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ABSTRACT

The vast majority of HMM-based speech recognition systesas u
Gaussian mixture models as the state distribution modet. uBle
of these distributions is motivated more by ease of trainilegod-
ing and the fact that a sufficient number of Gaussian comgsnen
may be used to approximate any distribution, than some yader
ing aspect of the data being modelled. If distributions wese
lected that better modelled the observed data, fewer coemisn
should be required and recognition accuracy should improkes
paper examines two distributions for improving the modelof
the tails of the densities. The first distribution, the Restdistri-
bution, fits within the general framework of Gaussian congodn
tying, but has some attractive attributes for decoding. 3ée
ond distribution, the power exponential, does not fit withitying
framework. Despite gains in likelihood, indicating that tBaus-
sian components are sub—optimal in a likelihood sense,smabjl
gains in recognition performance were observed on a largabro
ulary speech recognition task.

1. INTRODUCTION

Modelling of the statistical distribution of acoustic dasacom-
monly done using Gaussian mixtures. A notable exceptiohilips’
speech recognizer whose densities are mixtures of Lapka§ia.
However, examining the histograms of a single dimensiorhef t
acoustic data assigned to a particular state of a speecgniéoco
system, there are three notable features that are digtinoti—
Gaussian. Some histograms are skew—symmetric, peakier
typical Gaussians and have tails that taper off at a slowerthan
for a Gaussian tail. Despite these limitations, mixture$Gaftis-
sians perform well in speech recognition experiments.dfrtiod-
elling of the tail, peak or skewness of the distribution ipmved

the performance of the recognizer may be expected to improve
One option to improve modelling is to increase the number of

Gaussian components in the mixtures. However, this draaibti
increases the total number of parameters in the speechnieeag
It would be desirable to improve the density model withowtsdr
tically changing the number of parameters. This paper mepo
two different distributions to improve modelling of theltaf the
distributions, the Richter distribution and the power exguatial
distribution. Both the proposed distributions are symingo
they do not address the skew—symmetric problem.

First, the Richter distribution is examined. This class isf d
tributions was first suggested by Alan Richter in [7], and was
ferred to as the Richter distribution in [3]. The Richtertdisution

is a mixture of Gaussians where all the means are equal and the

covariance matrices are multiples of each other. This mayohe
sidered as a particular form of Gaussian mixture paramgieg.t

tha

A Richter distribution consisting ol Gaussians will only have
2R — 2 parameters in addition to parameters describing a single
Gaussian. Despite the small increase in memory and computa-
tional load Richter distributions have fallen out of favaompared
with more standard tying schemes. Second, the power exfiahen
distributions is considered. A power exponential disttitou is a
distribution for which the exponent of a Gaussian is raisea t
power possibly different from that of the Gaussian. Fordgugw-
ers the power exponential distributions become incresimgre
like a uniform distribution whereas for small powers thetrilisi-
tions have sharp peaks and heavy tails. In the case of snvedirpo
special care must be taken when estimating the means, vasian
and mixture weights [2]. The power changes the behavior ®f th
tails drastically, but adds only one parameter to that ofnglei
Gaussian. The increase in memory requirements is therefoad,
whereas the computational load is somewhat larger.

This paper details re—estimation formulae for training HMM
based speech recognition systems with both Richter andrpowe
ponential components. In addition, equations for adaiatyter
distributions using linear transformations are describEae per-
formance of the two systems are then compared with apptepria
Gaussian component systems on the 1997 Hub4 partitionég eva
ation test set.

2. RICHTER DISTRIBUTIONS

One scheme for improving the tail distribution modellingdsise
the class of distribution described by

floiu, 2, p(v)) = //\/(0; 1, v°E)p(v)dv 1)

wherep(v) is a probability density function, i.ep(v) > 0 and
[ p(v)dv = 1. ltis simple to see that this form of distribu-
tion is a generalisation of the standard Gaussian distobuthere
p(v) = 61(v), dv, (v) is the Kronecker delta function. This class
also includes the Cauchy distribution as another standese. By
appropriately modifying the distribution efit is possible to alter
both the tails and the 'peakiness’ of the distribution. Ihgf EM
scheme is described for ML estimatesuoind X that does not re-
quire explicitly obtaining the distributiop(v), which remains un-
altered during training. The discrete version of (1) wasdbsd
in [7]. Herep(v) = > wrby, (v) With w, > 0,y w, = 1.
Then

