms same)

• General approach, but large numbers of model parameters

– a single full-transform has about 1560 parameters to train
– the impact of noise is non-linear, so many transforms useful

• Model compensation specifically aimed at noise robust speech recognition

– only need to estimate a model of the acoustic environment
– but need to model impact of the environment on the clean speech
– examples PMC, VTS and JUD
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Constrained MLLR
• CMLLR is a popular form of “adaptive” linear transforms

– decoding implemented as

p(yt|sm) = |A(r)|N (A(r)yt + b(r); µ(m)
x ,Σ(m)

x )

– makes “exact” estimate of “clean” speech xt

– multiple regression classes used to increase power of transform

• The recognition system (back-end) parameters not altered

– important to efficiently handle changing noise environments

• Statistics required to use EM estimating transform

G(r)
i =

∑
m∈rr

T∑
t=1

γ
(m)
yt

σ
(m)2
xi

[
1 yT

t

yt yty
T
t

]
; k(r)

i =
∑

m∈rr

T∑
t=1

γ
(m)
yt µ

(m)
xi

σ
(m)2
xi

[
1
yt

]

– iterative scheme for full/block transforms, closed-form for diagonal
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“Simplified” Acoustic Environment
• A simplified model of the effects of noise is often used

Difference
Channel +

+
Corrupted Speech y(t)

Speech x(t)

Convolutional Noise h(t)

Additive Noise n(t)

• Ignore effects of stress:

• Group noise sources

y(t) = x(t) ∗ h(t) + n(t)

• Squared magnitude of the Fourier Transform of signal

Y (f)Y ∗(f) = |H(f)X(f)|2 + |N(f)|2 + 2|N(f)||H(f)X(f)| cos(θ)

θ is the angle between the vectors N(f) and H(f)X(f).

• Considering Cepstral domain (C is the DCT), the mismatch function is obtained

yt = xt + h +
1
2
C log

(
1 + exp

(
2C−1(nt − xt − h)

))
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Mismatch function optimisation

• The previous mismatch function only an approximation - variations possible

– γ-optimised - tunable parameter γ, ignoring h

yt = xt +
1
γ
C log

(
1 + exp

(
γC−1(nt − xt)

))

– Phase-sensitive - tunable parameter α, in theory −1 ≤ α ≤ 1

yt = xt +
1
2
C log

(
1 + exp

(
2C−1(nt − xt)

)
+ 2α exp

(
C−1(nt − xt)

))
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Vector Taylor Series Model Compensation

• Vector Taylor series (VTS) one popular approximation

– Taylor series expansion about “current” parameter values
– for these expression ignore impact of convolutional distortion
– mismatch function approximated using first order series

yt ≈ µx + f(µx, µn) + ∇xf(x, n)|µx,µn(xt − µx) + ∇nf(x, n)|µx,µn(nt − µn)

where f(x, n) = 1
2C log

(
1 + exp

(
2C−1(n− x)

))
(ignoring h)

• Model parameter compensation then becomes

µ(m)
y = E{yt|sm} ≈ µ(m)

x + f(µ(m)
x , µn)

Σ(m)
y ≈ AΣ(m)

x AT + (I−A)Σ(m)
n (I−A)T; A =

∂y

∂x

• “Current” noise parameter values have to be estimated
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Noise Parameter Estimation

• In practice the noise model parameters, µn, µh,Σn, are not known

– need to be estimated from test data
– simplest approach - use VAD and start/end frames to estimate noise

• noise estimation based on ML estimation using observations Y = {y1, . . . , yT}
{

µ̂n, µ̂h, Σ̂n

}
= argmax

µn,µh,Σn

{p(Y|µn, µh,Σn; λx)}

• Expectation maximisation can be used

– simple statistics for the auxiliary function
– yields simple approach to find µn, µh

– first/second-order gradient based approaches to find Σn

• For details see technical report number TR552
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Limitations of VTS

