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Summary

State-of-the-art speech recognition systems are based on statistical techniques and use hidden

Markov models (HMMs) as acoustic models. These acoustic models are trained from a large

amount of speech data usually collected from a large number of speakers and in different

acoustic environments. The training data contains both the desired variabilities for speech

recognition as well as unwanted variabilities from speakers and the environment. Adaptive

training plays an important role in building acoustic models from such non-homogeneous data.

In adaptive training, speech and non-speech variabilities are separately modelled through

canonical HMMs and adaptation transforms. The transforms are applied to HMM parame-

ters to obtain an adapted acoustic model for a particular speaker or acoustic environment.

In state-of-the-art systems, though HMMs are usually trained using discriminative criteria

such as minimum phone error, the transforms for unsupervised adaptation are still obtained

through maximum-likelihood (ML). This is because discriminative transforms are highly sen-

sitive towards errors in the supervision hypothesis. In this thesis, adaptive training based

on discriminative mapping transforms (DMTs) has been proposed. A DMT is a speaker-

independent discriminative transform which maps speaker-specific ML transforms to discrim-

inative ones. As DMTs are estimated during training, they are not affected by errors in

the supervision hypothesis. Therefore, the proposed scheme can be used in unsupervised

adaptation tasks when the supervision hypothesis is not known. The DMT-based discrimi-

native speaker adaptive training (DSAT) was found to significantly outperform the standard

MLLR-based DSAT scheme.

The trained acoustic models are adapted for the test speaker or environment to reduce

the mismatch in training and testing and improve the performance of the system. Linear

transform-based speaker adaptation is a standard part of many speech recognition systems.

This process requires some adaptation data from the test speaker or environment. However,

for online adaptation in many real-time applications, there may be only a small amount of

adaptation data available. This may not yield robust estimates of the transforms. A Bayesian

framework can be used to deal with this problem, which treats transforms as random vari-

ables and uses prior distributions for them. However, it leads to intractable integrals for the

marginal likelihood and some forms of approximations are required. An expectation propa-

gation based Bayesian inference scheme has been proposed in this thesis to approximate the

marginal likelihood. It was found to give very accurate estimates of the marginal likelihood,

compared to other lower-bound approaches. However, the method was found to be too com-

putationally expensive to be applied to large vocabulary continuous speech recognition. The

Bayesian framework is further extended for discriminative criteria in this dissertation. This
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reduces the hypothesis bias problem of discriminative transforms and gives robust estimates

for them even with a limited amount of data. Various forms of approximations required for dis-

criminative adaptive inference are investigated in this work, including maximum-a-posteriori

(MAP) estimation. The MAP estimation of discriminative transforms requires optimisa-

tion of a discriminative MAP objective function. The use of the reverse-Jensen inequality,

weak-sense auxiliary functions and other gradient-based optimisations is investigated for the

discriminative MAP estimation. In an alternative approach, DMTs are integrated into the

Bayesian framework as well which improved the performance compared to other commonly

used techniques for online adaptation.

The proposed methods were evaluated on an English conversational telephone speech

(CTS) task.

Keywords: speech recognition, HMMs, adaptive training and adaptation, discriminative

criteria, Bayesian inference, maximum-a-posteriori estimation, expectation propagation
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SD Speaker Dependent
SI Speaker Independent
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Notation

General Notation
≈ approximately equal to
∝ proportional to
s scalar quantity (lowercase plain letter)
v vector quantity (lowercase bold letter)
M matrix (uppercase bold letter)
MT transpose of matrix M
| · | determinant of a square matrix
{·}−1 inverse of a square matrix
diag(·) diagonal vector of a square matrix
tr(·) trace of a square matrix
vec(·) vectorised form of a matrix

Functions
F(·) objective function or training criterion
Q(·; ·) auxiliary function at the current estimates of parameters
∇{·} gradient of a function
∇2{·} Hessian of a function
L(·) lower bound of a function
f(x)

∣

∣

x=x̂
value of function f(x) at x = x̂

arg max
x

f(x) value of x that maximises f(x)

arg min
x
f(x) value of x that minimises f(x)

Probability Distributions
p(·) probability density function
p(·|·) conditional probability density
P (·) probability mass distribution
P (·|·) conditional probability mass distribution
KL(·||·) Kullback Leibler (KL) divergence between two distributions
H(·) entropy of a distribution
< f(x) >g(x) expectation of f(x) with respect to g(x)

N (x;µ,Σ) Gaussian multivariate distributions of x
δ(x) Dirac-delta function which is zero at x 6= 0
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HMM Parameters
M HMM parameters set
H hypothesis, or word sequence {W1, . . . ,WK}
ot observation vector at time t
D dimension of feature vector ot
O observation sequence O = {o1, . . . ,oT }
aij discrete state transition probability from state i to state j
bj(o) output probability distribution at state j
ψt state at time t
ψ state sequence ψ = {ψ1, . . . , ψT }
θt Gaussian component at time t
θ Gaussian component sequence θ = {θ1, . . . , θT }
m Gaussian component index
µm mean vector of the mth Gaussian component
Σm covariance matrix of the mth Gaussian component
γm(t) posterior probability of component m at time t

Adaptation and Adaptive Training
s index for a speaker or a homogeneous data block

O(s) observation sequence for homogeneous data block s

H(s) hypothesis for homogeneous data block s

W(s) transform for homogeneous data block s

O a set of observation sequences O = {O(1), . . . ,O(S)}
H a set of hypothesis sequences H = {H(1), . . . ,H(S)}

W a set of transforms W = {W(1), . . . ,W(S)}
A linear transform matrix
b bias vector
W affine transform, W = [A b]
rm regression base class to which component m belongs
ξm extended mean vector of component m, ξm = [µT

m 1]T

ζt extended observation vector at time t, ζt = [oTt 1]T

Φ hyperparameters for the HMM parameter prior distribution
φ hyperparameters for the transform prior distribution
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CHAPTER 1
Introduction

The aim of automatic speech recognition (ASR) systems is to transcribe speech into

words. As speech is a natural mode of communication for human-beings, automatic

speech recognition is finding numerous uses in building human-machine interfaces. It has

a wide range of applications in several domains including command-and-control, dictation,

medical transcription, information retrieval, dialogue systems, audio indexing and speech-to-

speech translation [73].

State-of-the-art speech recognition systems are based on statistical approaches to learning

acoustic and linguistic characteristics from the training data. Two forms of statistical model

are involved in the recognition process: the acoustic model and the language model. Hidden

Markov models (HMMs) are widely used as acoustic models in these systems which are

trained from a corpus of speech data [145]. The acoustic models along with the language

models are then used to recognise the word sequence in the test speech signal. However,

when the test speech is from different speakers or acoustic environments than that of the

training corpus, the performance of speech recognition systems degrades severely [72]. This is

due to the mismatch between the training and the testing acoustic conditions. One approach

to deal with this mismatch is to adapt the acoustic models to the target speaker or acoustic

environment. This is usually referred as speaker adaptation [40, 73]. Linear transforms are

widely used to adapt HMM parameters [152, 189]. They are estimated from the sample speech

1



CHAPTER 1. INTRODUCTION 2

from the target speaker and the corresponding supervision transcripts.

Moreover, rather than using speech data recorded in a well-controlled environment for

training, there has been an increasing interest to build speech recognition systems with found

data, such as broadcast news and telephone speech recordings. Such found data often has

varying acoustic conditions and comes from a large number of different speakers. One of the

techniques to deal with the training of speech recognition systems with such non-homogeneous

data is adaptive training [5, 44], in which speech and non-speech variabilities are separately

modelled. This allows the underlying speech models to be extracted from such data.

The training of acoustic models in state-of-the-art speech recognition systems is commonly

based on discriminative criteria such as minimum phone error (MPE) [140]. The use of dis-

criminative criteria in training has been found to improve the performance of ASR systems

significantly compared to using the conventional maximum likelihood criterion [140]. Hence,

the use of discriminative criteria has also been investigated for transform estimation for model

adaptation [63, 118, 171, 175, 182]. Though discriminative transforms can give performance

gains for supervised adaptation, they are seldom used for unsupervised adaptation for which

the correct transcript is not known. This is because the generated hypothesis used as su-

pervision may contain several errors, and the discriminative transforms are highly sensitive

to errors in the supervision hypothesis as they are biased towards it. Though the confi-

dence score and lattice based approaches [182, 202] have been investigated to deal with these

problems, only limited, if any, gains are obtained. Recently, discriminative mapping trans-

forms (DMTs) [202] have been also successfully applied in these situations giving improved

performance.

In many cases in real-life applications of speech recognition, the models are required to be

adapted as soon as data becomes available. The adaptation and decoding process cannot be

delayed, as the application requires responding in real or near real time. In this case, there

may be only a small amount of data for transform estimation. This may not yield a robust

estimate of transforms for adapting the models. A maximum-a-posteriori (MAP) estimation

method has been used in [21, 22, 57, 77] to deal with this problem, and to robustly estimate

maximum likelihood transforms even with a small amount of adaptation data. Similarly, an

N-best list based instantaneous unsupervised adaptation scheme has been used in [114, 129]

that uses MAP estimates of mean bias. The N-best list based scheme can also deal with the

errors in the supervision hypothesis. An N-best list based Bayesian framework for maximum

likelihood affine transforms has been investigated in [201] for the unsupervised instantaneous

adaptation. A number of other techniques including cluster-based methods have been also

developed to deal with this problem as reviewed in [152, 189]
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This thesis focuses on these issues of adaptation and adaptive training of acoustic models

in large vocabulary continuous speech recognition (LVCSR) systems. The goal is to build a

robust acoustic model from the found data and to improve the performance of the system by

adapting it to the test speaker and/or acoustic environment. The discriminative and Bayesian

approaches will be investigated to achieve these goals.

1.1 Organisation of the Thesis

This thesis is organised as follows. Chapter 2 describes a standard HMM-based automatic

speech recognition system along with the training and decoding algorithms as well as some

of the widely employed techniques in the state-of-the-art systems. Commonly used tech-

niques for adaptation and adaptive training of acoustic models are reviewed in chapter 3. In

chapter 4, discriminative adaptation and adaptive training techniques are investigated and a

new approach for adaptive training based on discriminative mapping transforms is proposed.

Thereafter, chapter 5 first reviews earlier work on Bayesian adaptive training and inference for

maximum-likelihood systems, and then proposes an expectation-propagation based inference

scheme. In chapter 6, a Bayesian framework for discriminative adaptive training and inference

is investigated. The inference schemes in discriminative adaptive systems are described, along

with several approximations for the Bayesian inference in discriminative systems. Bayesian

discriminative adaptation and inference based on MAP as well as DMT are also proposed.

Subsequently, chapters 7, 8 and 9 evaluate the proposed methods and present results from

speech recognition experiments on a conversational telephone speech (CTS) task. Finally, the

thesis is concluded in chapter 10, with a summary and a discussion of future work.



CHAPTER 2
HMM-based Speech

Recognition Systems

This chapter describes a statistical speech recognition system based on hidden Markov

models (HMMs). The architecture of a large vocabulary speech recognition system is

first described showing its basic building blocks. This is followed by a detailed description

of each unit of the speech recognition system including frontend processing, the acoustic and

language models, and the decoder. Several techniques that are used for training of acoustic

and language models in the state-of-the-art speech recognition systems are also described.

2.1 Automatic Speech Recognition Systems

The task of a speech recognition system is to recognise the word sequence present in a speech

waveform. A block diagram of a statistical speech recognition system is shown in figure 2.1.

The speech signal captured from a microphone is first converted into a stream of acoustic fea-

tures by a frontend processing module. This is then decoded by using the knowledge obtained

from acoustic and language models, and a dictionary or lexicon to produce hypotheses for

the recognised words. The output hypotheses are also commonly used to adapt the models

to the test environment and domain, and redecode the given speech.

4
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Recognised Words

Adaptation
Language

Models
Acoustic
Models

Processing

Lexicon

Speech

Decoding
(Inference)

"you said ..."
Frontend

Figure 2.1: A block diagram of an automatic speech recognition (ASR) system

A statistical speech recognition system finds the most probable word sequence or hypoth-

esis Ĥ for a given speech observation sequence O. This can be expressed as

Ĥ = arg max
H

{

P (H|O)
}

(2.1)

The posterior probability of the hypothesis in the above equation can be expressed in terms

of the class conditional probability and the prior, by applying Bayes’ rule

Ĥ = arg max
H

{

p(O|H)P (H)

p(O)

}

= arg max
H

{

p(O|H)P (H)
}

(2.2)

The normalisation constant in the denominator, p(O), has been dropped as it does not depend

upon a particular hypothesis H, and thus does not alter the search for the best hypothesis.

In the above equation, p(O|H) is the likelihood of the observation sequence O for the given

hypothesis H, and P (H) is the prior probability of the hypothesis. The likelihood p(O|H) is

computed by using the acoustic model and P (H) is obtained from the language model. The

decoding process in a statistical speech recognition system thus involves finding a hypothesis

using the acoustic and language model scores that maximises the posterior probability for the

given observation sequence.

The focus of this thesis is on adaptation and adaptive training of acoustic models as well as

the decoding or inference process in the speech recognition system. The next sections describe

each block of the speech recognition system shown in figure 2.1 in detail. The adaptation and

adaptive training of acoustic models is separately described in the next chapter.

2.2 Frontend Processing of Speech

The first process involved in a speech recognition system is to convert the speech signal

captured by a microphone to an appropriate form that is compact and effective for the recog-

nition process. The analog speech signal is first digitised and relevant segments of speech

figure/asrsysv8.eps
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excluding unwanted music or silence are isolated; and then a set of salient features are ex-

tracted. The frontend processing of speech may involve preprocessing, feature extraction and

postprocessing stages, as described in the following sections.

2.2.1 Speech Preprocessing

In an automatic speech recognition system, the speech signal from the microphone is first

digitised by an analog-to-digital converter (ADC). A sampling frequency of 8kHz or 16kHz is

commonly used for speech recognition. This yields a stream of samples of the speech signal.

In many cases, resampling and format or encoding conversion may be also required for further

processing, specially for prerecorded speech. All of the samples may not be relevant for the

speech recognition purpose, as some of the segments may be just long silence, noise, music

interludes or commercials [163]. Therefore, only the relevant speech segments are isolated

from the stream, through a process called segmentation, which are then passed for feature

extraction.

2.2.2 Feature Extraction

Mel-frequency cepstral coefficients (MFCC) [26] and perceptual linear prediction (PLP) coef-

ficients [66] are commonly used speech features in state-of-the-art speech recognition systems.

In both types of feature extraction, the stream of samples from the speech signal is divided

DFT

Windowed 
Speech

Spectrum

Mel Filterbank
log DCT xt

∆xt

∆2xt

∆3xt

52-dimensional
Feature Vector ot

Speech 
Waveform

Figure 2.2: The MFCC feature extraction of speech signal

figure/frontend.eps
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into a series of quasi-stationary segments usually referred as frames. These frames are ob-

tained by applying an overlapping windowing function to the stream of speech samples. A

typical window of 25ms to 30ms width, usually shifting in 10ms step, is used for speech recog-

nition [73]. A Hamming or Hanning window function is commonly used to attenuate the

discontinuities at the edge of the window to reduce the Gibbs effect [73]. A Fourier trans-

form is then applied to the samples of each frame window, and the frequency domain power

spectrum for the frame is obtained.

For computing MFCCs [26], the linear frequency scale is warped into a Mel-frequency

scale, using

fmel = 1125 log

(

1 +
fHz
625

)

(2.3)

where fmel is the warped Mel-scale frequency of the linear scale frequency fHz. The power

spectrum is then down-sampled using a bank of triangular filters, with typically 24 to 40

channels [73]. The calculation of Mel filterbank coefficients involves multiplying each FFT

magnitude or power with a corresponding gain of the triangular filter and accumulating them.

Therefore, a Mel filterbank coefficient represents the weighted sum of spectral magnitude or

power in that filterbank channel. These Mel filterbank coefficients are transformed to the

natural log domain and a discrete Cosine transform (DCT) is finally applied giving Mel

frequency cepstral features

xtd =

√

2

B

B
∑

b=1

log(mtb) cos

(

πd

B
(b− 0.5)

)

(2.4)

where xtd is the dth cepstral coefficient for tth frame. mtb represents the Mel coefficient for

band b for the tth frame, and B is the total number of filterbank channels. The DCT allows

cepstral coefficients to be decorrelated and diagonal covariances to be used in HMMs. The

number of cepstral coefficients is usually limited to 13 [73].

In PLP [66] feature extraction, the linear frequency of the power spectrum is warped into

a Bark frequency scale as

fbark = 6 log





[

(

fHz
600

)2

+ 1

] 1
2

+
fHz
600



 (2.5)

where fbark is a Bark scale frequency. Critical band filters are applied to the power spectra

to downsample them, which are then scaled by using equal-loudness and intensity-loudness

power law. Finally, linear prediction (LP) analysis is applied and resulting LP coefficients

are converted to cepstral coefficients. In [195], a modified form of PLP features based on

MFCC filterbank analysis is used, which was found to be more effective than the standard
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PLP analysis. The Mel filterbank coefficients are scaled by an equal-loudness curve and then

compressed by taking a cubic root [196]. The resulting spectrum is used to compute LP

coefficients, which are then converted to cepstral coefficients. This type of PLP feature is also

referred as MF-PLP [195], and is used in this work.

Generally, energy and/or zeroth order cepstral coefficients are also used to augment the

feature vector. The coefficients obtained for each frame as described above are also called

static coefficients, and they do not account the temporal dynamics of the speech signal between

frames. One of the popular techniques for accounting temporal dynamics of speech is to

include delta coefficients [38]. The delta coefficients are computed as

∆xt =

∑K
k=1 k(xt+k − xt−k)

2
∑K

k=1 k
2

(2.6)

where 2K + 1 is the size of the regression window operating on the speech feature vector xt.