Floi 1 Z,p()) = > wN (03 ,07S) . 0
In addition to giving the formulae for calculating theand X,
formulae are given for ML estimates for the discrete disttitn



of v are described. This form of distribution was used in [3] for and

discrete speech modelling, though in the experiments itestr

the discrete distribution of was determined a priori rather than

trained from the data. )
For large vocabulary speech recognition systems multipless Z]M(P) o T (1)

sian components are typically used to model each state. pBhis

per therefore considers the Richter mixture case where stath where

is modelled by a mixture of Richter components
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Furthermore it has become very commontit® parameters to-
gether, thus reducing the number of parameters to be stmgkd a -
increasing the robustness of the parameters estimatelte Batme i () = (o(r) — a™)" BT (o(r) - 4™)
fashion itis possible to tie the Richter distribution paetensw ("™
andv(™ over many Richter distributions.
W (7) = (o(r) = ™) (o(r) — 4T . ©)

M®) s the set of components sharing the same Richter parame-
ters,p., is the Richter class of component, d is the dimension-

ality of the observation vectas(r) andyﬁm)(r) is the posterior
probability of being in Richter componemrtof componentn at
time 7 and S(™ is the set of components in the same state as
; m. Formulae (4)—(7) yield an iterative estimation schemeesin
10 / S the mean and the variance are a functionw§P, which itself is
[ ] a function of the estimates of the mean and variance. The suffi
[ \ ] cient statistics for this operation are the occupancy, sathsaim
’ ' squared of the feature vector for each Richter distributibeach
W 9 component. Thus if there afd components an& Richter distri-
e e R I S o butions per component, the equivalent\dfx R components must
be stored. An alternative to this and the one used in thisrpape
Figure 1. The log—likelihood of a Gaussian distribution and  €ither update the Richter distribution parameters or thensand

Richter distribution using global Richter weights and swafac- variances. In this case it is only necessary to store pagamat
tors obtained from the Hub4 training data, '— indicates the the Richtertying level or the component level.
Richter distribution, - -’ indicates the Gaussian distriion.

Figure 1 shows a comparison of the log-likelihood of a four 2.2. Likelihood Calculation

Richter component distribution and the equivalent Gausdia- One of the reasons for using Richter distributions rathen thd-
trioution. Globally tied Richter distribution parametavere ob- ditional Gaussian components is the efficiency of the liiaid
tained using the Hub4 training data. The tails of the Ricliter calculation. The likelihood of an observation coming fromaa-
trioution are longer than those of the Gaussian distrilutidhis ticular component is given by

indicates that, at least in a likelihood sense, the Gaussiarpo-
nents are sub—optimal.

(m) (y
Lo(r);m) =Y b™ exp ( ngnf)z)) :

2.1. Parameter Estimation mr
The following re—estimation formulae, which are slightlpdified ) ) )
versions of those presented in [3], are used whereq™ (1) is a function of the component;, and observation
(m)
() T _
oy 2anr g 0(7) ¢ (1) = (o(r) = ™) =™ (o(r) — ™) (10)
S o “
Z” o{pm)2 andb{™ is a function of the Richter componentbut independent
of the observation
(m) ~
r (7)) m
o\ (m) D Z(pm)z W (r) 1 wm
E " = - (m) ’ (5) bsm) = 2 b
ZT,T ryr (T) \/2dﬂ-d|det2(m) | \/'US‘m)Qd
¥ ,y(m) (T)q(m) (1) The main additional cost is therefore in the log—add oveRicéter
P2 — M®) - T 7 (6) components. This may be ignored if a max of the components is

A piw - W (1) taken, rather than the sum.



2.3. Adapting Richter Distributions

It is also common to use linear transformations to adapt imode
parameters to be more representative of a particular speakke
acoustic environment. A variety of linear transformatiams re—
estimation formulae are described in [5]. Modifying thesarfu-

lae to handle Richter distributions is trivial. The main rifiwd-

o o (m) )
tion is to deal with?=—Z) rather than the standard posterior com-

L2
ponent probability. As an example the estimation formulae f
the transformA in maximum likelihood linear regression, where
Richter components are used, is

a; =kWGg" (11)
where
" _ WT) ) pomyr 2
G = Z e s S (12)
M,r,r T 9
and
(4) %(nm)(T) (m)T
K= st ailn) - (13)
M,z " g

Similarly modifications to the variance adaptation forneukre
possible.

3. POWER EXPONENTIALS

Consider the class of densities

f03 1,2, @) = paldetS| ™% exp(—(vaq)™?),  (14)
where
g=(0-p)'=(o—p), (15)
_I'B/a)
> = T1/a) (16)
and )
_ aFj(S/a). 17
rz (1/a)

This class was recently suggested and studied in [2]. Thalbne
mensional case appears to have first been suggested by Bubbot
[8]. The class (14) will be referred to as the the power exptiak
distribution. It is also known as the error function, p—Gsass or
asa—Gaussians.

Following (3) a model is considered where each state in the
system is modelled by a mixture of power exponential digtidn,
ie.