• VTS applied to a range of tasks, but

1. computationally expensive, scales as number of components in recogniser
2. mismatch function requires a number of approximations
3. normally first order approximation used (not as good as DPMC)
4. mismatch functions for dynamic parameters poor (continuous-time-approx)
5. doesn’t model changes in correlations of feature vector

• This work addresses (1) using Joint Uncertainty Decoding (JUD)

– (2) will be examined by optimising γ
– (3)-(5) have been examined see recent InterSpeech/ICASSP papers

• Would like to decorrelate compensation cost from complexity of recogniser

– JUD partly does this using uncertainty decoding framework
– though bias on recognition system variances still required
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Uncertainty Decoding

t+1
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y t
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∫
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• Simplest approach is to assume yt and xt jointly Gaussian

– p(yt|xt) from joint distribution p(yt, xt) obtained by means of VTS

• Considering a unique joint distribution for the whole acoustic space

– p(yt) = |A| N (Ayt + b; µx,Σx + Σb) for a single model component
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Joint Uncertainty Decoding Implementation

• JUD implementation closely related to CMLLR

p(yt|sm) = |A(r)|N (A(r)yt + b(r); µ(m)
x ,Σ(m)

x + Σ(r)
b )

– bias variance on recognition components, but important for robustness

Model-space ProcessingFront-end Processing

HypothesisDecode
Corrupted 
Speech

Variance 
Update

Apply 
Transform

Apply 
Transform

Apply 
Transform

Variance 
Update

Variance 
Update

• For JUD compensation, VTS only required at regression class level

– A(r),b(r) and Σ(r)
b functions of noise parameters µn, µh,Σn
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“Predictive” Linear Model Compensation

• Though JUD improves efficiency there are still some problems

1. if A(r) is full, Σ(r)
b is full → full decoding cost

2. Σ(r)
b applied to every back-end component

• Predictive linear transforms can be used to address both of these

• If Σ(r)
b is full can use predictive semi-tied transforms

p(yt|sm) = |A(r)||A(r)
jnt |N

(
A(r)(A(r)

jnt yt + b(r)
jnt );A(r)µ(m)

x , Σ̃(m)
diag

)

– use semi-tied approximation: (Σ(m)
x + Σ(r)

b )-1 ≈ A(r)TΣ̃(m)-1
diag A(r)

– various forms of approximation possible (various levels of efficiency)
– but requires altering back-end recogniser parameters

• Predictive CMLLR can be used - only CMLLR-like transforms required
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Predictive CMLLR

• For schemes like CMLLR required EM statistics can be expressed as:

G(r)
i =

∑
m∈rr

γ(m)

σ
(m)2
xi

[
1 E{yT|sm}

E{y|sm} E{yyT|sm}
]

; k(r)
i =

∑
m∈rr

γ(m)µ
(m)
xi

σ
(m)2
xi

[
1

E{y|sm}
]

– normally the expectations obtained from observed data (adaptive)
– could also use model-compensation schemes to obtain values (predictive)

– γ(m) either based on observations γ
(m)
yt or training data counts γ

(m)
x

E{y|sm} =

∑
t γ

(m)
yt yt∑

t γ
(m)
yt

or E{y|sm} = µ(m)
y

• Schemes such as JUD can be used to efficiently obtain “pseudo” statistics

∑
m∈rr

γ
(m)
x µ

(m)
xi

σ
(m)2
xi

E{y|sm} = A(r)-1

( ∑
m∈rr

γ
(m)
x µ

(m)
x

σ
(m)2
xi

)
−A(r)-1b(r)

( ∑
m∈rr

γ
(m)
x

σ
(m)2
xi

)
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“Adaptive” vs “Predictive” Schemes

• Adaptive and predictive schemes complementary to one another

Adaptive Predictive
general approach applicable to noise

linear assumption mismatch function required
- use many linear transforms - may be inaccurate

transform parameters estimated noise model estimated
- large numbers of parameters - small number of parameters

• Obvious approach is to combine the two in a fashion similar to MAP:

– limited data predictive approaches used
– increased data adaptive approaches used

• Count smoothing simple approach to use (parent transforms also possible)

G(r)
pai =

G(r)
pci∑

m∈rr
γ

(m)
x

+ τsmG(r)
i ; k(r)

pai =
k(r)
pci∑

m∈rr
γ

(m)
x

+ τsmk(r)
i
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Improved Robustness

• Even if the “perfect” compensation scheme was available

– unlikely to achieve required level of performance at low SNRs
– use of alternative, non-HMM, classifiers may be needed

• Discriminative models/functions alternative to generative models (HMMs)

– Support Vector Machines (SVMs) successful discriminative function

• To apply SVMs to noise robust speech recognition must be able to

– handle variable-length sequence data from speech
– adapt/compensate model to changing noise conditions
– handle possibly large number of classes in speech recognition

• For details see technical report number TR605
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Support Vector Machines

support vector
support vector

width

decision
boundary

margin

• SVMs are a maximum margin, binary, classifier:

– related to minimising generalisation error;
– unique solution (compare to neural networks);
– may be kernelised - training/classification a function of dot-product (xi.xj).

• Can be applied to speech - use a kernel to map variable data to a fixed length.
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Generative Score-Space

• Generative models, e.g. HMMs and GMMs, handle variable length data

– view as “mapping” sequence to a single dimension (log-likelihood)

φ (Y; λ) =
1
T

log (p(Y; λ))

• Extend feature-space to a high dimension:

– add derivatives with respect to the model parameters
– example is a log-likelihood ratio plus first derivative score-space:

φ(Y; λ) =
1
T




log
(
p(Y; λ(ωl))

)− log
(
p(Y; λ(ωj))

)
∇

λ(ωl)
log

(
p(Y; λ(ωl))

)
−∇

λ
(ωj) log

(
p(Y; λ(ωj))

)




– score-space is still a fixed dimension
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Discrete Score-Space Example

• Consider a simple 2-class, 2-symbol {A, B} problem:

– Class ω1: AAAA, BBBB
– Class ω2: AABB, BBAA

42 31

0.50.5

0.51.0 0.5

P(B)=0.5 P(B)=0.5
P(A)=0.5P(A)=0.5

Feature
Class ω1 Class ω2

AAAA BBBB AABB BBAA

Log-Lik -1.11 -1.11 -1.11 -1.11
∇2A 0.50 -0.50 0.33 -0.33

∇2A∇T
2A -3.83 0.17 -3.28 -0.61

∇2A∇T
3A -0.17 -0.17 -0.06 -0.06

• ML-trained HMMs are the same for both classes

• First derivative classes separable, but not linearly separable

– also true of second derivative within a state

• Second derivative across state linearly separable
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Generative Kernels

• Form of kernel need a metric to be specified

K(Yi,Yj; λ) = φ(Yi; λ)TG-1φ(Yj; λ)

– G is a maximally non-committal metric - all dimensions treated equally
– Related to the Fisher kernel

• Log-likelihood ratio (LLR) known to be highly discriminatory

– it’s the score used for the HMM-based recognition

• In these experiments the LLR ratio weighted by ε so decision based on

S(Y; λ) + ε

(
log

(
p(Y; λ(ωl)

y )

p(Y; λ(ωj)
y )

))

where S(Y; λ) is the score from the SVM for classes ωl and ωj
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Adapting SVMs to Noise Conditions

• Decision boundary for SVM is (zi ∈ {−1, 1} label of training example)

w =
n∑

i=1

αsvm
i ziG−1φ(Yi; λ)

– αsvm = {αsvm
1 , . . . , αsvm

n } set of SVM Lagrange multipliers

• Choice in adapting SVM to noise condition, modify:

– αsvm - non-trivial though schemes have recently been proposed
– λ - simple, model compensation

• Approach adopted in this work is to modify generative model parameters, λ

– noise-independent SVM Lagrange multipliers
– noise-dependent generative kernels

Cambridge University
Engineering Department

21



Model-Based Approaches to Robust Speech Recognition

SVMs Rescoring Scheme

Model−Based 
Compensation Kernel

Generative

HMM−Based
Recognition

SVM−Based
Recognition

Noise Corrupted Speech

Recognition Output

Noise Independent
SVMs

• How to handle large number of possible classes even for simple digit strings?