In the above equation, choosing K = 1 gives delta coefficients that are simple differences of

cepstral coefficients between two consecutive frames. However, higher values of K can give

more robust estimates of dynamic coefficients. The delta coefficients can be regarded as the

approximation to time-derivatives of the static parameters [48]. The second and the third

order delta coefficients can be also computed in a similar way, and appended to the speech

features. These coefficients are also called dynamic coefficients.

Therefore, a typical 13-dimensional MFCC or LPC cepstra including the energy or the

zeroth order coefficient may be augmented by first, second and third order derivatives leading

to a 52-dimensional observation vector

ot =









xt
∆xt
∆2xt
∆3xt









(2.7)

2.2.3 Feature Postprocessing

The ideal speech features should only capture the phonetic variabilities in speech, but not the

non-speech variabilities coming from speaker or acoustic environment variations. This allows

the underlying words in the speech to be recognised independent of speaker or environmental

variations. A number of techniques are used in the state-of-the-art speech recognition systems

to make speech features robust to speaker or environmental variations. The commonly used

feature normalisation techniques are described in the following sections.
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2.2.3.1 Cepstral Mean and Variance Normalisation

In cepstral mean normalisation (CMN) or cepstral mean subtraction [6], the observed cepstral

features are transformed to have a zero mean by subtracting the mean of the observation

features. This can be expressed as

ôt = ot −
1

T

T
∑

τ=1

oτ (2.8)

where oτ is the observation vector for frame τ , ôt is the normalised observation vector for the

tth frame after CMN and the mean is computed over T frames. CMN removes the bias in the

cepstrum that arises due to multiplicative noise coming from channel distortion or microphone

characteristics, and thus makes the features robust to slowly varying multiplicative noise.

This normalisation involves computing the average value of observation vector. In offline

recognition of speech, it can be computed easily over longer segments of speech. However, for

online recognition, only an utterance or a window of few frames is used. Similarly, cepstral

variance normalisation (CVN) normalises the variance of each dimension of the observations

to have unity variance. The normalised observations after CVN is given as

ôtd =
otd
√

σ2
d

(2.9)

where otd and ôtd are the dth dimension of the observation vector for the tth frame before and

after CVN, respectively, and σ2
d is the variance of the dth dimension of observations given as

σ2
d =

1

T

T
∑

τ=1

o2τd (2.10)

Both CMN and CVN are inexpensive to apply yet very effective in reducing the mismatch

between training and testing conditions by removing the environmental dependent variations.

They are widely used in state-of-the-art speech recognition systems.

2.2.3.2 Gaussianisation

CMN and CVN normalise the mean and variance of observations which are first and second

order moments. The higher order moments of the observation can be also normalised to give

it the desired distribution. The distribution of observations may not always be Gaussian.

Gaussianisation [153] normalises higher order moments by transforming ot using a nonlinear

function fg

ôt = fg(ot) (2.11)
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such that the transformed observation has normal distribution with zero mean and identity

variance

ôt ∼ N (0, I) (2.12)

The process of Gaussianisation is illustrated in figure 2.3. The source PDF is normalised to

have a Gaussian PDF by normalising the cumulative density function (CDF) of the observa-

tions to a CDF of a standard Gaussian. Gaussianisation can be obtained through an iterative
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Figure 2.3: The Gaussianisation of features (from [39])

scheme based on histogram matching [153] or a GMM based approach [53, 105]. The later

approach provides a more compact and smooth representation of the distribution of the orig-

inal observations by using GMMs. In this method, each dimension of the original observation

is represented by GMM. The source CDF is then mapped using the inverse Gaussian CDF

such that the source distribution is transformed to a Gaussian PDF. This can be written as

ôtd = Φ−1

(

∫ otd

−∞

Md
∑

m=1

cmd N
(

o; µmd, σ
2
md

)

do

)

(2.13)

where Φ−1(·) is the Gaussian inverse CDF, and µmd, σ
2
md and cmd are the means, variances

and weights of the GMM component m for dimension d. Gaussianisation can be applied at the

utterance, speaker or global level. At each level, a total of D single dimension Md-component

GMMs need to be trained using the ML criterion. When there is only one component in

GMMs, it is equivalent to applying CMN and CVN. As with CMN and CVN, it should be

applied both to training and test features.

2.2.3.3 Vocal Tract Length Normalisation

Differences between speakers is one of the main source of undesired variabilities in speech

recognition. One reason for this is the anatomical difference between speakers, such as vocal

tract length and shape. The vocal tract length is related to the formant centre frequencies.

Females and children have shorter vocal tract and thus produce higher formant frequencies,

figure/orig.eps
figure/cumulat.eps
figure/cumtgt.eps
figure/tgt.eps
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whereas male speakers have longer vocal tracts and produce lower formant frequencies. This

makes the same word differ in spectral content when spoken by male, female or just differ-

ent speakers, and adds unwanted variabilities to speech. Vocal tract length normalisation

(VTLN) [101] is a commonly used technique to remove this variability coming from varying

vocal tract length. In VTLN, the specific speaker’s formant frequency range is compressed

or expanded to the normalised frequency, using a warping factor α. This is usually achieved

by warping the frequency axis in the filterbank analysis before the features are extracted.

VTLN is thus a non-linear feature transform. The frequency warping in VTLN is illustrated

in figure 2.4, using a piece-wise linear warping function. It warps the original frequency f

into the scaled frequency f̃ using warping factors from αmin to αmax. As warping may result

in some filters being outside the analysis frequency range, different warping factors are used

at the upper and lower boundaries such that the end frequencies are mapped to themselves.

The regions for piecewise linear mapping are defined with lower (fL) and upper (fU) cutoff

frequencies.

~

αmin

α max

f

f

ff UL

Figure 2.4: Frequency warping by VTLN

The optimal warping factor is selected by maximising the likelihood of the warped ob-

servations. This is done through a grid search scheme [101, 144] by comparing likelihoods

at different warping factors. The VTLN can be implemented by direct frequency warping,

bilinear transforms [117], or it can be approximated through linear transformation in cepstral

space [139, 173]. VTLN is an effective feature normalisation technique and is commonly used

with other normalisation techniques in state-of-the-art speech recognition systems [32].

2.3 Acoustic Models

Hidden Markov models (HMMs) are the most popular and successful acoustic models used in

large vocabulary state-of-the-art speech recognition systems [40, 145]. An HMM is a finite-

figure/vtlnpiecewise.eps
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state machine, comprising a number of discrete states, with each state associated with an

output probability distribution, as shown in figure 2.5. As each time instant, when a state is

entered according to the defined transition probabilities between the states, the HMM gener-

ates observations according to the state output distribution. The underlying state sequence

is hidden, and only the observations can be seen. An HMM is a generative model, and the

speech observations are assumed to be generated from it by traversing through its states.

Speech
Parameters

2 3 4

State Output
Distributions

a12

a22

a23

a33 Transition
Probabilities

Speech

HMM

/k/ /aa/ /r/

1 5
a34 a45

a33

b1(ot) b2(ot) b3(ot)

ot

Figure 2.5: A hidden Markov model (HMM) as an acoustic model

An HMM is used to model one acoustic unit such as words or phones. However, sub-

word units such as phones are commonly used as the number of words increases in the

speech recognition system. The HMM shown in figure 2.5 is a left-to-right HMM widely

used in speech recognition. The filled node at the beginning and the end represent en-

tering and exit non-emitting states, whereas other non-shaded nodes are the states with

associated output probability distributions. The connecting arrows represent valid transi-

tions between states. The output probability distribution for state j is specified as bj(ot),

and the transition probability from state i to state j is aij. The state at time t is repre-

sented by ψt. The complete parameter set of an N -state HMM is characterised by model

parameters M = {π,A,B}, where π = {πi = P (ψ1 = i) : 1 ≤ i ≤ N} is the initial state

distribution, A = {aij : 1 ≤ i ≤ N, 1 ≤ j ≤ N} is the transition probability matrix, and

B = {bj(ot) : 1 ≤ j ≤ N} is the observation probability of the states. In the above HMM

topology with start and end non-emitting states, the initial state distribution is always one

for the start state and output probabilities distributions are not required for the start and end

figure/hmmspeech.eps
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states. The start and end non-emitting states facilitates joining HMMs together to form com-

posite HMMs representing longer speech segments. There are two key underlying assumptions

in HMMs when modelling speech [145]:

• First-order Markov process assumption:

The probability of making transitions to state ψt depends only on the last state ψt−1,

and is independent of the states at time 1, . . . , t−2. Therefore, the transition probability

from state i to state j is given by

aij = P (ψt = j|ψt−1 = i) (2.14)

• Output conditional independence assumption:

The probability of observation ot at time t is conditionally independent of all other states

and observations given the current state, ψt. In other words, the output probability

distribution can be expressed as

bj(ot) = p(ot|ψt = j) (2.15)

The output probability distributions bj(ot) may be discrete or continuous thus leading to

a discrete HMM (DHMM) or a continuous density HMM (CDHMM). However, most state-of-

the-art speech recognition systems are based on CDHMMs, and use a multivariate Gaussian

mixture model (GMM) as the output probability distribution. This can be written as

bj(ot) =

Mj
∑

m=1

cjmN (ot;µjm,Σjm) (2.16)

Mj
∑

m=1

cjm = 1 (2.17)

where Mj is the number of mixture components and cjm is the weight of mixture component

m for state j. The multivariate Gaussian distribution for each component is given by

N (ot;µjm,Σjm) =
1

√

(2π)D |Σjm|
exp

{

−
1

2
(ot − µjm)T Σ−1

jm (ot − µjm)

}

(2.18)

µjm and Σjm are the mean vector and the covariance matrix for the mth component of the

jth state, and D is the dimension of feature vectors. The covariance matrix is normally

assumed to be diagonal to reduce the number of parameters and increase decoding speed.

The above assumptions in HMMs imply that speech signal can be split into short sta-

tionary segments corresponding to the HMM states, and the transitions between states are
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instantaneous. However, the speech signal is continuous in nature rather than piecewise sta-

tionary and it also shows long-term dependencies. Therefore, the assumptions made are poor

for the speech signal, nevertheless, HMMs continue to be the most successful technique for

acoustic modelling in speech recognition. In order to use HMMs for speech recognition, there

are three fundamental issues to be addressed [145]:

• computing the likelihood of observations given the model

• estimating or training the HMM parameters

• decoding the most likely state sequence for a given observation sequence

The first two are described in the next section. Decoding with HMMs will be presented in

section 2.6.

2.3.1 Likelihood Calculation

The calculation of the likelihood of an observation sequence for a given hypothesis is an

important aspect in using HMMs as acoustic models. The likelihood of the observation

sequence O = {o1, . . . ,oT } can be computed given the state sequence ψ = {ψ1, . . . , ψT }, as

each of the observations is assumed to be generated independently given the state at that time

instance. However, the state sequence is hidden in the HMM, and therefore the likelihood

of an observation sequence O for a given hypothesis H is computed by finding the expected

likelihood over all possible state sequences

p(O|H,M) =
∑

ψ

p(O,ψ|H,M)

=
∑

ψ

P (ψ|H,M)p(O|ψ,M) (2.19)

Using the first-order Markov and conditional independence assumptions associated with the

HMM, the likelihood can be expressed as1

p(O|H,M) =
∑

ψ

∏

t

P (ψt|ψt−1)bψt
(ot)

=
∑

ψ

πψ0

(

T
∏

t=1

aψt−1ψt
bψt

(ot)

)

aψTψT+1
(2.20)

However, it is not feasible to sum over all possible state sequences as the number of paths

grows exponentially as O(NT ). Therefore, a recursive approach called the forward-backward

algorithm is used instead, by introducing forward and backward probabilities.

1In the form presented here, the observation time index t has been extended from 0 to T + 1 with hypo-
thetical observations at both ends to consider the non-emitting end states.
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Forward-Backward Algorithm

The forward probability αj(t) is defined by the probability of generating the partial observation

sequence up to t and being in state j at time t

αj(t) = p(o1, . . . ,ot, ψt = j|H,M) (2.21)

The forward probability can be defined recursively as

αj(t) =

(

N−1
∑

i=2

αi(t− 1)aij

)

bj(ot), 1 < j < N, 1 < t ≤ T (2.22)

with the initial and final conditions imposed as

αj(t) =







1 j = 1 t = 0
a1jbj(ot) 1 < j < N t = 1
∑N−1

i=2 αi(T )aiN j = N t = T + 1

(2.23)

The backward probability βj(t) is the likelihood of observing the partial observation sequence

from the time instance t+ 1 to the end

βj(t) = p(ot+1, . . . ,oT |ψt = j,H,M) (2.24)

The backward probability can be recursively estimated as

βj(t) =

N−1
∑

i=2

ajibi(ot+1)βi(t+ 1), 1 < j < N, 0 ≤ t < T (2.25)

with the constraints

βj(t) =

{

1 j = N t = T + 1
ajN 1 < j < N t = T

(2.26)

The likelihood of the observation sequence can be obtained either from the forward or the

backward algorithm as

p(O|H,M) = αN (T + 1) = β1(0) (2.27)

These forward and backward probabilities can be also used to compute the state occupation

γj(t), i.e., the probability of being in state j at time t, as

γj(t) = P (ψt = j|O,H,M)

=
P (O, ψt = j|H,M)

p(O|H,M)

=
αj(t)βj(t)

p(O|H,M)
(2.28)
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as from the definitions of the forward and backward probabilities

αj(t)βj(t) = P (O, ψt = j|H,M) (2.29)

They can also give transition posteriors χij(t), i.e. the probability of transitioning from state

i to state j at time t, as

χij = P (ψt−1 = i, ψt = j|O,H,M)

=
αi(t− 1)aijbj(ot)βj(t)

p(O|H,M)
(2.30)

These state posteriors are used in several algorithms including HMM training as described

below.

2.3.2 Maximum Likelihood Training of HMMs

In maximum-likelihood training of HMMs, the model parameters M are estimated by max-

imising the likelihood of the training data
{

O(1), . . . ,O(U)
}

as

M̂ = arg max
M

{

U
∑

u=1

log p(O(u)|H(u),M)
}

(2.31)

where O(u) is the training utterance with transcript H(u) for utterance u. In the following

derivations, however, the summation over utterances and superscript (u) are dropped for

the sake of simplicity. As a direct optimisation of the ML objective function is difficult, an

implementation of the expectation maximisation (EM) algorithm [28] called the Baum-Welch

algorithm [13] is iteratively used to estimate the HMM parameters. In this approach, an

auxiliary function is defined at the current model parameters Mk at the kth iteration, which

is a lower-bound to the log-likelihood. The new estimates of the model parameters Mk+1 at

the (k+1)th iteration are then obtained by maximising this lower-bound, which subsequently

maximises the log-likelihood.

A lower-bound to the log-likelihood can be derived by introducing a variational distribu-

tion q(ψ) of the hidden state sequence and applying Jensen’s inequality [86], as

log p(O|H,Mk+1) = log
∑

ψ

q(ψ)
p(O,ψ|H,Mk+1)

q(ψ)
(2.32)

≥
〈

log p(O,ψ|H,Mk+1)
〉

q(ψ)
+ H
(

q(ψ)
)

(2.33)
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where H
(

q(ψ)
)

= −
∑

ψ q(ψ) log
(

q(ψ)
)

is the entropy 1 of q(ψ) and < f(x) >g(x) represents

the expectation of f(x) with respect to g(x). The lower-bound is maximised turning the

above inequality into an equality when q(ψ) = P (ψ|O,H,Mk+1). However, the posterior

probability of the state sequence P (ψ|O,H,Mk+1) cannot be directly known, as Mk+1 is

to be estimated. Therefore, the current model parameters Mk are used to compute the

lower-bound by setting q(ψ) = P (ψ|O,H,Mk) as

log p(O|H,Mk+1) ≥
〈

log p(O,ψ|H,Mk+1)
〉

P (ψ|O,H,Mk)
+ H
(

P (ψ|O,H,Mk)
)

(2.35)

The first term in the right hand side of above equation is used as the auxiliary function

to estimate the model parameters Mk+1, as the second term is not a function of Mk+1.

Therefore, the ML auxiliary function is given by

Q(Mk+1;Mk) =
〈

log p(O,ψ|H,Mk+1)
〉

P (ψ|O,H,Mk)
(2.36)

The maximisation of the above auxiliary function is guaranteed not to decrease the likelihood,

as it can be shown that

log p(O|Mk+1,H) − log p(O|Mk,H) ≥ Q(Mk+1;Mk) −Q(Mk;Mk) (2.37)

The EM algorithm converges to a local maximum of the likelihood function. The EM algo-

rithm is run iteratively in two steps, as shown in algorithm 1. In the E-step, the hidden state

posteriors are estimated and an auxiliary function is formed. In the M-step, the auxiliary

function is maximised and new estimates of parameters are obtained.

Initialise Mk, k = 0
Do

E-step: compute Q(Mk+1;Mk)

M-step: estimate Mk+1 = arg maxMQ(M;Mk)

k=k+1

While Q(Mk+1;Mk) −Q(Mk;Mk) > threshold

Algorithm 1: The EM algorithm

As observations are assumed conditionally independent, the ML auxiliary function in

equation (2.36) can be expressed as

Q(Mk+1;Mk) =
∑

tj

γj(t) log bj(ot) +
∑

tij

χij(t) log aij (2.38)

1The entropy of any discrete distribution P (z) is defined as

H

`

P (z)
´

= −
X

z

P (z) log
`

P (z)
´

(2.34)
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where the state posterior occupancy γj(t) and state pairwise posterior occupancy χij(t) are

computed using current model parameters, and are defined in equations (2.28) and (2.30).