L) =Y w™ f(o;u™, =™ ™). (18)

It is worth noticing that the class of functions described14)

is not a subset of the class described in (1). Power exp@enti
distributions can not in general be modelled with Richtstrithu-
tions. This fact can be verified by noticing that functionghie
class (1) are all log concave, whereas the power expongrtial
not log concave fofl < o < 1. This makes the framework of [6]
unsuitable for parameter update fok o« < 1.

The power exponential distribution for 4 different powersa
14 T
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Figure 2: The power exponential function for various valogs.

3.1. Parameter Estimation

The estimation formula fow ™ is identical to the standard HMM
re—estimation formulae. Update formulae fdf and=(™ are
suggested in [2]:

) _ Lo A" () (¢ (T))a(mmfl o(7) (19)
' > () (g (T))a(’">/271 )
and
a(m) _ < m
s _ 2@ @ @) W) (20)

>, m(r) ’

whereq™ (1) is defined in equation (LOW ™) (7) in equation
(9) and~(™) () is defined to be the posterior probability of being
in the power exponential componemntat timer. It is not known
that the overall likelihood is guaranteed to increase withupdate
given by (19)—(20), but numerical evidence suggests tlgigiso.
Special consideration fdr < o < 1 is suggested in [2]. The
powersa!™ can either be fixed on a global level or they can be
updated according to the formula given in [2]:
&M =

(21)
argmax., Z 'y(m) () log (f(o(r); ﬂ(m)7 E”;(m)7 a))

With this update ofr(™ the likelihood is guaranteed to increase.
Figure 3 shows the distribution of estimated on a per component
case. The mean of the valueswfis approximately one. Itis in-
teresting to note that the Gaussian component equivalgraveér
exponential components, = 2, occurs infrequently. Again, this
indicates that Gaussian components are sub—optimal inel-lik
hood sense.

Currently adaptation of power exponentials have not been in
vestigated.

4. RESULTS

The two forms of modified tail distribution modelling wereves-
tigated on the 1998 Hub4 partitioned evaluation test set.0A 6
dimensional LDA based front end was used. The LDA was based
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Figure 3: The distribution of powersy, after training using (21)
on the Hub4 1997 data.

on splicing 9 time frames of 24 dimensional Cepstra, inclgdh.

A context dependent state—clustered allophone system wilis b
on the broadcast news training data. More details of theatedt
language model setups are given in [4].

System Error Rate (%)
FO | F1. ] Avg
base & = 2) 11.8| 229 26.1
a=1 11.5| 23.0| 25.5
EM update for || 11.9 | 22.6 || 25.4

Table 2: Results for the power exponential distribution culset
of the Hub4 1997 partitioned evaluation test set

5. CONCLUSIONS

This paper has described two schemes for improving the itil d
tribution modelling in an HMM—based speech recognitioressh.
Though both schemes indicate that Gaussian componentstare s
optimal in a likelihood sense, they yielded only small reihrs

in word error rate. Though disappointing in terms of redursi

in word error rate, the results indicate that using altéveatto
Gaussian components for speech modelling may be usef@s{nv
tigating other distributions may give reductions in the everror
rate. In particular both distributions investigated irstpaper are

The baseline system for the Richter components had a total ofsymmetric, still requiring multiple components to modey aon—

about 135,000 components. A 4 distribution Richter compbne
system R=4) was initialised using the means and variances of the
baseline system. In preliminary experiments the best,ghamot
significantly so, system was found to be one with the Rich&er p
rameters tied at the state level. This is the one considerttese
experiments. Table 1 shows the comparison of a Richter myste

System Error Rate (%)
FO [ FL. [ Avg
base 11.6 | 185 18.7
base+adapt | 10.1 | 17.0 || 16.4
Richter 11.3]| 18.1 || 184
Richter+adapt|| 10.1 | 16.9 || 16.3

Table 1: Results on the Hub4 1997 partitioned evaluationstts

and the equivalent baseline system. The adaptation scheate u
in both was a global mean and full variance transform deedrib

in [5]. This was applied in an unsupervised batch adaptatiode.
Using Richter components showed a small gain in performance
over the standard Gaussian components. After adaptatopeth
formance of the two systems was almost indistinguishable.

The experiments using power exponential components used[6]

a modified baseline system consisting of approximately Q(ED,

Gaussians. The test was performed on a subset of the 1997 par-

titioned evaluation that was used for development [4]. Fina
smaller language model than for that of the tests with théateic
distribution where used, thus degrading the performancéhi®
spontaneous speech category, F1, and for some of the mere dif
ficult conditions, F2—FX. Two power exponential systemsever
built. The first used a fixed value of™ = 1 for all components,

symmetric attributes of the data. Explicit non—symmetigtribu-
tions may be an interesting avenue of investigation.
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motivated by figure 3. The second system used a per—component

value ofa™ obtained using equation (21).

Table 2 shows the performance of the various power exponen-
tial systems. Again only small reductions in word error natre
observed using the improved tail modelling.