– 6 digit sequence has 106 possible classes
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Handling Continuous Digit Strings

ONE

ZERO
SIL

ONE

ZERO
SIL

ONE

ZERO
SIL

FOUR ONE SEVEN

• Using HMM-based hypothesis

– “force-align” - word start/end

• Foreach word start/end times

– find “best” digit + silence

• Can use multi-class SVMs

• Simple approach to combining generative and discriminative models

– related to acoustic code-breaking

• Initial implementation uses a 1-v-1 voting SVM combination scheme

– ties between pairs resolved using appropriate SVM output
– > 2 ties back-off to standard HMM output
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AURORA 2 Task

• AURORA 2 small vocabulary digit string recognition task

– TIDIGITS databases used - utterances of one-seven digits (0-9 + oh)
– clean training data 8440 utterances from 55 male and 55 female speakers
– Test Set A and B contain 8 different types of additive noise
– Test Set C contains 2 different types of additive noise plus channel distortion
– 1001 utterances used for evaluation in each test set
– Whole-word models, 16 emitting-states with 3 components per state.

• Two forms of MFCC parameterisation investigated HTK and ETSI based

• Noise estimated in a ML-fashion for each utterance using:

1. initial noise model from first and last 20 frames
2. hypothesis estimated using compensated models with initial noise model
3. ML noise models estimated using hypothesis and 1 EM iteration
4. recognition results based on ML noise model

• Steps (2) and (3) may be repeated for improved noise estimation

Cambridge University
Engineering Department

24



Model-Based Approaches to Robust Speech Recognition

HTK-Based VTS and SVM Rescoring Performance

System Test Set
A B C

VTS 9.84 9.11 9.53
+SVM 7.52 7.35 8.11

WER (%) averaged over 0-20dB

• VTS used (γ = 1)

• SVM rescoring used ε = 2

• Large gains using SVM
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• SVMs trained on subset of multi-style data - test set A N2-N4, 10-20dB SNR

– Noise-independent SVM performs well on unseen noise conditions

• Graph shows variation of performance with ε - ε = 0 better than VTS
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VTS results on Aurora data: HTK and ETSI Front-ends

SNR Set A Set B Set C
(dB) HTK ETSI HTK ETSI HTK ETSI

20 1.69 1.60 1.46 1.38 1.57 1.63
15 2.36 2.26 2.37 2.23 2.47 2.38
10 4.39 4.27 4.12 3.91 4.49 4.40
05 11.20 10.52 10.05 9.13 10.69 9.64
00 29.55 28.00 27.54 25.95 28.41 26.05

Avg 9.84 9.33 9.11 8.52 9.53 8.82

• ETSI Front-end (ES 201-108) performs better in all condition (but C-20dB)

• Main differences: cepstrum liftering, channels number

– need to check ETSI performance on more realistic task - Toshiba data
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VTS and SVM-Rescoring results using ETSI Front-end
• Possible to tune mismatch function for task (previously used γ = 1)
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System Test Set
A B C

VTS 9.33 8.52 8.82
+ γ-opt 8.39 7.98 8.16
+SVM 6.99 6.80 7.35

WER (%) averaged over 0-20dB

• SVM rescoring yields further gains

– ε = 2 works well

• Graph shows average performance on test set A as γ varies

– power-combination γ = 2 is poorer than magnitude-combination γ = 1
– additional gains possible using γ = 0.75
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Toshiba In-car Task
• TREL-CRL04 small/medium sized recognition task

– Speech collected in the office and in vehicles (idle, city, highway)
– 3 test sets: phone number, city name and command & control