By maximising the above auxiliary function, the new estimates of transition probabilities are

given as

âij =















γj(1) i = 1 1 < j < N
PT

t=2 χij(t)
PT

t=1 γi(t)
1 < i < N 1 < j < N

γi(T )
PT

t=1 γi(t)
1 < i < N j = N

(2.39)

For HMMs with GMMs as state emission distributions, Gaussian mixture components can be

regarded as hidden variables, such that the component posterior γjm(t) is given by

γjm(t) =

∑N−1
i=2 αi(t− 1)aijcjmbjm(ot)βj(t)

p(O|H,Mk)
(2.40)

where bjm(ot) is a Gaussian distribution N (ot;µjm,Σjm) associated with the mth Gaussian

component of state j, and cjm is the weight for the component. Therefore, the re-estimation

formulae for HMM parameters are given by

ĉjm =

∑

t γjm(t)
∑

mt γjm(t)
(2.41)

µ̂jm =

∑

t γjm(t)ot
∑

t γjm(t)
(2.42)

Σ̂jm = diag

(

∑

t γjm(t) (ot − µ̂jm) (ot − µ̂jm)T
∑

t γjm(t)

)

(2.43)

In this work, the mean and covariance matrix of the Gaussian components are of primary

interest. Therefore, the ML auxiliary function is obtained in terms of Gaussian components. If

θ = {θ1, . . . , θT } represents a Gaussian component sequence corresponding to the observation

O = {o1, . . . ,oT }, the likelihood can be evaluated by summing over all possible component

sequences as

p(O|H,M) =
∑

θ

p(O,θ|H,M)

=
∑

θ

P (θ|H,M)
∏

t

p(ot|M, θt) (2.44)

This leads to an ML auxiliary function using component sequence posteriors as

Q(M̂;M) =
〈

log p(O,θ|H,M̂)
〉

P (θ|O,H,M)
(2.45)

The auxiliary function for the update of Gaussian component can be obtained by rearranging

the above equation and ignoring the constant terms independent of the component mean and



CHAPTER 2. HMM-BASED SPEECH RECOGNITION SYSTEMS 19

covariance, leading to

Q(M̂;M) = −
1

2

∑

tm

γmlm (t)
{

log |Σ̂m| + (ot − µ̂m)T Σ̂−1
m (ot − µ̂m)

}

(2.46)

where γmlm (t) = P (θt = m|O,M,H) is the occupation probability for component m1 at time

t, and is computed through a component level forward-backward algorithm using the current

model parameters M. The auxiliary function in the above equation can be also expressed in

terms of sufficient statistics Γml =
{

γmlm ,k
ml
m ,L

ml
m

}

as

Q(M̂;M) = G(M̂;Γml) = −
1

2

∑

m

{

γmlm log |Σ̂m| + tr
(

Lml
m Σ̂−1

m

)

− 2µ̂T
mΣ̂−1

m kml
m + µ̂T

mΣ̂−1
m µ̂m

}

(2.47)

where tr(·) represents the trace of a square matrix, and the sufficient statistics are given as

γmlm =
∑

t

γmlm (t) (2.48)

kml
m =

∑

t

γmlm (t)ot (2.49)

Lml
m =

∑

t

γmlm (t)oto
T
t (2.50)

These sufficient statistics can be used to find the mean and covariance matrix of Gaussian

components, by maximising the auxiliary function in equation (2.47). They are given as

µ̂m =
kml
m

γmlm
(2.51)

Σ̂m = diag

(

Lml
m

γmlm
− µ̂mµ̂

T
m

)

(2.52)

and lead to the same parameter updates for the component as given by equations (2.42) and

(2.43). These sufficient statistics forms of the auxiliary function and parameter updates will

be later used for describing discriminative training of HMMs in section 2.3.4, and for other

derivations as well.

The maximum likelihood (ML) training as described in this section may not always lead

to an optimal recognition performance in the speech recognition systems, as it has several

limitations [73, 124]:

• The ML training estimates HMM parameters to maximise the likelihood p(O|H,M)

of observations, but the correlation between the likelihood and word error rate (WER)

may be weak.

1It should be noted that m here refers to a unique component in the whole component space of HMMs,
whereas in the previous state-level derivations, m referred to the mth component of state j.
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• In practical situations, where the training data is limited, ML training may lead to the

unreliable estimate of parameters (e.g., the variance of the estimated parameters may

be large.)

Therefore, it is preferable to employ a training scheme that explicitly aims at reducing the

word error rate and that addresses the data sparsity problems. In the following section,

Bayesian training is described that addresses the limited data problem. Thereafter, discrimi-

native training approaches are described that explicitly considers the recognition performance

in the training criteria.

2.3.3 Bayesian Training of HMMs

The training of HMM parameters through maximum likelihood, as described in the previous

section, assumes a sufficient amount of data to obtain robust estimates of the parameters.

However, in many cases, the training data is limited and may not lead to reliable estimates.

Bayesian approaches [57, 183] can be used for the estimation of HMM parameters from

sparse training data to cope with the uncertainty associated with the parameters. In Bayesian

approaches, model parameters are regarded as random variables with probability distributions

rather than being point estimates. The likelihood of data is given as a marginalisation over

the model parameters,

p(O|H) =

∫

M
p(O|H,M)p(M|Φ) dM (2.53)

where p(M|Φ) is the prior distribution over model parameters with hyperparameters Φ.

The goal of the Bayesian training is to estimate the hyperparameters Φ of the prior

distribution. Bayesian training attempts to update the prior distribution to the posterior

distribution of the parameters for the given training data. The selection of the form of prior

is one of the most important issue in Bayesian training. Generally, a conjugate prior is

selected that gives the posterior distribution of parameters in the same form as the prior. In

this case, updating the hyperparameters of the prior distributions is equivalent to estimating

the posterior distribution. Due to hidden parameters involved in HMMs, a conjugate prior to

the likelihood of the observation sequence does not exist [57]. However, conjugate priors to

the likelihood of the complete data set can be obtained [57]. In continuous density HMMs, for

individual Gaussian component means and covariances {µm,Σm}, the joint conjugate prior

density is a normal-Wishart distribution given by [57]

p(M|Φ) ∝ |Σm|
− 1

2
(αm−D) exp

(

−
1

2
tr
(

Σ̃mΣ−1
m

)

)

+ exp
(

−
τm
2

(

µm − µ̃m
)T

Σ−1
m

(

µm − µ̃m
)

)

(2.54)
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where Φ = {τm, µ̃m, αm, Σ̃m} is the set of hyperparameters for the prior distribution, with

αm > D − 1 and τm > 0. Similarly, a Dirichlet density which is the conjugate prior for the

multinomial distribution is used as prior for the mixture component weights [57]. Dirichlet

densities can be also used for the initial probability π and for each row of the transition

probability matrix.

In many cases, the hyperparameters of the prior distribution is assumed known from the

subjective knowledge about the stochastic process. In this case, Bayesian training updates

the hyperparameters using the posterior distribution of parameters obtained from the train-

ing data. When no prior information is given, the hyperparameters can be directly estimated

from the training data, using the empirical Bayes approach [149, 150]. In the empirical Bayes

approach, the prior is obtained by maximising the marginal likelihood of data given in equa-

tion (2.53) with respect to Φ. The estimated prior has the same form and hyperparameters

as the posterior distribution p(M|O,H) estimated on the given training data with a non-

informative prior. As the direct estimation of the hyperparameters of the prior distribution is

hard due to hidden parameters in HMMs, various approximations have been investigated. In

a variational Bayes approach described in [15, 183], a variational posterior distribution is used

instead of the true posterior. Similarly, in the quasi-Bayesian approach in [77], the posterior

distribution is assumed to be the exponential of the standard auxiliary function. The details

of Bayesian learning with variational methods can be found in [58, 79, 89, 107].

Once the prior distribution is obtained,it is used in recognition to compute the marginal

likelihood for inference.

2.3.4 Discriminative Training of HMMs

As described in section 2.3.2, the ML training of HMMs maximises the likelihood of data

given the reference transcripts. This leads to the models with poor discriminative ability as

ML training does not consider competing hypotheses. A number of discriminative criteria

has been investigated which consider the likelihood of competing hypotheses and explicitly

model the performance metrics in the criteria. The discriminative training of HMMs have

been found to outperform ML training [92, 130, 140, 154]. It is widely used in state-of-the-art

speech recognition systems. The following sections describes commonly used discriminative

criteria and associated optimisation schemes for discriminative training of HMMs.

2.3.4.1 Discriminative Training Criteria

A discriminative training criterion considers the likelihood from competing hypotheses and

also integrates metrics related to the recognition or classification performance in the criterion.
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Depending upon the metrics used, a number of different discriminative criteria have been

investigated for training of HMMs. Some of the commonly used discriminative criteria are

given below.

Maximum Mutual Information (MMI)

The maximum mutual information (MMI) [10, 176] criterion is given by the posterior proba-

bility of correct transcripts for the given training data and observations,

Fmmi(M) =

U
∑

u=1

log P (H(u)
r |O(u),M)

=
U
∑

u=1

log
p(O(u)|H

(u)
r ,M)P (H

(u)
r )

∑

H̆ p(O
(u)|H̆,M)P (H̆)

(2.55)

where O(u) is the training utterance corresponding to the transcript H
(u)
r for the utterance u,

and H̆ represents all possible hypotheses. Thus the MMI criterion is equivalent to maximising

the ratio of the likelihood of the correct hypotheses (numerator) to that of the “composite”

hypotheses (denominator). The denominator hypotheses are usually represented by an N-best

list [25] or a lattice [155] for compactness. With P (H) fixed, an MMI criterion is equivalent

to a conditional maximum likelihood (CML) criterion [124]. Compensating for the difference

in the dynamic range of the acoustic score and the language model score, it can be expressed

as

Fmmi(M) =

U
∑

u=1

log
pκ(O(u)|H

(u)
r ,M)P (H

(u)
r )

∑

H̆ p
κ(O(u)|H̆,M)P (H̆)

(2.56)

where κ the acoustic scaling factor. It is usually set to the inverse of the language model

scaling factor for speech recognition tasks, and it allows proper consideration of the less likely

hypotheses in the criterion [155].

Minimum Classification Error (MCE)

A minimum classification error (MCE) criterion [90] is given by

Fmce(M) =

U
∑

u=1

f

(

log
p(O(u)|M,H

(u)
r )P (H

(u)
r )

∑

H̆/∈H
(u)
r
p(O(u)|H̆,M)P (H̆)

)

(2.57)

where f is a smoothing function, usually taken as an identity function f(z) = z or a sigmoid

function given by

f(z) =
1

1 + exp(−az)
. (2.58)
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The difference from the MMI criterion is that the denominator term in the MCE criterion

contains only incorrect hypotheses rather than all of them, and the posteriors are smoothed

with a sigmoid function.

Minimum Bayes Risk (MBR)

The MMI criterion defines the objective function to minimise sentence error rate, as it con-

siders utterances as either correct or incorrect. The MBR criterion incorporates more general

error metrics in the objective function. The MBR criterion [123–125] minimises the Bayesian

risk or expected loss given by

Fmbr(M) =

U
∑

u=1

∑

H

P (H|O(u),M)L(H,H(u)
r ) (2.59)

where L(H,H
(u)
r ) is a loss function that defines the cost between the hypothesis H and

reference transcript H
(u)
r . This loss function can be defined at the sentence, word or phone

level, thus leading to different discriminative criteria.

When the loss function is defined at the word level, this leads to the minimum word error

(MWE) criterion [91, 142]. In the MWE criterion, the Levenshtein distance is used as the

loss function. Given the word pair alignment
{

W(k),W
(uk)
r

}

, the word-level loss function

Lword(H,H
(u)
r ) is given as

Lword(H,H
(u)
r ) =

K
∑

k=1

dlev

(

W(k),W(uk)
r

)

(2.60)

where

dlev

(

W(k),W(uk)
r

)

=

{

0 W(k) = W
(uk)
r

1 W(k) 6= W
(uk)
r

(2.61)

Similarly, when the loss function is defined at the phone level, this leads to the popular

minimum phone error (MPE) criterion [141], and is given by

Fmpe(M) =

U
∑

u=1

∑

H

P (H|O(u),M)Lphone(H,H
(u)
r ) (2.62)

where Lphone(H,H
(u)
r ) is the phone-level loss function between hypothesis H and reference

H
(u)
r . However, generally the MPE criterion is defined in terms of phone correctness for

implementation [140, 196]. This is the form that will be used in this work, as it allows the

consistent use of the concept of maximisation, function concavity and lower bound. Therefore,
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the MPE criterion is redefined by replacing the loss function Lphone(H,H
(u)
r ) with a closely

related phone-level accuracy function A(H,H
(u)
r ), and is given as

Fmpe(M) =
U
∑

u=1

∑

H

P (H|O(u),M)A(H,H(u)
r )

=
∑

H

p(O(u)|M,H)P (H)
∑

H̆ p(O
(u)|M, H̆)P (H̆)

A(H,H(u)
r ) (2.63)

where A(H,H
(u)
r ) is computed by aligning the hypothesis with reference at phone level

A(H,H(u)
r ) =

K
∑

k=1

max
Pr

a(P(k),P(uk)
r ) (2.64)

The phone level accuracy is given by

a(P(k),P(uk)
r ) =











1 P(k) = P
(uk)
r

0 P(k) 6= P
(uk)
r

−1 P(k) : insertion

(2.65)

The alignment for computing the loss function is very expensive when the competing hy-

potheses are represented in the form of lattices. Therefore, when lattices are used, a heuristic

method is used for computing the loss function, without explicitly doing the alignment. The

arcs of the lattices representing a phone are marked with time stamps, and the phone level

accuracy given above is modified as

a(P(k),P(uk)
r ) =

{

−1 + 2e(P(k),P
(uk)
r ) P(k) = P

(uk)
r

−1 + e(P(k),P
(uk)
r ) P(k) 6= P

(uk)
r

(2.66)

where e(P(k),P
(uk)
r ) represents overlap between the phones. Considering the probability scal-

ing factor, the MPE criterion in equation (2.63) can be given as

Fmpe(M) =

U
∑

u=1

∑

H

pκ(O(u)|H,M)P (H)
∑

H̆ p
κ(O(u)|H̆,M)P (H̆)

A(H,H(u)
r ) (2.67)

In this work, the MPE criterion refers to the form with phone correctness as given in equa-

tions (2.63) and (2.67), unless stated otherwise. The MPE criterion is used for discriminative

training of all acoustic models in the experiments. The next section describes optimisation of

the discriminative criteria. The summation over multiple utterances in the criteria will not

be shown from this point onwards in this work for the sake of simplicity.
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2.3.4.2 Optimisation of Discriminative Criteria

In maximum likelihood estimation, a lower bound to the likelihood can be obtained, which

is then used as an auxiliary function. The maximisation of such an auxiliary function is

guaranteed not to decrease the objective function, and is also referred as a strong-sense

auxiliary function [140]. However, a strict lower-bound is difficult to obtain for discriminative

criteria due to the denominator term. Therefore, the discriminative training of the state-of-

the-art LVCSR systems is usually done by optimising the discriminative criteria using the

extended Baum-Welch (EBW) algorithm [62, 130] or a weak-sense auxiliary function [140].

The weak-sense auxiliary function gives the same update equations as given by the extended

Baum-Welch (EBM) algorithm [62, 130, 190], but from a different perspective. The weak-

sense auxiliary function is defined as a function with the same gradient at the current estimate

of the parameters M such that

∂Q(M̂;M)

∂M̂

∣

∣

∣

∣

M̂=M

=
∂F(M̂)

∂M̂

∣

∣

∣

∣

M̂=M

(2.68)

In this case, maximising the auxiliary function with respect to new estimate of model param-

eters M̂ does not guarantee an increase in the objective function, however when the auxiliary

function Q(M̂;M) reaches a local maximum, the objective function F(M̂) is also at the local

maximum, as gradients of both are same.

The weak-sense auxiliary function is first described for the MMI objective function in this

section. The MMI objective function can be expressed as

Fmmi(M̂) = log
p(O|H,M̂)P (H)

∑

H̆ p(O|H̆,M̂)P (H̆)

= log p(O|H,M̂)P (H) − log
∑

H̆

p(O|H̆,M̂)P (H̆) (2.69)

where O is the observation sequence corresponding to the reference transcript Hr, and H̆

represents all possible hypotheses. The weak-sense auxiliary function for the MMI criterion

is given by [140]

Q(M̂;M) = Qnum(M̂;M) −Qden(M̂;M) (2.70)

where Qnum(M̂;M) and Qden(M̂;M) correspond to the numerator and the denominator

likelihoods in the objective function, respectively. The numerator and denominator auxiliary

functions have a similar form as the ML auxiliary function in equation (2.47). The numerator



CHAPTER 2. HMM-BASED SPEECH RECOGNITION SYSTEMS 26

auxiliary function is given by

Qnum(M̂;M) = G(M̂;Γnum) = −
1

2

∑

m

{

γnumm log |Σ̂m| + tr
(

Lnum
m Σ̂−1

m

)

− 2µ̂T
mΣ̂−1

m knum
m + µ̂T

mΣ̂−1
m µ̂m

}

(2.71)

where tr(·) is the trace of a square matrix, and m represents the mixture component index.

The numerator sufficient statistics Γnum = {γnumm ,knum
m ,Lnum

m } is also given in the same form as

the ML sufficient statistics in equations (2.48)-(2.50) as

γnumm =
∑

t

γnumm (t) (2.72)

knum
m =

∑

t

γnumm (t)ot (2.73)

Lnum
m =

∑

t

γnumm (t)oto
T
t (2.74)

The denominator auxiliary function can be also given in the same form as above, thus ob-

taining the denominator sufficient statistics Γden =
{

γdenm ,kden
m ,Lden

m

}

. In the MMI criterion

based optimisation, the numerator occupations, and thus the statistics, are computed us-

ing reference supervision, whereas that for the denominator are computed using all possible

transcripts. Therefore,

γnumm (t) = P (θt = m|O,M,Hr) (2.75)

γdenm (t) =
∑

H

P (θt = m|O,M,H) (2.76)

They are usually computed using a lattice-based forward-backward algorithm, as the lattices

are used to represent the hypotheses in a compact form for the training of models.

Smoothing

As the auxiliary function in equation (2.70) may not be even concave, a smoothing term is

added to ensure its concavity. This gives

Q(M̂;M) = Qnum(M̂;M) −Qden(M̂;M) + Qsm(M̂;M) (2.77)

where the smoothing term Qsm(M̂;M) is chosen such that its maxima lies at the current

estimate of parameters,

∂Qsm(M̂;M)

∂M̂

∣

∣

∣

∣

∣

M̂=M

= 0 (2.78)
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A form of smoothing function commonly used for model parameter estimation is [155]

Fsm(M̂;M) =
∑

m

Dm

∫

o

p(o|m,M) log p(o|m,M̂) do (2.79)

which can be expressed in the form of a smoothing auxiliary function as

Qsm(M̂;M) =
∑

m

−
Dm

2

{

log |Σ̂m| + tr
(

(

Σm + µmµ
T
m

)

Σ̂−1
m

)

− 2µ̂T
mΣ̂−1

m µm + µ̂T
mΣ̂−1

m µ̂m

}

(2.80)

where Σm and µm are the covariance matrix and mean vector of Gaussian component m from

the current model set M, respectively. In terms of sufficient statistics,

Qsm(M̂;M) = G(M̂;Γsm) (2.81)

where the smoothing function statistics are

Γsm = {Dm,Dmksm
m ,DmLsm

m} (2.82)

ksm
m = µm (2.83)

Lsm
m = Σm + µmµ

T
m (2.84)

The value of the smoothing factor Dm is critical for the optimisation of the discriminative

objective function, and is selected as [140, 190],

Dm = max
(

2D̃m, Eγ
den
m

)

(2.85)

where D̃m is the smallest value required to ensure the updated covariance matrix is positive-

definite, and E is a user-specified constant. The value of E is usually selected between 1 and

2 for training of acoustic models in LVCSR [140].

I-Smoothing

The model parameters in discriminative training may be overtrained [190]. This problem of

overtraining is dealt by a technique called I-smoothing [140, 142]. It consists of introducing a

prior distribution over the model parameters. Therefore, for the MMI criterion, the modified

objective function can be expressed as

Fmmi(M̂) = log
p(O|H,M̂)P (H)

∑

H̆ p(O|H̆,M̂)P (H̆)
+ log p(M̂|Φ) (2.86)

This gives an overall auxiliary function for the discriminative criterion as

Q(M̂;M) = Qnum(M̂;M) −Qden(M̂;M) + Qsm(M̂;M) + log p(M̂|Φ) (2.87)
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A Normal-Wishart distribution [27] is commonly used for the I-smoothing prior. The auxiliary

function for the prior term is the function itself, excluding the constant terms

QI(M̂;M) = −
τI

2

∑

m

{

log |Σ̂m| + tr
(

Σ̃mΣ̂−1
m

)

+
(

µ̂m − µ̃m
)T

Σ̂−1
m

(

µ̂m − µ̃m
)

}

(2.88)

where Φ = {τI, µ̃m, Σ̃m} is the set of hyperparameters of the I-smoothing prior distribution

and τI controls the impact of the prior. The value of τI is normally tuned to specific tasks.

This I-smoothing auxiliary function can be expressed in the same form as equation (2.47)

using sufficient statistics as

QI(M̂;M) = G(M̂;ΓI) (2.89)

where the I-smoothing sufficient statistics are given as

ΓI =
{

τI, τIkI
m, τ

ILI
m

}

(2.90)

kI
m = µ̃m (2.91)

LI
m = Σ̃m + µ̃mµ̃

T
m (2.92)

The hyper-parameters µ̃m and Σ̃m for the I-smoothing distribution may be based on ML

statistics Γml [142].

Parameter Estimation

As seen above, the overall auxiliary function for the discriminative criterion constitutes of

numerator, denominator, smoothing and I-smoothing parts. By using the auxiliary functions

in terms of sufficient statistics, the overall auxiliary function can be expressed as

Q(M̂;M) = G(M̂;Γnum) − G(M̂;Γden) + G(M̂;Γsm) + G(M̂;ΓI) (2.93)

All the constituent terms have the same form in terms of sufficient statistics. The sufficient

statistics can be simply combined, giving overall sufficient statistics Γ = {γm,km,Lm} as

γm = γnumm − γdenm +Dm + τI (2.94)

km = knum
m − kden

m +Dmksm
m + τIkI

m (2.95)

Lm = Lnum
m − Lden

m +DmLsm
m + τILI

m (2.96)
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Therefore, maximising the auxiliary function in equation (2.93) with respect to model param-

eters gives the parameter estimates as [140]

µ̂m =
km
γm

(2.97)

Σ̂m = diag

(

Lm
γm

− µ̂mµ̂
T
m

)

(2.98)

In this way, means and covariance matrices of model parameters are estimated using the

MMI criterion. The optimisation of other discriminative criteria such as MPE is also the

same, except that the computation of occupation probabilities is slightly different, and a

different smoothing prior may be used. The MPE objective function is expressed as

Fmpe(M̂) =
∑

H

p(O|H,M̂)P (H)
∑

H̆ p(O|H̆,M̂)P (H̆)
A(H,Hr) (2.99)

where A(H,Hr) is the raw phone accuracy between hypothesis H and reference transcript

Hr as described in section 2.3.4.1. The auxiliary function for the MPE criterion is defined in

terms of the log-likelihood of phone arcs log p(O|l,M) as [140]

Q(M̂;M) =
∑

l

∂Fmpe(M̂)

∂ log p(O|l,M̂)

∣

∣

∣

M̂=M
log p(O|l,M̂)

=
∑

l

γ
mpe

l log p(O|l,M̂) (2.100)

where γ
mpe

l is the “posterior probability” of arc l defined by

γ
mpe

l =
∂Fmpe(M̂)

∂ log p(O|l,M̂)

∣

∣

∣

∣

M̂=M

= γl(Āl − Ā) (2.101)

where γl is the occupation probability of arc l calculated from a lattice based forward-

backward algorithm. Āl defines average accuracy, A(H,Hr), of the hypotheses passing

through arc l, and Ā represents the average accuracy of all the hypotheses in the recog-

nition lattice for each utterance. Depending upon the sign of γ
mpe

l , it can be divided into

numerator and denominator parts. The positive γ
mpe

l , for which the average arc accuracy is

higher than the overall average accuracy, is classified as numerator counts, whereas the arcs

with negative γ
mpe

l are assigned as denominator. Therefore, the numerator and denominator

occupations for the MPE criterion can be given as

γnumm (t) =
∑

l:sl≤t≤el

γlm(t)max(0, γ
mpe

l (t)) (2.102)

γdenm (t) =
∑

l:sl≤t≤el

γlm(t)max(0,−γmpel (t)) (2.103)
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where sl and el are start and end times of phone arc l, respectively, and γlm(t) is the occupation

probability of themth mixture component at time t conditioned on arc l. With the occupation

probabilities divided into numerator and denominator groups, the auxiliary function for the

MPE criterion can be also expressed in the same form as equation (2.70). The optimisation

of the MPE criterion through a weak-sense auxiliary function also leads to the same formulae

for updates of model parameters, however occupations given in equations (2.102) and (2.103)

are used to compute the sufficient statistics. In the case of the MPE criterion, an MMI prior

may be used for I-smoothing, instead of the ML prior [143]. The I-smoothing prior is added

to the MPE objective function as

Fmpe(M̂) =
∑

H

p(O|H,M̂)P (H)
∑

H̆ p(O|H̆,M̂)P (H̆)
A(H,Hr) + log p(M̂|Φ) (2.104)

The use of I-smoothing is essential for robust MPE training of the models [142] and it is

commonly used in state-of-the-art systems.

2.3.5 Context Dependent Models and Parameter Tying

In speech recognition, whole-word acoustic models can be used for small vocabulary tasks such

as digit recognition. However as the number of words increases, it becomes difficult to obtain

a sufficient amount of training data for each word. Besides, some words or contexts may not

be ever seen in the training data. Therefore, a set of subword units such as phones or syllables

are used instead which forms significantly smaller set than the words. The words are mapped

into the sequence of subword units using a lexicon, described in section 2.4. These subword

units are then trained and used in recognition by concatenating them as the beads-on-a-string

model to represent an utterance. They are context-independent, and when phones are used

as the subword units, they are called monophones. The problem with monophones is that

they fail to capture coarticulatory effects present in speech. The realisation of each phone

is dependent upon the phonetic context. Therefore it is essential to consider the context

dependency when defining the phone set or acoustic units [11, 132, 158]. Triphones are

often used in speech recognition systems which consider both the immediate right and left

contexts [192]. Similarly, a shorter or longer contexts can be also used, for example, biphones

consider only either immediate right or left context, and quinphones [65] consider two phones

to both the right and left of the current phone. The lexicon in this case expands the word

into context-dependent models. These context-dependent models can be word-internal or

cross-word depending upon whether they consider contexts of preceding and following words

or not. A word-internal triphone representation of ‘pronounce’ can be given as
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pronounce p+r p-r+ax r-ax+n ax-n+aw n-aw+n aw-n+s n-s

It should be noted that due to the word-internal constraint, the context-dependent expansion

in the above example has to use biphones at the word boundary. Cross-word triphones are

the most widely used models in speech recognition systems due to the significant reduction

in word error rate obtained with them [192].

One problem with the context-dependent models is that the number of models and pa-

rameters to train increases exponentially with the size of the phone context considered. For

example, with N monophones, the number of possible triphones would be N3. It is difficult

to robustly train all these models even with a large amount of data, as some of the models

may be still unseen or may have occurred only a few number of times [71]. To deal with

the problem of unseen models and insufficient training data, some of the parameters can be

shared or tied across the models [71, 100, 197, 198]. The statistics from all models or states

to be shared are then used to estimate the shared parameters. This parameter tying can be

performed at different levels such as phones, states, Gaussian components, or even means and

covariances of the components [64]. One of the commonly employed tying of model parame-

ters is called state-clustering [197]. In this approach, the states to be tied can be determined

by a data-driven or a decision tree based approach, as described below.

Data-driven State Tying

In a data-driven bottom-up state tying scheme [197, 198], all states are initially placed into

individual clusters. A distance metric is computed between each pair of states, and the pair

with a distance under a given threshold is put into the same cluster. This continues until the

size of the largest cluster reaches a threshold, or a desired number of clusters is obtained. The

size of the cluster is defined by greatest distance between any two states. The distance is taken

as the weighted Euclidean distance between means for output with single Gaussians, whereas

for a tied-mixture system, the Euclidean distance between mixture component weights is used.

The data-driven clustering is shown in figure 2.6. The problem with this approach is that it

is not reliable for contexts with a small amount of training data and it cannot also deal with

the unseen contexts.

Decision-tree Based Clustering

The problem of clustering with rarely or unseen contexts can be overcome by using decision-

tree based clustering [12, 131, 132, 198]. In this method, a binary tree with yes/no phonetic

context questions attached to each node of the decision tree is associated with each state

position i of the phone q. A top-down approach is followed to grow the tree by initially
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d-ah+k p-ah+sil oy-ah+el

d-ah+k p-ah+sil oy-ah+el

clustering

Figure 2.6: The data-driven state tying

assigning all states i of all logical models derived from q to the root node of the tree. This

pool of states is successively split depending upon the answer at each node, until the states

trickle down to leaf nodes or the amount of data associated with the node falls below a

minimum threshold. All states in the same leaf nodes are tied together. The decision-

tree based clustering is shown in figure 2.7. The question at each node is selected from a

predetermined set. The question is selected to locally maximise the likelihood of training

data for the given final state tying. The decision tree can be grown efficiently through a

greedy iterative node splitting algorithm. The decision tree can handle unseen contexts or

logical models, and is therefore widely used in LVCSR.

Covariance Tying

The use of full covariance matrices greatly increases the numbers of parameters to be esti-

mated, and there may not be a sufficient amount of training data to robustly estimate them.

This has motivated the tying of covariance parameters across the classes. One of the com-

monly used techniques for this is semi-tied covariance (STC) [47] modelling which represents

each covariance with two elements: a component-specific diagonal covariance and a semi-tied

class dependent non-diagonal matrix. This decomposition is usually done for the precision

matrix (inverse of covariance) as the inverse of covariance is used in the likelihood calculation.

The precision matrix with STC modelling is given by

Σ−1
m = AT

stcΣ
−1
diag,mAstc (2.105)

figure/ddcluster.eps
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d-ah+k

p-ah+sil

oy-ah+el

right context consonant?

YesNo

right nasal?

left central-stop?

left nasal?

No Yes
YesNo

YesNo

Figure 2.7: A decision-tree based state tying

where Astc is called semi-tied transform and Σ−1
diag,m is diagonal. The transform Astc can be

tied globally or across a class. The component likelihood in this case can be given as

N (ot;µm,Σm) = |Astc|N
(

Astcot;Astcµm,Σdiag,m

)

(2.106)

The advantage of this form is that the computation cost reduces to O(D) with the use of

diagonal covariance matrices, compared to O(D2) cost with full covariance matrices. The

parameter Astcµm is stored for each component and transformed features Astcot are cached

for each time instance, thus giving almost no increase in computation cost during recognition

than the standard diagonal covariance matrix based system. The semi-tied covariance system

is trained using EM algorithm [47]. The STC matrix Astc is initialised to the identity matrix

and Σdiag,m to the current model covariances, and they are estimated in an interleaved fash-

ion. STC is one form of structured covariance modelling. Other types of structured covariance

modelling includes precision matrix modelling [134, 162], subspace constrained precision and

means (SPAM) [8], mixtures of inverse covariances [177], and extended maximum likelihood

linear transforms (EMLLT) [134]. It should be noted that STC is a specific case of struc-

tured covariance representation called precision matrix modelling [134, 162], which models

the precision matrix as

Σ−1
m =

B
∑

i=1

νmiSi (2.107)

figure/dtree.eps
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where νmi is a component-specific weight that determines the contributions from B global

positive semi-definite matrices Si. When the number of bases is equal to the number of feature

dimensions (B = D), and the bases are symmetric 1-rank matrices represented as Si = aTiai

with ai being each row of Astc, the above equation reduces to STC modelling

Σ−1
m =

D
∑

i=1

νmia
T
i ai = AT

stcΣ
−1
diag,mAT

stc (2.108)

where the weight for a dimension is the inverse variance of the corresponding dimension.

2.3.6 Model Based Feature Projection

There may be a correlation between different dimensions of the feature vectors, for example

due to overlapping windows for frames and using delta coefficients. Even after applying

DCT transforms, the features are not complete uncorrelated. However, it is desirable to

have compact and discriminative features for effective speech recognition. A range of linear

projection schemes have been proposed to project the feature vector into an uncorrelated

subspace thus increasing discriminative capability. The linear projection schemes transform

an n-dimensional observation vector ot using a p× n transform matrix A[p] to obtain a new

p-dimensional observation ôt as

ôt = A[p]ot. (2.109)

Some of the commonly used linear projection schemes are principal component analysis

(PCA) [36], linear discriminant analysis (LDA) [18, 36] and heteroscedastic linear discriminant

analysis (HLDA) [98].

In PCA [36], the data covariance matrix of all observations is decorrelated by using an

eigen-value decomposition. The PCA transform is estimated by find the p rows of orthogonal

matrix A as

Âpca,[p] = arg max
A[p]

{∣

∣

∣
A[p]ΣgA

T
[p]

∣

∣

∣

}

(2.110)

where Σg is the global covariance matrix of the observations. This selects the orthogonal

projections of features that maximises the total variance in the projected subspace. However,

this may not necessarily lead to a subspace that is discriminative between classes. A linear

discriminant analysis (LDA) [18, 36] can be used which is a supervised scheme and assumes

each Gaussian component in the model as a separate class to be discriminated. The LDA
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transform is obtained by maximising the ratio of projected between class covariance B and

average within class covariance Σ, as

Âlda,[p] = arg max
A[p]







∣

∣

∣
diag

(

A[p]BAT
[p]

)∣

∣

∣

∣

∣

∣
diag

(

A[p]ΣAT
[p]

)∣

∣

∣







(2.111)

where both the between class covariance B and the within class covariance Σ are constrained

to be diagonal in the projected subspace. The LDA transform can be obtained by finding

eigen-vectors associated with top p eigen-values of Σ−1B [36, 185]. A maximum-likelihood

estimation of the LDA transform [18] can be given as

Âlda = arg max
A

{

∑

mt

γjm(t)
(

log |A|2 − log |Σ̃diag|
)

}

(2.112)

where γm(t) is the occupation probability of component m at time t as computed through

the forward-backward algorithm in section 2.3, and Σ̃diag is the transformed average within

class diagonal covariance in the feature space defined by A consisting of p useful rows and

(n− p) nuisance rows. LDA suffers from the assumption that the within class covariances for

all components are the same. This is relaxed in HLDA, which is estimated as [98]

Âhlda = arg max
A

{

∑

mt

γm(t)
(

log |A|2 − log |Σ̃diag,m|
)

}

(2.113)

where Σ̃diag,m is the transformed diagonal covariance in the feature space defined by A.

HLDA is widely used in the state-of-the-art speech recognition systems [54]. In this work,

(39 × 52) dimensional HLDA transforms are used to project 52-dimensional initial feature

vectors to a 39-dimensional space.

2.4 Lexicon

A lexicon or dictionary is one of the building blocks of a speech recognition system, as shown

in figure 2.1. It defines the allowed vocabulary set for speech recognition and provides pro-

nunciations for the words. A lexicon consists of one or more pronunciations for a given word,

usually given at the phone level. In the case of multiple pronunciations, a pronunciation

probability may be also specified. The inflected forms of a word are usually considered dif-

ferent words in the lexicon [73]. The pronunciations in the dictionary may be obtained from

difference sources, and can be also derived through rule based or data-driven approaches. It is

preferable to have a smaller vocabulary size, as it reduces the potential confusable candidates

thus possibly giving better word accuracy. However, it may also introduce out-of-vocabulary
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(OOV) errors. They occur when the word to be recognised is not in the lexicon. In practice,

a fixed-size vocabulary is often used. The words in the dictionary are selected to minimise

the expected OOV. For a desired vocabulary size of V , a minimum OOV rate vocabulary can

be obtained by selecting the most frequent V words in the dictionary [73].