• Vehicle conditions and phone number test set only considered

– 30 English speakers (15 male, 15 female) uttering 30 sentences each
– 35, 25, 18 SNR averages for the idle, city, highway condition, respectively

• Training data from WSJ SI284 to train clean acoustic models

– 284 speakers for 66 hours of speech data
– Acoustic models: decision tree clustered states, cross-word triphones,

HTK-based MFCC features
650 states, ≈7k components

– γ = 1 used - no performance gain with γ = 0.75, better than γ = 2

• Multi-style models trained from clean models using SPR retraining

– WSJ SI284 corrupted using in car recordings from SpeechDat and Toshiba

Cambridge University
Engineering Department

28



Model-Based Approaches to Robust Speech Recognition

VTS/JUD Performance on the Toshiba Data

Comp Iter
WER%

ENON CITY HWY

VTS
0 3.35 8.87 13.11
1 1.24 3.09 3.78
2 1.37 2.65 3.15

JUD
0 3.37 8.94 14.11
1 1.29 2.98 4.62
2 1.42 2.53 4.07

Performance on phone-number task with VTS supervision iteration - JUD 64 base-classes

• 20+20 frames initial decoding significantly better than unadapted system

– ML estimation of noise gives additional large gains over initial model
– further gains from improved hypothesis possible

• JUD uses approximately 1/100th “VTS” compensations

– slight performance degradation at lowest SNR (HWY)
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SVM Rescoring on the Toshiba Data

System
VTS WER (%)
iter ENON CITY HWY

Clean — 3.85 31.81 66.18

VTS
1

1.24 3.09 3.78
+SVM 1.25 2.60 3.17

VTS
2

1.37 2.65 3.15
+SVM 1.31 2.14 2.48

MST — 2.71 6.82 27.50

Performance on phone-number task with SVM rescoring

• SVM rescoring shows consistent gains over VTS compensation

– larger gains for lower SNR conditions (CITY and HWY)

• Multi-style trained system performance using MFCC 0 D A not impressive

– significantly better using MFCC E D A Z - WER 7.55% for HWY
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Incremental Adaptation Experiments

• Batch-mode adaptation introduces latency into decoding process

– for some tasks, e.g. in-car command/control, need to minimise latency
– many tasks require multiple interactions over a short period

• Incremental adaptation introduces no latency:

1. using current transform recognition new utterance
2. accumulate statistics from new utterance/hypothesis
3. estimate new transform to recognise next utterance

• Minimal changes to code required

• Toshiba in-car task recorded in speaker-session

– subset of speakers where all data from session used
– task “artificial” - no-one cares about speaking multiple phone numbers!
– but suitable to get an idea of what is going on
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Incremental Adaptation on the Toshiba Data

System
Condition WER (%)

ENON CITY HWY

VTS 1.22 3.06 4.11
+CMLLR 0.51 2.67 3.38

JUD 1.10 2.86 5.42
+CMLLR 0.50 2.30 3.59

PCMLLR 1.21 2.93 6.14
+CMLLR 0.50 2.30 3.65

Combined incremental predictive and adaptive compensation - JUD/(P)CMLLR 64 base-classes

• For contrast: HWY VTS iteration 1 batch performance WER 3.82%

– degradation for using incremental
– “forgetting factor” can yield slight improvement

• Combining predictive and adaptive transforms yields performance gains
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Conclusions

• VTS robust to different noise conditions and on different tasks

– AURORA 2: various (including very low) SNR artificial data
– Toshiba in-car data: real data

• JUD can get close to VTS performance

– number regression classes approximately 1/100 the number of components

• γ optimisation results not consistent between AURORA 2 and Toshiba data

– but γ = 1 seems better than γ = 2, also observed on noise corrupted RM

• SVM rescoring experiments perfomed on AURORA 2 and Toshiba tasks

– good preliminary results for small vocabulary experiments
– can also be used for larger tasks - “acoustic code-breaking”

• Combining “adaptive” and “predictive” approaches can be useful
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