Speech recognition tasks are often classified according to their vocabulary size. The tasks

with less than 1k words are called small vocabulary tasks, between 1k - 10k words are referred

as medium vocabulary tasks, and greater than 10k vocabulary are called large vocabulary

tasks.

2.5 Language Models

A language model (LM) is used in speech recognition systems as shown in figure 2.1 that rep-

resents syntactic and semantic information in spoken word sequences. It gives the probability

of hypothesis H = {W1, . . . ,WK} constituting a sequence of words Wk. The probability of

the hypothesis can be expressed as a product of condition probabilities

P (H) =

K
∏

k=1

P (Wk|Wk−1, . . . ,W1) (2.114)

This requires consideration of the full history of the words. The number of possible word

sequences is very large in LVCSR systems. Consequently, it is not possible to obtain robust

estimates of language model probabilities for all possible word sequences.

One solution to the above problem is to restrict the history to the preceding (N−1) words

only. This is referred as an N-gram language model and is currently the most popular model

used in speech recognition. The probability of the hypothesis with the N-gram model is given

by

P (Wk|Wk−1, . . . ,W1) ≈ P (Wk|Wk−1, . . . ,Wk−N+1) (2.115)

In the above equation, when N = 2, it yields a bigram language model, whereas for N = 3, a

trigram language model is obtained. In this work, bigram and trigram language models are

used. The bigram language models are used for generating initial hypotheses in this work.

The ML estimates of N-gram language model probabilities are given by [73]

P (Wk|Wk−1, . . . ,Wk−N+1) =
C(Wk,Wk−1, . . . ,Wk−N+1)

∑

W C(W,Wk−1, . . . ,Wk−N+1)
(2.116)

where C(Wk,Wk−1, . . . ,Wk−N+1) is the frequency count of the N-gram word sequence oc-

curred in the training data. The major problem with such estimation is that all possible

N-grams are required to be covered with sufficient counts for robust estimates of language
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model probabilities. This is not feasible for even small values of N . This data sparsity prob-

lem can be dealt by discounting and backoff techniques. Discounting handles the unobserved

N-grams by taking out some of the probability mass from seen N-grams and allocating it to

the unseen N-grams. Backoff, on the other hand, discards the low-count estimates of higher-

order N-grams and uses more frequently observed shorter context estimates in their place.

Some of the discounting and back-off techniques include absolute discounting [128], Good-

Turing discounting [61], Witten-Bell discounting [188], Katz-smoothing [93], and Kneser-Ney

smoothing [127]. Other approaches for obtaining robust LMs are interpolation [85] and class-

based LMs [17, 112, 121]. A review of smoothing techniques for language models can be found

in [19, 20].

The language model can become very large when high order N-grams are used. This

makes the training and decoding process very slow for a large vocabulary speech recognition

system. Therefore, it becomes necessary to prune some of the N-grams. A number of different

criteria based on information theoretic measure can be used for the purpose. For example, the

pruning can be done by minimising the KL-divergence between distributions of the unpruned

and pruned models [166]. The optimal pruning of language models can speed up the training

and decoding process significantly with only a small degradation in performance.

LMs can be compared by computing their perplexities on a test text corpus [73].

2.6 Recognition of Speech Using HMMs

The recognition of speech refers to finding the best word sequence representation for the

given speech. The recognition process uses the acoustic and language models and the lexicon

described above to decode the test speech, as shown in figure 2.1. Several decoding and search

algorithms can be used for the purpose as described below.

2.6.1 MAP Decoding

As discussed in section 2.1, the best hypothesis for the given speech O is selected as the one

with a maximum a-posteriori probability

Ĥ = arg max
H

{

P (H|O,M)
}

= arg max
H

{

p(O|H,M)P (H)
}

(2.117)

where P (H|O,M) is computed by using the acoustic model and P (H) is obtained from

the language model as discussed in section 2.1 The number of possible hypothesis or word

sequences grows exponentially as the number of words in the hypothesis or vocabulary size
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increases. If each of the possible hypotheses is considered separately, the search process

becomes intractable. A number of strategies can be used for searching for the best possible

word sequence. This is often approximated by finding the most likely state sequence. The

Viterbi algorithm [145, 178] can be used to find the most likely state sequence efficiently.

The Viterbi algorithm introduces a partial best-path probability φj(t) which represents

the likelihood of the most likely state sequence at time t that generated observation sequence

from {o1, . . . ,ot} and ended in state j. A recursion is used to compute this partial likelihood

as

φj(t) = max
i

{

φi(t− 1)aij

}

bj(ot), 1 < j < N, 1 ≤ t ≤ T (2.118)

where the initial condition is given by

φj(0) =

{

1 j = 1
0 otherwise

(2.119)

The maximum likelihood for the most likely state sequence is then given by

φN (T + 1) = max
i

{

φi(T )aiN

}

(2.120)

This is also known as the Viterbi likelihood. It should be noted that likelihood computation

through the Viterbi algorithm uses the max operation in place of the summation as in the

forward-backward algorithm. Thus the forward-backward algorithm gives the total likelihood

of all paths, whereas the Viterbi algorithm gives the likelihood of the best path only. This

allows easy generalisation of Viterbi decoding to continuous speech recognition. The Viterbi

algorithm can be extended for a continuous speech recognition system with a token-passing

algorithm [196].

The use of N-gram language models and crossword triphones makes it complex to imple-

ment a Viterbi decoder for continuous speech recognition systems, as it increases the search

space drastically and may cause memory issues. This can be dealt with by dynamically

expanding the search space as the contexts are encountered during decoding [133, 136]. Al-

ternative search strategies like stack decoding [84, 138] can be also used.

The search efficiency is an important factor while decoding. The use of complex acoustic

and language models can greatly increase the search space of the decoder. This can be dealt

with by pruning the low likelihood paths, and thus expanding only a certain number of paths

at each stage [73]. This is called beam-search. It may be implemented by maintaining only a

certain number of the most promising paths, or by discarding the paths whose likelihoods are

lower than a certain threshold [73]. It can also be implemented by maintaining only the paths

that have likelihoods less by a threshold amount than the likelihood of the most promising
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path [73]. Pruning speeds up the decoding process, but may introduce search errors if the

likely paths are pruned before reaching the end of the utterance.

Though the task of the speech recognition system is to find the best hypothesis, a number

of possible hypotheses can be output for further processing. This is called an N-best list [156,

157], and typically the size of the list is 100 to 1000. These hypotheses can be used for rescoring

and reranking, without redecoding the data from the beginning. The possible hypotheses can

be more compactly represented in a form of word graphs, called lattices [136, 148]. A word

lattice constitutes of nodes and arcs, with each node representing a point in time and arcs

representing hypothesised words. The arc can be also assigned a score such as language and

acoustic model scores. The word lattices are very useful and efficient as they can be rescored

quickly, for example with new higher order language models, and thus they are widely used

in the state-of-the-art speech recognition systems. An example of word lattices is shown in

figure 2.8.

ASIL SILELABORATE

DIDN’T

DIDN’T
BUT

IN

IN

IN

TO

IT

IT

BUT

Figure 2.8: A word-lattice of recognised hypotheses (from [52])

In practice, there is a large difference in the dynamic range of acoustic and language model

scores due to the modelling assumptions. Therefore, a language model or grammar scaling

factor is used to scale the LM score. In addition, the decoder is prone to inserting short words

as they tend to have larger likelihoods due to their presence in the training data [73]. This

problem can be dealt by using a word insertion penalty for each new word in the recognition

hypothesis. Therefore, the inference in many systems is done as

Ĥ = arg max
H

{

log p(O|H,M) + β log P (H) + ρ|H|
}

(2.121)

where β is the language model scaling factor, ρ is the word insertion penalty and |H| is the

length of the hypothesis H in words.

2.6.2 MBR Decoding

MAP decoding finds the most likely sentence. Thus it can be viewed as minimising the

expected sentence error rate. However, the performance of speech recognition system is often

measured is terms of the word error rate (WER). MBR decoding [60, 110, 167, 187] addresses

ofigure/word_lattice.eps
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this issue by integrating the evaluation metrics into the decoding criterion, and finds the best

hypothesis as

Ĥ = arg min
Hr

{

∑

H

P (H|O,M)L(H,Hr)
}

(2.122)

The Levenshtein distance associated with the word error rate can be used as the loss function

L(H,Hr). The difference with MBR training criteria in section 2.3.4.1 is that in this case

Hr is unknown, and thus searched from the set of possible hypotheses. The search over all

hypotheses using the true expected loss in equation (2.122) is computationally very expensive.

Therefore, MBR decoding is implemented using only a set of likely hypotheses represented in

the form of lattices or N-best lists. A smaller set of hypothesis may be used as a search space

compared to the set used for computing the expected loss, to make the search practical. The

use of pinched lattices and confusion networks has also been investigated. There are several

variations of MBR decoding based on an N-best list, lattices, or a confusion network.

In an N-best list based approach [167], the posterior probabilities of the hypotheses is

approximated and the expected word error rate is computed using an N-best list. The hy-

pothesis with the lowest expected word error is selected as the final hypothesis. The problem

with this approach is that for a reasonable approximation of the posterior probability, the

size of the N-best list should be large. However, this becomes computationally expensive

as rescoring N hypotheses require computation of O(N2). This can be dealt with to some

extent by searching over fewer hypotheses. However, the posterior probability should be still

approximated using a larger N-best list, otherwise the approximation becomes poor.

In a lattice-based approach [186], word posteriors are computed using the forward-backward

algorithm and the best path through the word graph is directly searched using these word

posteriors based on the accumulated score [186].

In confusion network (CN) decoding [110, 111], a linear graph structure called a confusion

network is used for finding the best hypothesis. The confusion network is derived from the

word lattices. The arc posteriors of word lattices are computed through a forward-backward

pass and the arcs with low-posterior links are pruned. The links corresponding to the same

word are then merged depending upon overlap, and the links corresponding to different words

are clustered into confusion sets, iteratively. A sample confusion network obtained for the

lattice shown in figure 2.8 is given in figure 2.9. The best hypothesis from the CN is obtained

by selecting the word with highest posterior probably in each confusion set.
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Figure 2.9: A confusion network (from [52])

2.6.3 Bayesian Inference

In the Bayesian framework as described in section 2.3.3, the HMM parameters are themselves

random variables with probability distributions. A prior distribution is associated with the

HMM parameters. The optimal Bayes solution for speech recognition is given by [78, 125]

Ĥ = arg max
H

{

p(O|H)P (H)
}

(2.123)

where the likelihood is computed by marginalising over the model parameters as

p(O|H) =

∫

M
p(O|H,M)p(M|Φ) dM

=

∫

M

(

∑

ψ

P (ψ|H,M)
∏

t

bψt
(ot)

)

p(M|Φ) dM. (2.124)

In the above equation, p(M|Φ) is the prior distribution over model parameters. As dis-

cussed in section 2.3.3, the posterior distribution of the model parameters p(M|Otrn,Htrn),

estimated from the training data Otrn and Htrn, is generally used as the prior during infer-

ence. The inference through equations (2.123) and (2.124) is also called Bayesian predictive

classification (BPC) [78].

The acoustic score is required for doing inference through equation (2.123). However, the

integral for the acoustic score or marginal likelihood in equation (2.124) is intractable, and

thus some form of approximation is required for inference.

2.6.3.1 Markov Chain Monte-Carlo

One of the options to approximate the intractable marginal likelihood in equation (2.124) is to

use Monte-Carlo methods. The simplest method is to generate random samples {M1, . . . ,MN}

from distribution p(M|Φ) and use that to compute the approximate marginal likelihood as [76]

p(O|H) ≈
1

N

N
∑

i=1

p(O|Mi,H) (2.125)

where N is the number of samples. As the number of samples tends to infinity, it gives

the true marginal likelihood. A double-fold Monte-Carlo simulation of HMM parameters

ofigure/cn_lattice.eps
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and hidden state/component sequences can be also done [76]. The Monte-Carlo methods

are computationally very expensive and not suitable for large-vocabulary speech recognition

systems. A review of Monte-Carlo methods can be found in [108, 109, 126, 151].

2.6.3.2 Frame-Independence Assumption

The intractable marginal likelihood in equation (2.124) constrains the model parameters to

be constant for all frames of the utterance. If the model parameters at each of the frames

are assumed independent and allowed to vary from one frame to other, then the integration

in equation (2.124) can be done at the frame level, rather than for the whole observation

sequence [87, 88]. This is expressed as [88]

p(O|H) ≈
∑

ψ

P (ψ|H,M)
∏

t

b̄ψt
(ot) (2.126)

where

b̄ψt
(ot) =

∫

M
bψt

(ot)p(M|Φ) dM (2.127)

Therefore, in this approach, each of the state/component output is marginalised for the

associated model uncertainties and acts as a compensated distribution. Thus this method is

also referred as Bayesian predictive model compensation [87, 88]. Given the appropriate form

of prior for model parameters, the frame-level integration in equation (2.127) is tractable.

It should be noted that with the frame-independence assumption, the conditional indepen-

dence assumption of HMMs is valid and Viterbi algorithm can be used. The difference is that

instead of the original state output distribution, the predictive density in equation (2.127)

is used. In [88], a modified frame-synchronous Viterbi algorithm with predictive density has

been investigated.

2.6.3.3 Laplace Approximation

The Laplace approximation or normal approximation can be also used for approximating

the marginal likelihood in equation (2.124). The approximated marginal likelihood is given

by [76, 78, 169]

p(O|H) ≈ p(O|M̂map,H)p(M̂map|Φ)(2π)
n
2 |Σmap|

1
2 (2.128)

where M̂map is the MAP estimate given by

M̂map = arg max
M

{

p(O|M,H)p(M|Φ)
}

(2.129)
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In the above equations, n is the total number of parameters of M, and Σmap = (−V)−1,

where V is the Hessian matrix of log
(

p(O|M,H)p(M|Φ)
)

evaluated at M = M̂map. The

Laplace method approximates the integrand in (2.124) with a Gaussian density at its mode

matching its value, first derivative and second derivative. The mean of the Gaussian is the

MAP estimate M̂map given in equation (2.129), and can be estimated using EM algorithm [57].

The covariance matrix for the Gaussian is related to the Hessian matrix V, which is com-

putationally expensive to find directly. Quasi-Bayesian approaches can be used with further

approximations to approximate covariance matrices [75, 77], but the method is still compu-

tationally expensive.

2.6.3.4 Variational Bayes

The variational Bayes [7, 14, 15] approach provides a lower bound to the marginal likelihood

in equation (2.124) which can be used in equation (2.123) to compute inference evidence,

provided the bound is tight. The lower-bound to the marginal likelihood is computed by

introducing a joint variational distribution q(θ,M) and applying Jensen’s inequality as

log p(O|H) = log

∫

M

∑

θ

p(O,θ|H,M)p(M) dM

= log

∫

M

∑

θ

q(θ,M)
p(O,θ|H,M)p(M)

q(θ,M)
dM

≥

∫

M

∑

θ

q(θ,M) log
p(O,θ|H,M)p(M)

q(θ,M)
dM (2.130)

Maximising this lower-bound with respect to q(θ,M) gives q(θ,M) = p(θ,M|O), which turns

the above inequality into an equality. However, evaluating the true posterior p(θ,M|O) in-

volves computing the marginal likelihood for the normalisation constant, which is intractable.

Therefore, the key idea in variational Bayes approximation is to use the factored approxima-

tion

q(θ,M) = q(θ)q(M) (2.131)

such that the the above bound is expressed as

log p(O|H) ≥

∫

M

∑

θ

q(θ)q(M) log
p(O,θ|H,M)p(M)

q(θ)q(M)
dM (2.132)

The variational Bayes algorithm iteratively maximises the lower-bound in equation (2.132)

with respect to q(θ) and q(M) in an interleaved fashion. Using variational calculus, the



CHAPTER 2. HMM-BASED SPEECH RECOGNITION SYSTEMS 44

update equations can be derived as [7, 15]

qk+1(θ) ∝ exp

(∫

M
log p(θ,O|M)qk(M) dM

)

(2.133)

qk+1(M) ∝ p(M) exp
(

∑

θ

log p(θ,O|M)qk+1(θ)
)

(2.134)

where subscripts k and k + 1 represent iteration numbers. The maximisation of the lower-

bound in (2.132) is equivalent to approximating true posterior as well as obtaining the tightest

lower-bound to the marginal likelihood [7]. When the estimated distributions converge, they

are used to compute the final lower-bound to the marginal likelihood. The method is compu-

tationally efficient and fast, however not as accurate as Markov chain Monte-Carlo (MCMC)

and often inferior to the Laplace method as well [119, 120]. One of the techniques that has

been reported to produce more accurate approximations is expectation propagation [119].

The method will be applied for doing inference in adaptive speech recognition in chapter 5,

and is described in section 5.3 and appendix A in detail.

2.6.4 Multipass Decoding and System Combination

State-of-the-art systems generally use a multipass strategy to refine the search space and

output hypotheses in several stages [40]. The decoding is performed over the test data suc-

cessively by more complex models. A typical multipass system may involve a fast first pass

using a simple speaker independent model to obtain the 1-best transcript for adaptation.

The second pass uses this transcript to adapt models and redecode the data with a bigram

or trigram language model to generate word lattices. This may be followed by rescoring of

lattices with more complex language models (4-gram or 5-gram), or different sets of models

and adaptation schemes to obtain a number of candidate outputs. Some of the examples of

multipass systems include [54, 55].

A speech recognition system generally makes different errors in recognising the same speech

compared to other systems with different models and adaptation schemes [40]. The outputs

from different systems are thus combined in state-of-the-art transcription systems to obtain

a better recognition hypothesis. This is usually done by using recogniser output voting er-

ror reduction (ROVER) [35] or confusion network combination (CNC) [31]. Also, the use of

N-best lists or lattices generated from another system and cross-adaption by using the adap-

tation transcript generated from another system also provide an implicit method of system

combination.
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2.7 Evaluating ASR

The performance of speech recognition systems is usually evaluated in terms of the word error

rate of the hypotheses. An optimal string matching, generally using dynamic programming,

is performed between the reference transcript and the generated hypothesis. This is based on

Levenshtein distance, and assigns scores for insertion, deletion and substitution errors with

respect to the reference transcript. In HTK [196], scores of 7, 7 and 10 are used for insertions,

deletions and substitutions, whereas NIST scoring [34] uses scores of 3, 3, and 4, respectively.

Once the total number for substitution (S), deletion (D) and insertion (I) errors are computed

through the optimal alignment, the word error rate (WER) is given as

WER% =
S +D + I

N
× 100% (2.135)

where N is the total number of words in the reference transcript. Sometimes, the change in

WER obtained may be small between two systems. In such cases, a matched-pair significant

test can be used to check the statistical significance of performance differences [34, 59].

2.8 Summary

This chapter has reviewed HMM-based automatic speech recognition systems, with a detailed

description of each module. The speech signal captured from the microphone is first converted

into a sequence of speech features, usually MFCC or PLP. The features are usually normalised

by applying CMN, CVN, Gaussianisation, VTLN or LDA transforms, to make them robust to

speaker or environmental variations. The acoustic variabilities in speech features are modelled

through HMMs, by using training samples of speech. The HMMs can be trained using the ML

criterion with the Baum-Welch algorithm. However, the ML training has certain limitations,

and to deal with them, Bayesian approaches and discriminative training criteria can be used.

The HMMs can be trained using a discriminative criterion such as minimum phone error

(MPE) using a weak-sense auxiliary function. The selection of suitable acoustic units and

parameters tying are also described. The acoustic model is used in conjunction with a language

model and a lexicon for decoding of test speech. A word N-gram model trained from linguistic

text corpora is commonly used as the language model. The ML estimation of language models

is also described, along with the other techniques to obtain robust estimates of language

model probabilities. The best hypothesis for a given test speech can be found by MAP or

MBR decoding. Several search techniques including the Viterbi algorithm are discussed to

decode speech and find the best hypothesis. The performance of a speech recognition system

is usually given in terms of word error rate, by comparing the generated hypothesis to the

reference hypothesis.



CHAPTER 3
Adaptation and Adaptive

Training

In speech recognition systems, there may be a mismatch between training and test acoustic

conditions that degrades the performance [40]. Therefore, the trained acoustic models

are adapted to the test speaker or acoustic condition to obtain a better performance [189].

Moreover, large vocabulary speech recognition systems are usually trained on a large corpus

of speech data collected from several speakers and different recording conditions. The speech

signal does not contain only the relevant acoustic information required for speech recognition

but also unwanted variations from speakers and the environment. The training data is thus

non-homogeneous in nature, and the acoustic models need to be trained and extracted from

such data. This chapter describes the techniques to adapt acoustic models to a test speaker,

and also the training of acoustic models from non-homogeneous data. Several speaker adapta-

tion techniques [189] are described to reduce the mismatch between training and test acoustic

conditions. Thereafter, an adaptive training framework [5] is described that models speech

and non-speech variabilities in the non-homogeneous training data separately. In this chap-

ter, the maximum likelihood criterion is used for adaptation and adaptive training. The

discriminative adaptation and adaptive training schemes are separately described in the next

chapter.

46
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3.1 Speaker Adaptation

A significant difference is observed in speech due to its dynamic and versatile nature when

even the same words are uttered by different speakers. These variations may result from the

speaker’s voice, age, gender, dialect, intonation, speaking rate and style [73]. In addition, the

background noise, different microphones, transmission channel, and noise-induced stress also

introduce variations in the speech even from the same speaker uttering same words under

different conditions [73].

The performance of speech recognition systems may be severely degraded when there is

a mismatch between the training and the testing speakers and acoustic conditions [74, 96].

The performance can be improved by reducing this mismatch between the trained models

and the test condition. For example, it has been found that a speaker dependent (SD) system

trained from data of a specific speaker performs much better than a speaker-independent (SI)

system trained on the same amount of data but from different speakers [189]. However, it is

not possible to build large speaker-dependent systems due to lack of training data. There-

fore, in practice, an effort is made to either reduce the speaker or environmental dependent

variations in speech, or to adapt the trained models to the specific test condition. The first

one is commonly referred as speaker or environmental normalisation1 , and attempts to model

inherent variabilities in speech by removing or reducing the speaker and environment induced

variabilities. The later technique transforms the trained models to the target test condition

so that the transformed model represents the test condition. This is usually called speaker

adaptation [189] and is of interest in this work.

A small amount of data from the target speaker is generally used to adapt the trained

acoustic models to the target speaker. This data is called adaptation data. Adaptation can

be performed in different modes, depending upon the availability of the transcript for the

adaptation data, and the time when the adaptation data becomes available [204].

• Supervised and Unsupervised Adaptation: In a supervised mode of adaptation,

the transcript corresponding to the adaptation data is known. On the other hand,

in unsupervised adaptation, the correct supervision transcript for the adaptation data

is not given. In this case, the supervision transcript is generated by decoding the

adaptation data with the available acoustic model. The quality of adaptation depends

both on the amount of the adaptation data as well as the quality of the generated

supervision hypothesis which may contain several errors. If the test data itself is used

1Cepstral mean and variance normalisation, Gaussianisation, and vocal tract length normalisation de-
scribed in the last chapter are examples of the speaker or environmental normalisation.
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for adaptation as well, the method is also called self-adaptation [43]. The supervised

and unsupervised mode of adaptation is also illustrated in figure 3.1.

Recognise Adaptation
Data

Generate Transforms

Speaker Transforms

Hypothesis

Generate Transforms

Speaker Transforms

Supervision
Transcript

Adaptation 
Data Adaptation 

Data

(a) Supervised adaptation (b) Unsupervised adaptation

Figure 3.1: Supervised and unsupervised adaptation

• Offline and Online Adaptation: In an offline mode of adaptation, all adaptation

data is assumed to be available at once, before the adaptation and recognition process

starts. This is also referred as a static or batch mode of adaptation. On the other hand,

in an online mode, adaptation is performed as soon as the adaptation data becomes

available, and the adaptation data becomes available in stages. This is also referred

to as rapid or instantaneous adaptation. The online adaptation can be also done in an

incremental fashion, in which adaptation information is propagated from one stage to

another for effective adaptation [204].

A number of techniques have been developed over the years to adapt HMM parameters

to a target speaker. They include maximum-a-posteriori adaptation, linear transforms and

speaker-cluster based adaptation techniques [189]. Some of them are described in the next

section.

3.1.1 Maximum a Posteriori (MAP) Adaptation

A straightforward way to adapt the models given the adaptation data would be to retrain the

model using the ML criterion. However, as the amount of adaptation data is usually small,

this leads to the overtraining of HMMs that would not generalise. Therefore, a maximum-

a-posteriori (MAP) approach [57] was proposed in which model parameters are viewed as

figure/adaptationproc.eps
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random variables. The MAP estimate of the adapted model parameters are obtained by

maximising the posterior distribution of HMM parameters as

Mmap = arg max
M

{

p(M|O,H)
}

= arg max
M

{

p(O|M,H)p(M|Φ)
}

(3.1)

where O and H are the adaptation data and the corresponding supervision transcript, and

p(M|Φ) is a prior distribution over HMM parameters with hyperparameters Φ. The prior

term p(M|Φ) prevents the HMM parameters being overtrained on the supervision data.

The MAP estimates of model parameters in equation (3.1) are obtained by defining an

auxiliary function and using the EM algorithm. The auxiliary function for the MAP estima-

tion can be obtained by adding a prior term to the ML auxiliary function in equation (2.46).

The MAP auxiliary function is expressed as

Q(M̂;M) = −
1

2

∑

tm

γm(t)
{

log |Σ̂m| + (ot − µ̂m)T Σ̂−1
m (ot − µ̂m)

}

+ log p(M̂|Φ) (3.2)

where M̂ is the new estimate of the model parameters, and γm(t) is the ML posterior occu-

pancy of component m at time t computed using current model parameters M.

An important issue for MAP estimation is the choice of the prior distribution. A closed

form solution for the MAP estimation can be obtained if a conjugate prior to the likelihood

is chosen as the prior distribution. However, for HMMs with GMMs as the state output

distribution, a finite-dimensional conjugate prior does not exist. In [57], parameters of

mixture components are assumed independent of the component weights, giving the joint

conjugate prior p(M̂|Φ) to the likelihood of complete data as the product of Dirichlet and

normal-Wishart distributions. The form of the prior for individual Gaussian component is

shown in equation 2.54. In this case, the MAP estimate of a mean vector is given by

µ̂m =

∑

t γm(t)ot
∑

t γm(t) + τ
+

τ
∑

t γm(t) + τ
µ̃m (3.3)

where µ̃m is the mean of the prior p(M̂|Φ) and the scaling factor τ controls the balance

between the ML estimate and the prior. It can be observed that when only a small amount

of data is available for adaptation, the MAP estimate is closer to the prior. As additional

data becomes available, the MAP estimate tends towards the ML estimate.

A major drawback of the MAP estimation is that only the models whose speech units are

observed in the adaptation data can be adapted. State-of-the-art speech recognition systems

usually have many thousands of Gaussians, and a large number of components will not be

adapted as they are unseen in the adaptation data. Several methods including regression

model prediction [2, 3] and structured MAP [160] have been proposed to overcome this

limitation.
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3.1.2 Linear Transforms

In this approach, linear transforms are used to adapt the means and/or covariance matrix of

Gaussian components of HMM output probability distributions to obtain a better represen-

tation of the target speaker. Several Gaussians can share the same transform and thus the

method is effective for a small amount of adaptation data as well.

The transforms can have several forms: a diagonal [94], a full [69, 103, 104] or a block-

diagonal matrix [29]. Generally, a bias term is also used in the transform. The choice of

the particular form and the number of transforms to be generated depends upon the amount

of adaptation data available [49, 50]. A diagonal transform can be robustly estimated from

a comparatively small amount of adaptation data. However, using full matrices can lead

to powerful transforms when they can be robustly estimated. A block-diagonal transform

is an intermediate form that transforms the parameters in blocks. For example, separate

transforms can be used for each blocks of parameters corresponding to static and dynamic

coefficients. A form of block-diagonal transform using separate transforms for static, first

derivative and second derivative parameter blocks can be expressed as





A 0 0

0 A(∆) 0

0 0 A(∆2)



 (3.4)

where A, A(∆) and A(∆2) are full matrix transforms for blocks corresponding to static, first

derivative and second derivative coefficients, respectively, and 0 is a null matrix.

Some of the popular forms of linear transforms used in model adaptation are described

below.

3.1.2.1 Mean MLLR

In a maximum likelihood linear regression (MLLR) [103], the mean vector of themth Gaussian

component is adapted as

µ̂m = Aµm + b = Wξm (3.5)

where µ̂m represents the adapted mean vector, ξm = [µT
m 1]T is the extended mean vector,

and W = [A b] is an affine linear transform. MLLR transforms are estimated by maximising

the likelihood of adaptation data as

Ŵ = arg max
W

{

log p(O|H;W,M)
}

(3.6)
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The ML objective function is maximised using the EM algorithm by defining an auxiliary

function as [103]

Q(Ŵ;W,M) = K̃ +
∑

mt

γmlm (t) logN (ot;Ŵξm,Σm) (3.7)

where γmlm (t) is the occupation probability for component m at time t computed using the

current model M and current estimate of the transform W, and K̃ includes constant terms

independent of Ŵ. The above auxiliary function can be re-expressed ignoring the constant

term as

Q(Ŵ;W,M) = −
1

2

∑

tm

γmlm (t)
(

ot − Ŵξm

)T

Σ−1
m

(

ot − Ŵξm

)

(3.8)

The above auxiliary function is similar to the standard ML auxiliary function in equa-

tion (2.46) used to estimate component parameters, except that adapted means are used,

and γmlm (t) is now computed using current estimate of transform and model parameters. As-

suming covariance matrices to be diagonal, the ML estimate of the dth row of transform ŵd

is given by

ŵd =
(

Gml
d

)−1
kml
d (3.9)

where for the dth row of the transform, the sufficient statistics are given as

Gml
d =

∑

tm

γmlm (t)

σ2
md

ξmξ
T
m (3.10)

kml
d =

∑

tm

γmlm (t)otd
σ2
md

ξm (3.11)

In the above equations, otd represents the dth element of observation vector ot, and σ2
md is

the dth diagonal element of Σm.

3.1.2.2 Variance MLLR

In a variance MLLR [44, 51], the covariance matrix of the mth component is adapted as

Σ̂m = LT
mHLm (3.12)

where H is a linear transform, Lm is the inverse of the Choleski factor of Σ−1
m (i.e. Lm =

C−1
m , where Σ−1

m = CmCT
m). Due to the high computation cost involved with this form, an

alternative form was proposed in [44] as

Σ̂m = HΣmHT (3.13)
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In this form, the likelihood can be expressed with modified mean vectors and observations,

as

logN (ot;µm, Σ̂m) = logN
(

H−1ot;H
−1µm,Σm

)

− log |H|. (3.14)

This leads to the efficient computation of likelihoods for diagonal covariance matrices, simply

by modifying means and observations. The transform estimation formulae for the variance

adaptation are given in [44].

3.1.2.3 Constrained MLLR

In constrained MLLR [29, 44], both the mean vector and the covariance matrix of Gaussian

components are adapted by using a linear transform, which is constrained to be the same in

both cases, as

µ̂m = Ãµm − b̃ (3.15)

Σ̂m = ÃΣmÃT (3.16)

where Ã represents a constrained linear transform and b̃ is a bias on the mean vector. The

constrained MLLR in the model domain can be equivalently applied in the feature space,

which is computationally more efficient. This equivalence can be written as

logN (ot; µ̂m, Σ̂m) = logN (ôt;µm,Σm) + log |A| (3.17)

which gives

ôt = Ã−1ot + Ã−1b̃ = Aot + b = Wζt (3.18)

where ζt is the extended observation vector [oTt 1]T. The full CMLLR transform in feature

space can be estimated using the EM algorithm by defining an auxiliary function as [44]

Q(Ŵ;W,M) = −
1

2

∑

tm

γmlm (t)

{

(

Ŵζt − µm
)T

Σ−1
m

(

Ŵζt − µm
)

− log
(

|Â|2
)

}

(3.19)

Given sufficient statistics [44]

Gml
d =

∑

m

1

σ2
md

∑

t

γmlm (t)ζtζ
T
t (3.20)

kml
d =

∑

m

µmd
σ2
md

∑

t

γmlm (t)ζt (3.21)

where σ2
md is the dth diagonal element of covariance matrix Σm and µmd is the dth element

of µm, the dth row of the transform ŵd can be estimated by

ŵd =
(

Gml
d

)−1 (
αpd + kml

d

)

(3.22)
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In the above equation, pd is the extended cofactor vector [cd1 . . . cdD 0]T, with cofactor

cij = cof(Aij), and α satisfies the quadratic expression given as

α2pT
d

(

Gml
d

)−1
pd + αpT

d

(

Gml
d

)−1
kml
d − β = 0 (3.23)

where β =
∑

tm γ
ml
m (t) is the total occupancy. This leads to an iterative solution over the

rows, as the estimation of the one row of the transform is dependent upon all other rows

through the cofactors.

3.1.2.4 MAP Linear Regression (MAPLR)

The linear transforms are quite effective for adaptation however they may have unreliable

estimates when the amount of adaptation data is very small. This may distort the underlying

structure of the acoustic space [21]. Therefore, a prior distribution over the transforms can

be introduced as a constraint similar to MAP adaptation of model parameter in section 3.1.1.

This is called MAP linear regression (MAPLR) [21, 164]. The MAPLR transform Ŵ is

estimated as1

Ŵ = arg max
W

{

p(O|H;W,M)p(W|φ)
}

(3.24)

where p(W|φ) is the prior over transform with hyperparameters φ. The above MAP objective

function is optimised using the EM algorithm by defining an auxiliary function. The auxiliary

function for MAPLR estimation can be obtained by adding the prior term to the auxiliary

function for ML transforms given in equation (3.7). This is expressed as

Q(Ŵ;W,M) =
∑

mt

γmlm (t) log p(ot|Ŵ,µm,Σm) + log p(Ŵ|φ) (3.25)

The choice of the form of prior and its estimation is an important consideration in MAP

estimation. As noted earlier, if a conjugate prior is chosen, the MAP optimisation problem

can be greatly simplified. In [21], a matrix variate normal prior is used for the mean transform.

This is expressed as

p(W|φ) =
1

√

(2π)D(D+1) |ΩW|D |ΣW|(D+1)
exp

(

−
1

2
tr
(

ΩW−1(W − MW)TΣW−1(W − MW)

)

(3.26)

where MW is the mean matrix of the transform W and

Σ = E
{

(W − MW)(W − MW)T
}

(3.27)

Ω = E
{

(W − MW)T (W − MW)
}

/K (3.28)

1A prior scaling factor αp may be used in practice to control the contribution of the transform prior.
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In the above equation, K is a constant that ensures appropriate power normalisation. This

distribution is closely related to multivariate normal distribution as

vec(W) ∼ N
(

vec(W); vec(MW),ΩW ⊗ ΣW
)

(3.29)

where ⊗ is the Kronecker product. In this work, the rows of transforms are assumed indepen-

dent to be consistent with the diagonal covariance matrices of the HMM components, and a

Gaussian prior is imposed over the transform as

p(W|φ) =

D
∏

d=1

N (wd;µ
W
d,Σ

W
d) (3.30)

The hyperparameters of the transform prior φ = {µW
d,Σ

W
d; 1 ≤ d ≤ D} are estimated using

an empirical Bayesian approach using a set of transforms. The set of transforms is obtained

from the training data set speakers in this work.

The auxiliary function in equation (3.25) with this prior for MLLR transforms leads to

sufficient statistics for dth row of the transform as

G
map

d =
∑

tm

γmlm (t)

σ2
md

ξmξ
T
m + ΣW −1

d (3.31)

k
map

d =
∑

tm

γmlm (t)otd
σ2
md

ξm + ΣW −1
d µW

d (3.32)

This yields the MAPLR transform for the dth row as

ŵd =
(

G
map

d

)−1
k
map

d (3.33)

It should be noted that for CMLLR transforms, the likelihood computation in equation

(3.17) involves |A| and it is difficult to find a conjugate prior for it. Therefore, constrained

transforms are not investigated further in the Bayesian framework in this work.

3.1.3 Cluster Based Adaptation

The methods described above are based on a standard set of HMMs and do not explicitly

use information about characteristics of an HMM set for particular speakers. An alternative

approach is to perform adaptation on a number of HMM sets corresponding to different

speaker groups or clusters [189]. One of the simplest examples is the use of gender dependent

models. In the traditional cluster based approach [37, 95], several cluster-dependent models

are built, and the appropriate one is chosen for a particular speaker during recognition.

Instead of such a hard assignment to clusters, the adapted model for a particular speaker can

be obtained by a linear combination of a set of cluster-dependent models [41, 45, 97]. In these

methods, a set of cluster-dependent models need to be estimated first, and is thus related to

training of multiple cluster HMMs. This will be described in section 3.2.2.
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3.1.4 Regression Classes

As more adaptation data become available, the adaptation can be improved by increasing

the number of transforms, rather than using a single global transform. A regression class

tree [49, 102] is often used to cluster the components into different hierarchical groups so that

similar components can be transformed in a similar way. A transform is generated for each

group (node) of components with sufficient adaptation data, rather than using an identical

global transform for all components. In this case, rather than accumulating statistics over

all components, statistics for Gaussian components within each base class are accumulated

separately. Then a transform is estimated for each of the base classes using corresponding

statistics, which can adapt the parameters more effectively.

An example regression class tree based on expert knowledge is shown in figure 3.2. The

regression class tree has five terminal nodes (base classes), and if there is a sufficient amount of

data associated with each of them, five different transforms are generated. This is determined

by comparing the occupation counts for each node to a predefined threshold value. When

there is not a sufficient amount of data associated with a node, the data from sibling nodes are

pooled into the parent node, and a transform is generated for it, provided the data becomes

sufficient. The transform generated for a parent node is used for its children nodes with

an insufficient amount of adaptation data. In the example regression class tree shown, the

data for the unvoiced component group, marked by a dotted circle, is not sufficient, and a

transform will not be generated for it. Rather the transform for the consonant group will be

used for the unvoiced components, which is estimated by pooling the data from the voiced

and unvoiced constant groups.

Global

Background Pause Vowel

Consonant

Voiced Unvoiced

Silence Speech

Figure 3.2: A regression class tree for adaptation transforms

figure/regtree-expert.eps


CHAPTER 3. ADAPTATION AND ADAPTIVE TRAINING 56

In practice, the regression class trees are generally built by automatically clustering the

Gaussian components which are close in the acoustic space [49, 161]. This can be obtained

through k-means clustering using the Kullback-Leibler distance measure [161, 184] or using

a centroid-splitting algorithm with a Euclidean distance [196].

The regression class tree provides an elegant way to scale the number of transforms gen-

erated to the available adaptation data, and is widely used in state-of-the-art systems.

3.1.5 Extensions of Standard Techniques

The linear transform based adaptation schemes described above are widely used in large

vocabulary speech recognition systems. In unsupervised adaption, the transcript for the

adaptation data is not known and is usually generated using SI models. The generated super-

vision hypotheses may contain several errors, and transforms cannot be reliably estimated by

using such supervision hypotheses. The performance of the speech recognition system may

degrade due to over-tuning to the erroneous supervision hypothesis. One way to improve

the supervision hypothesis is to iteratively refine it, using multiple iterations of decoding and

adaptation [70, 194]. In the iterative MLLR [194], estimated MLLR transforms are used

to adapt the models and regenerate the supervision hypothesis, which are then used for re-

estimating the transforms. The process is also illustrated in figure 3.3, and can be compared

to the unsupervised adaptation process in figure 3.1.

Recognise Adaptation
Data

Generate Transforms

Speaker Transforms

HypothesisAdaptation 
Data

Figure 3.3: Iterative MLLR

A number of other techniques have been investigated as well, to deal with the problem of

erroneous supervision hypothesis. Some of them are described below.

figure/iterativemllr.eps


CHAPTER 3. ADAPTATION AND ADAPTIVE TRAINING 57

3.1.5.1 Confidence Based Adaptation

In confidence score based adaptation [4, 31, 70, 165, 172, 205], a confidence score associated

with each word of the supervision hypothesis is used to judge and determine the high quality

adaptation data. In this approach, a confidence score is computed for each word of the

supervision hypothesis, and the adaptation data corresponding to words with high confidence

scores only is used to accumulate the statistics to generate the transforms. The words with

high confidence scores are assumed less prone to errors. The adaptation data corresponding to

words with confidence scores below a threshold is discarded. The word posterior probabilities

from decoding run can be used as confidence scores [31]. The word-level posterior probabilities

are computed from a word lattice containing the acoustic and language model likelihoods as

well as start and end times for words. A forward-backward algorithm is first used to compute

lattice arc posterior probabilities

P (l|O) =

∑

q(l,W)) p
1/κ(O|q(l,W))P (W)

p(O)
(3.34)

where q(l,W)) is the path through the arc l that corresponds to word W, and κ is an acoustic

score scaling factor. In the above equation, p(O|q(l,W)) is the likelihood of path q(l,W),

P (W) is LM probability, and p(O) is the data likelihood approximated by summing over

all the paths through the lattice. The arc posteriors corresponding to the same word at a

given time are summed to obtain time-dependent word posteriors. The final word posterior

probability of a word for particular start and end times is taken as the geometric mean of the

time-dependent posteriors for the word in the interval, which is used a confidence score for the

word. The lattice-based methods tend to overestimate posterior probabilities of words. This

may lead to poor confidence scores, specially when lattices are small and contain only a small

part of likely word sequences. A decision tree trained using scoring results of hypotheses is

used for piece-wise linear mapping of posterior probabilities to confidence scores in [31].

The confidence based adaptation is useful for the scenario where the generated supervision

hypothesis has a high word error rate, as it discards the words with high error rate from the

supervision. It has been found to improve the performance of speech recognition system

compared to the standard adaptation techniques [4, 31, 174, 205]. However, it also reduces

the amount of adaptation data, and if the amount of data becomes very small, it may not give

reliable estimates of transforms. This problem can be dealt by using the confidence score to

linearly weight the statistics for transform generation, rather than discarding segments [33].
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3.1.5.2 N-best Adaptation

In the N-best list based adaptation approach [115, 116, 199], a number of possible hypotheses

are used for adaptation purpose rather than just using the 1-best hypothesis. The N-best list

may be the output produced by a multipass framework for rescoring or it can be generated us-

ing an SI model. N-best lists are generally generated at the utterance level or short segments,

as their size increases exponentially with the number of words in the hypothesis. So there is

only a small amount of data associated with the hypotheses in the N-best list and therefore

N-best list based adaptation generally uses MAP estimation [115, 199]. In [115, 116], only

a bias to the mean is considered, whereas a full transform is used in [199]. The N-best list

based adaptation and rescoring framework in [199] is given in algorithm 2. This framework is

used in a self-adaptation mode to adapt and decode given speech segments using N-best lists.

In the framework, a separate transform is estimated corresponding to each of the hypothe-

sis in the N-best list and the hypothesis giving the best inference criteria is selected as the

recognition output. The approach in [199] is motivated from an approximation to Bayesian

adaptive inference as described in section 5.2.3.

Step 1: Start with N-best hypotheses.

H ∈ {H1, . . . ,HN} (3.35)

Step 2: Estimate transforms for each hypothesis H.

Ŵ(H) = arg max
W

{

p(O|H;W,M)p(W|φ)
}

(3.36)

Step 3: Select the best hypothesis.

Ĥ = arg max
H

{

p(O|H;W(H),M)p(W|φ)P (H)
}

(3.37)

Algorithm 2: The N-best adaptation and decoding framework

The N-best list can be used in other ways for adaptation as well. In [116], a final trans-

form is obtained by smoothing the transforms corresponding to the N-best hypotheses and is

subsequently used for decoding. This can be given for full transforms as

Ŵ =

∑

H C(H)W(H)

∑

H C(H)
(3.38)

where C(H) is a weight associated with each of the hypothesis. These weights are selected to

be some confidence measures such as likelihood ratio given as

C(H) = exp
(

η
(

log p(O|H) − log p(O|H1)
)

)

(3.39)
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where η is a heuristic control parameter. In [129], all hypotheses in the N-best list are used

as supervision to estimate a transform as

Ŵ = arg max
W

{

∑

H

C(H)p(O|H;W,M)p(W|φ)
}

(3.40)

This approach is similar to the lattice-based adaptation described below.

The advantage of the N-best adaptation approach is that it can be used for instantaneous

adaptation and decoding of speech. However, the use of an N-best list prevents utilising large

amounts of data for adaptation due to exponentially increasing size of the N-best list.

3.1.5.3 Lattice Based Adaptation

An alternative solution to the problem of the erroneous hypothesis is to use lattice based

adaptation [137, 174, 190, 191], as lattices have much lower oracle error rate than that of 1-best

hypotheses. A lattice-based forward-backward algorithm is run over the lattice hypothesis,

and the occupation probabilities are computed for each component. In this case, occupation

probabilities represent the posterior probability of the component given all possible hypotheses

in the lattice. The accumulated statistics are then used to estimate the transforms as in

the standard MLLR or CMLLR estimation. The method has been found to give significant

improvement in the performance, and is widely used in the multipass framework in state-of-art

systems.

3.2 Adaptive Training

The training of speech recognition systems requires a large amount of speech data. As it

is difficult to obtain large amounts of data recorded in a controlled environment, recently

there has been a growing trend towards building a speech recognition system on found data,

like broadcast news and conversation. Such data usually consists of utterances from different

acoustic environments and several hundred speakers, and is inherently non-homogeneous in

nature.

The standard approach for such a case is to build a system on all the data, treating them

as a single homogeneous block of data independent of the source acoustic environment or

speakers. This approach is referred as multistyle training [43]. The problem with this approach

is that the trained acoustic models may not extract and represent the speech variabilities

properly from non-homogeneous data that contains many other non-speech variabilities as

well. The HMMs are forced to model the non-speech variabilities in speech as well, across a

large number of speakers or environments. Therefore, the resulting multistyle models have
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large within-class variances and reduced discriminative ability. To alleviate the problem, some

feature normalisation techniques1 like cepstral mean and variance normalisation [6, 193],

Gaussianisation [53, 105, 153] and vocal tract length normalisation [101] as described in

section 2.2.3 are used to remove the non-speech variabilities from features to some extent.

But still these methods cannot completely remove the non-speech variabilities from the given

speech data.

An alternative way to deal with the training on such non-homogeneous data is to model

speech and non-speech variabilities separately. This approach is called adaptive training [5,

44]. In an adaptive training scheme, speech variabilities are modelled by canonical HMMs,

whereas the non-speech variabilities are modelled by a set of transforms. The commonly used

forms of adaptive training are described below.

3.2.1 Speaker Adaptive Training (SAT)

Speaker adaptive training (SAT)2 [5, 44] is a useful technique for building speech recognition

systems on non-homogeneous data. The structure of SAT is shown in figure 3.4. In SAT, a set

of speaker transforms, as well as a set of canonical models, is trained. The canonical models

are speaker or environment independent, whereas a specific set of transforms is associated

with each homogeneous block. The models for each homogeneous block are obtained by

adapting the canonical models with the specific set of transforms corresponding to the block.

Block 1
Homogeneous

Homogeneous

Adapted

AdaptedTransform
S

Transform
1

Canonical
Model

Model S

Model 1

Block S

Figure 3.4: The speaker adaptive training (SAT) on non-homogeneous data

The canonical models and transforms set are estimated in an iterative fashion: first, the

speaker-specific transforms are found; and then the canonical models are updated given these

transforms. In ML-based SAT, both the transforms and the canonical models are estimated

using the ML criterion. The iterative training procedure for ML-SAT is given in algorithm 3.

1The feature normalisation techniques can be also regarded as one form of adaptive training, as they
attempt to separate or isolate non-speech variabilities across different non-homogeneous blocks.

2The term ‘speaker’ refers to one homogeneous block of data in a broad sense.

figure/sat.struct.eps
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Step 1: Initialise canonical model set and transforms.
Mml: SI Model

W
(s)
ml : A

(s)
ml = I,b

(s)
ml = 0

Step 2: Estimate transforms for each speaker.

W
(s)
ml = arg max

W

{

log p(O(s)|H(s);W,Mml)
}

(3.41)

Step 3: Update model parameters.

Mml = arg max
M

{

S
∑

s=1

log p(O(s)|H(s);W
(s)
ml ,M)

}

(3.42)

Step 4: Go to step (2) unless converged.

Algorithm 3: The ML-SAT algorithm

In the ML-SAT algorithm shown, the canonical model Mml is first initialised with the ML

speaker-independent (SI) model, and speaker-specific affine transforms W
(s)
ml are initialised

with an identity transform (I) and zero bias (0). MLLR [103] transforms, W
(s)
ml , for each

speaker s are estimated using equation (3.41). In the equation, O(s) and H(s) are the obser-

vation and the corresponding transcripts for data from speaker s, respectively and Mml is

the current canonical model set. Given the set of estimated transforms, the model parame-

ters are updated by maximising the log-likelihood over the training data from all S speakers

as in equation (3.42). The expectation maximisation (EM) algorithm is used for estimating

the transform parameters and canonical models through an iterative process. The required

auxiliary function can be derived from the expression for the likelihood, which can be given

for speech data from all speakers O = {O(1), . . . ,O(S)} as1

p(O|H,M,W) =
S
∏

s=1

p(O(s)|H(s),M,W(s)) (3.43)

where s represents a speaker or homogeneous block of data, W = {W(1), . . . ,W(S)} is the

set of transforms, and H = {H(1), . . . ,H(S)} is the set of transcripts for the corresponding

observation sequences. The likelihood for each speaker can be expressed as a marginalisation

over all possible component sequences in a similar way to equation (2.44) as

p(O(s)|H(s),M,W(s)) =
∑

θ

P (θ|H(s),W(s),M)
∏

t

p(ot|M,W(s), θt) (3.44)

1The label ml has been dropped from the model and transforms hereafter in this chapter.
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However, due to the hidden component sequence, the model parameters cannot be directly

estimated from the above equations. Therefore, a lower-bound to the likelihood in the above

equation is used as an auxiliary function, and the EM algorithm is used to iteratively update

the parameters. The auxiliary function for estimating the model parameters given the current

estimate of transform set W and model M is given in a similar way to equation (2.45) as

Q(M̂;M,W) =
〈

log p(O,θ|M̂,W,H)
〉

P (θ|O,H,M,W)
(3.45)

Similarly, the auxiliary function for estimating transforms for each speaker is given by

Q
(

Ŵ(s);W(s),M
)

=
〈

log p(O(s),θ|M,Ŵ(s),H(s))
〉

P (θ|O(s),H(s),M,W(s))
(3.46)

The models and transforms are estimated in an interleaved fashion as shown in algorithm 3,

using the auxiliary functions given in equations (3.45) and (3.46). It should be noted that

each of the estimation steps is itself an iterative procedure. Moreover, the model parameter

estimation itself involves interleaved updates for mean vectors and covariance matrices.

Canonical models estimated with SAT cannot be directly used for recognition. As un-

supervised adaptation is being used in this work, an initial supervision hypothesis must be

obtained. An SI model is often used for generating the supervision hypothesis for the given

test data. Given this hypothesis, test-set speaker transforms are estimated in a similar fashion

to the training procedure in algorithm 3, except that the model update stage in step (3) is

omitted. The recognition procedure using the ML-SAT system is also illustrated in figure

3.5. As it can be seen in the figure, the ML transform for test data is first estimated using

the ML-SI model and then subsequently using each iteration’s ML-SAT models, given the

transforms estimated using the model at previous iteration. The final ML-SAT models and

estimated test set transforms are used for decoding the test data.

Several forms of transforms are possible for SAT [5, 44]. The MLLR and CMLLR based

ML-SAT schemes are described in the next sections.

3.2.1.1 MLLR-based SAT

In MLLR-based speaker adaptive training [5], a distinct transform is estimated for each

speaker and applied to mean vectors of canonical models to obtain the adapted model pa-

rameters for the speaker. The form of the transform and adaptation has been described in

section 3.1.2.1. However, as data from a number of speakers are involved in SAT, the MLLR

transform is indexed with a speaker index s, and re-expressed as

µ(s)
m = A(srm)µm + b(srm) = W(srm)ξm (3.47)
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ML-SI ML-transforms

ML-SAT (1)

ML-SAT (2)

ML-SAT (N)

Trained Models Test Set Transforms

ML-transforms

ML-transforms

ML-transforms

Figure 3.5: The recognition setup for test data using the ML-SAT system. ML-SAT(k)
represents canonical models from the kth iteration of the ML-SAT procedure.

where rm is the regression base class of the Gaussian component m, and W(sr) = [A(sr) b(sr)]

is the transform for speaker s and regression base class r. µ
(s)
m is the adapted mean of

component m for speaker s. The estimation of MLLR transforms is also the same as given in

equations (3.8) to (3.11), though the estimation now uses the current canonical models and

the current estimate of the MLLR transform to obtain component posteriors. The auxiliary

function for updating the canonical model parameters using the ML criterion can be obtained

from equation (3.45), and is given by

Q(M̂;M,W) = −
1

2

∑

sm

∑

ts

γmlm (ts)

{

log
∣

∣Σ̂m

∣

∣

+
(

o
(s)
ts − A(srm)µ̂m − b(srm)

)T

Σ̂−1
m

(

o
(s)
ts − A(srm)µ̂m − b(srm)

)

}

(3.48)

where M̂ is the new estimate of canonical models, W represents the MLLR transform set

consisting of current estimates of transforms for all speakers and baseclasses, and γmlm (ts) is the

posterior occupancy of component m at time ts for speaker s based on the current canonical

model M and the transform estimates W. The update to the means and the covariance is

done one by one in an interleaved fashion, assuming one to be fixed while updating the other.

The mean can be first updated by assuming the covariance matrix to be fixed at the current

figure/mlsateval.eps
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estimate Σm. This gives the sufficient statistics for mean update as [5]

Gml
m =

∑

sts

γmlm (ts)A
(srm)TΣ−1

m A(srm) (3.49)

kml
m =

∑

sts

γmlm (ts)A
(srm)TΣ−1

m

(

o
(s)
ts − b(srm)

)

(3.50)

The new estimates of the mean is given by

µ̂m =
(

Gml
m

)−1
kml
m (3.51)

The covariance is estimated after the mean update, and is given by

Σ̂m = diag







∑

sts
γmlm (ts)

(

o
(s)
ts −W(srm)ξ̂m

)(

o
(s)
ts − W(srm)ξ̂m

)T

∑

sts
γmlm (ts)






(3.52)

where ξ̂m = [µ̂T
m 1]T. In MLLR-based SAT, re-estimation of means using sufficient statistics

in equation (3.49) requires considerable memory when using a full transform [113]. Besides,

the means and variances cannot be updated in a single pass.

3.2.1.2 CMLLR-based SAT

In CMLLR based SAT [44], constrained transforms as described in section 3.1.2.3 are used

for each speaker or homogeneous block, along with the canonical models. Using the speaker

and the regression base class index, the form of adaptation with CMLLR can be re-expressed

as

o
(srm)
ts = A(srm)o

(s)
ts + b(srm) = W(srm)ζ

(s)
ts (3.53)

where rm is the regression base class the Gaussian component m belongs to, and W(sr) =

[A(sr) b(sr)] is the CMLLR transform for speaker s and regression base class r, o
(srm)
ts is the

transformed observation, adapted using W(srm), and thus is dependent upon the regression

base class. These CMLLR transforms for the SAT system can be estimated using the auxiliary

function in equation (3.48), and leads to the same update formulae as given in section 3.1.2.3,

however now the occupation probabilities are based on current estimate of the canonical

models and the transforms. The auxiliary function for update of canonical model parameters

in the CMLLR based SAT can be derived from equation (3.48), and is given by [44]

Q(M̂;M,W) = −
1

2

∑

sm

∑

ts

γmlm (ts)

{

log
∣

∣Σ̂m

∣

∣+
(

o
(srm)
ts − µ̂m

)T

Σ̂−1
m

(

o
(srm)
ts − µ̂m

)

}

(3.54)
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where W is now the set of current estimates of CMLLR transforms for each speaker, and

γmlm (ts) is the posterior occupancy based on current estimate of models and transforms (trans-

formed observations). This auxiliary function differs from the standard ML auxiliary function

for model estimation in equation 2.46 only in that the transformed observations, o
(srm)
ts , are

used. The maximisation of the above auxiliary function yields the update for mean and

covariance matrices

µ̂m =

∑

sts
γmlm (ts)o

(srm)
ts

∑

sts
γmlm (ts)

Σ̂m = diag

(

∑

sts
γmlm (ts)(ô

(srm)
ts − µ̂m)(o

(srm)
ts − µ̂m)T

∑

sts
γmlm (ts)

)

These update formulae are similar to the standard ML estimation in equations (2.42) and

(2.43), and thus leads to similar storage requirements to the standard ML training.

3.2.2 Cluster Adaptive Training (CAT)

In cluster adaptive training [41, 46], multiple sets of HMMs, one for each cluster of training

data, are used as canonical models. A set of interpolation weights are used to combine them

to obtain the models for the target speaker or environment. Therefore, a model for a target

environment is given as the weighted sum of the multiple sets of HMMs from different clusters,

as shown in figure 3.6. When these weights are binary 1/0, the method reduces to a cluster

dependent modelling, where each cluster has its own set of models.

Cluster 1

Homogeneous

Homogeneous
Block 1

Adapted

Adapted

Weight
Vector 1

Weight
Vector S

Cluster P

Canonical
Model

Model S

Model 1

Block S

Figure 3.6: The cluster adaptive training (CAT) on non-homogeneous data

In the commonly used CAT systems, only means of the components are assumed distinct

for each cluster, and other parameters including covariances, mixture component weights

and transition matrices are assumed to be the same for all clusters. The canonical model

figure/cat.struct.eps
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parameters in CAT for each component m consist of a prior cm, a covariance matrix Σm, and

a set of P means given by

Mm =
[

µ
(1)
m . . . µ

(P )
m

]

where µ
(p)
m is the mean associated with cluster p and P is the total number of clusters.

The transform parameters in CAT are cluster weights vector λ(s) for each speaker s can be

expressed as

λ(s) =
[

λ
(s)
1 . . . λ

(s)
P

]T

(3.55)

where λ
(s)
p is the interpolation weight associated with cluster p. The adapted mean vector

corresponding to a particular speaker s is given by

µ(s)
m = Mmλ

(s) (3.56)

The parameter estimation for maximum-likelihood CAT has been described in [41]. The

expectation maximisation algorithm is used to estimate the canonical models and cluster

weights in an interleaved fashion. The trained canonical models are used in recognition by

estimating the cluster weights for the given adaptation data and the corresponding transcript.

The CAT scheme described above is also referred as model-based CAT, where the clusters

are represented as a distinct set of mean vectors. An alternative form of CAT known as

transform-based CAT has been also described in [41], in which the clusters are represented

by a set of cluster-specific transforms of a common set of canonical means. This gives a more

compact representation of clusters.

A closely related technique to CAT is eigenvoices [97], which also finds the means for the

adapted model as a weighted sum of the cluster-dependent HMMs. However, this method, in

its original form, finds the clusters, called eigenvoices, by using principal component analysis

(PCA) of a set of supervectors constructed from all the mean values in the set of speaker

dependent HMM systems [97]. A maximum-likelihood eigen-decomposition algorithm is used

to estimate weights for eigenvoices during adaptation [97], which is identical to the model-

based CAT. In [16], the use of MAP and MLLR for estimating the required speaker dependent

models has been investigated.

3.3 Summary

In this chapter, the techniques for adaptation and adaptive training have been reviewed. The

mismatch between training and testing acoustic condition is reduced by adapting the trained
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acoustic models to the test environment to obtain a better performance. This is done by

using different adaptation schemes like MAP, MLLR, CMLLR, MALPR or the cluster-based

approach to adapt mean and/or covariance of Gaussian components of HMMs. A regression

class tree is also commonly used to generate multiple transforms depending upon the amount

of adaptation data. The adaptation can be supervised or unsupervised depending upon the

availability of supervision transcripts for given adaptation data and it can be performed either

in offline or online mode. In unsupervised adaptation, the gain is reduced compared to the

supervised adaptation due to erroneous supervision hypotheses. Confidence, N-best list and

lattice based adaptation can be used to partly deal with this problem of erroneous supervision

hypotheses. Similarly, to deal with the non-homogeneous data in training, adaptive training

schemes such as speaker adaptive training (SAT) and cluster adaptive training (CAT) can be

used. In SAT, a speaker-independent canonical model set and speaker-specific transforms are

used, and the model for the target environment is obtained by adapting the canonical model

with a target transform. On the other hand, CAT has one HMM set for each cluster of training

data, and the model for the target environment is obtained through their interpolation. In

this way, adaptive training attempts to model speech and non-speech variabilities separately.



CHAPTER 4
Discriminative

Adaptation and Adaptive
Training

Adaptation and adaptive training schemes play an important role in speech recognition

systems. In the previous chapter, the training criteria to estimate models and trans-

forms were based on maximum likelihood. However, there are limitations of maximum likeli-

hood estimation as described in section 2.3.2, and discriminative training of HMMs has been

found to improve the performance of speech recognition systems [92, 130, 140, 154]. There-

fore, the use of discriminative criteria such as MMI and MPE has been also investigated

for estimating adaptation transforms and canonical models [189]. This chapter describes

several discriminative transforms as well as commonly used discriminative adaptive training

of acoustic models. The discriminative linear transforms (DLTs) [63, 118, 171, 175, 182]

and discriminative mapping transforms (DMTs) [202, 203] based adaptation are described

in section 4.1. This is followed by the description of MLLR and DLT based discriminative

speaker adaptive training [106, 118, 171, 180], in section 4.2. Finally, an adaptive training

scheme based on discriminative mapping transforms is proposed in section 4.3 to deal with

68
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the problem of unsupervised discriminative adaptation.

4.1 Discriminative Adaptation

The traditional adaptation schemes use ML transforms that maximise the likelihood of adap-

tation data. However, maximising the likelihood of data is not closely related to word error

rate in the speech recognition task. ML estimation assumes HMMs as a true generative model

of speech such that maximising the likelihood of adaptation data is expected to give good

performance on unseen test data. Moreover, ML estimation can give an optimal consistent

estimate with minimum variance only when there is sufficient amount of adaptation data

and HMMs are the true source of data. Otherwise, the ML criterion may lead to unreliable

estimates. However, most of the practical speech recognition systems may have only a small

amount of adaptation data. Therefore, the use of discriminative criteria in model adaptation

is very reasonable as discriminative training of models have led to performance improvements

in LVCSR compared to traditional ML training. A number of approaches for discrimina-

tive adaption has been investigated using linear transforms to adapt Gaussian means and

covariances. These transforms are estimated using one of the discriminative criteria such

as maximum mutual information (MMI) [10] or minimum phone error (MPE) [140]. Dis-

criminative linear transforms (DLTs) [63, 118, 171, 175, 182] and discriminative mapping

transforms [202, 203] are described in the next sections.

4.1.1 Discriminative Linear Transforms (DLT)

The discriminative linear transforms (DLTs) [63, 118, 171, 175, 182] use one of the discrimi-

native criteria such as MMI, MPE or MWE to estimate linear transforms which are then used

to adapt models. These transforms may be mean, diagonal or full covariance transforms, or

constrained transforms. A discriminative mean transform, based on the MPE criterion, is

described in this section. The transforms based on other discriminative criteria can be also

estimated in a similar manner. A regression class tree as described in section 3.1.4 can be

also used in the same manner as used for ML transforms to generate multiple transforms by

grouping Gaussians to yield separate sufficient statistics. The form of the DLT described in

this section is same as given in equation (3.5) for transformation of means and is reproduced

here

µ̂m = Aµm + b = Wξm (4.1)
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where µ̂m represents the adapted mean vector, ξm = [µT
m 1]T is the extended mean vector,

and W = [A b] is an affine linear transform, though now estimated using a discriminative

criterion.

The MPE criterion based mean transform is obtained by optimising the MPE objective

function given as [182]

F(W) =
∑

H

P (H|O,W,M)A(H,Hr)

=
∑

H

p(O|H,W,M)P (H)
∑

H̆ p(O|H̆,W,M)P (H̆)
A(H,Hr) (4.2)

where the raw phone accuracy A(H,Hr) between the hypothesis H and reference supervision

Hr has been used in place of loss function for convenience in description. The difference with

equation (2.63) is that the adaptation transform has been included in the criterion. A weak-

sense auxiliary function [140] as used in the discriminative training of HMMs in section 2.3.4.2,

is used to optimise the above objective function as well and obtain new estimates of transforms

Ŵ. The auxiliary function is based on the log-likelihood conditioned on phone arcs and is

given as [180]

Q(Ŵ;W) =
∑

l

∂F(Ŵ)

∂ log p(O|l,Ŵ,M)

∣

∣

∣

Ŵ=W

log p(O|l,Ŵ,M)

=
∑

l

γ
mpe

l log p(O|l,Ŵ,M). (4.3)

In the above equation, log p(O|l,Ŵ,M) is the log-likelihood for given phone arc l given the

transform and models parameters, and γ
mpe

l is the “posterior probability” of arc l defined by

γ
mpe

l =
∂F(Ŵ)

∂ log p(O|l,Ŵ,M)

∣

∣

∣

∣

Ŵ=W

(4.4)

where W is the current estimate of the transform. The MPE posterior occupancy γ
mpe

l is

computed in a similar way as described in section 2.3.4.2. γ
mpe

l can be split into numerator

and denominator parts depending upon its sign, as in equations (2.102) and (2.103), thus

leading to numerator and denominator auxiliary functions. A smoothing term Qsm(Ŵ;W) is

also added to the auxiliary function to ensure its stability [180], which is maximum at current

estimate of transforms, so that

∂Qsm(Ŵ;W)

∂Ŵ

∣

∣

∣

Ŵ=W

= 0. (4.5)

The use of an I-smoothing prior has been also found to be useful in discriminative train-

ing [142], and is thus included in the auxiliary function as QI(Ŵ;W). Therefore, the overall
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auxiliary function including smoothing terms can be given as

Q(Ŵ;W) = Qnum(Ŵ;Ŵ) −Qden(Ŵ;W) + Qsm(Ŵ;W) + QI(Ŵ;W)

=
∑

d

(

Qnum(ŵd;wd) −Qden(ŵd;wd) + Qsm(ŵd;wd) + QI(ŵd;wd)
)

(4.6)

where ŵd is the dth row of the transform Ŵ arranged as a column vector, and each rows of

the transform are assumed independent of each other.

The numerator auxiliary function Qnum(Ŵ;W) can be expressed in the same form as the

MLLR auxiliary function in equation (3.8) and is expressed as

Qnum(Ŵ;W) = K̃num +
∑

mt

γnumm (t) logN (ot;Ŵξm,Σm) (4.7)

where ξm = [µT
m 1]T is an extended mean vector, K̃num is a constant and γnumm (t) is numerator

occupancy of themth mixture component at time t as defined in equations (2.102) and (2.103).

Considering each row ŵd independently for a diagonal covariance matrix case, the numerator

auxiliary function can be expressed in a sufficient statistics form as

Qnum(ŵd;wd) = G(ŵd;Γ
num)

= Knum
d −

1

2
ŵT
dG

num
d ŵd + ŵT

dk
num
d (4.8)

where Γnum
d = {Gnum

d ,knum
d } is the sufficient statistics, given by

Gnum
d =

∑

mt

γnumm (t)
ξmξ

T
m

σ2
md

(4.9)

knum
d =

∑

mt

γnumm (t)otd
ξm

σ2
md

(4.10)

In the above equations, σ2
md is the dth diagonal element of the covariance matrix. The

auxiliary function and the statistics for the denominator term are also given in the same

form.

The smoothing auxiliary function in equation (4.6) is selected satisfying the criterion in

equation (4.5) as [180]

Qsm(Ŵ;W) = K̃sm +
∑

m

Dm

(

−
1

2
(Ŵξm − Wξm)TΣ−1

m (Ŵξm − Wξm)

)

(4.11)

where Dm is a smoothing factor and K̃sm includes all terms independent of transform Ŵ.

This smoothing auxiliary function can also be expressed in a sufficient statistics form for each

row of Ŵ as

Qsm(ŵd;wd) = G(ŵd;Γ
sm)

= Ksm
d −

1

2
ŵT
dG

sm
d ŵd + ŵT

dk
sm
d (4.12)
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where Ksm
d is a constant and sufficient statistics Γsm

d = {Gsm
d ,k

sm
d } is given by

Gsm
d =

∑

m

Dm
ξmξ

T
m

σ2
md

(4.13)

ksm
d =

∑

m

Dm
ξmξ

T
mwd

σ2
md

. (4.14)

For the remaining I-smoothing term, the ML-statistics scaled by a factor αI is generally

used. Therefore, the auxiliary function QI(Ŵ;W) for the I-smoothing prior p(Ŵ|φml) can

be also expressed in a similar way as

QI(ŵd;wd) = G(ŵd;Γ
I)

= KI
d −

1

2
ŵT
dG

I
dŵd + ŵT

dk
I
d (4.15)

with the sufficient statistics ΓI
d = {GI

d,k
I
d} given by

GI
d = αIGml

d (4.16)

kI
d = αIkml

d (4.17)

where αI is a constant controlling the impact of the prior.

Therefore, the overall auxiliary function in equation (4.6) can be rewritten in the sufficient

statistics form as

Q(ŵd;wd) = G(ŵd;Γ
num) − G(ŵd;Γ

den) + G(ŵd;Γ
sm) + G(ŵd;Γ

I) (4.18)

which gives the overall sufficient statistics Γd = {Gd,kd} as

Gd = Gnum
d − Gden

d + Gsm
d + αIGml

d (4.19)

kd = knum
d − kden

d + ksm
d + αIkml

d (4.20)

The new estimate of DLT parameters can be obtained in terms of these sufficient statistics

by maximising the auxiliary function in equation (4.18). This is given by

ŵd = G−1
d kd. (4.21)

The smoothing factor Dm in equations (4.13) and (4.14) required for the DLT estimation

is set as

Dm = Edγ
den
m ; Ed = max(E, 2Êd) (4.22)

where the value of Ed is separately chosen for each row of transforms. In the above equation,

E is a user-defined global constant and Êd is the minimum value to make Gd positive-definite.



CHAPTER 4. DISCRIMINATIVE ADAPTATION AND ADAPTIVE TRAININ G 73

The choice of an appropriate value of the smoothing factor is very important to obtain reliable

estimates of DLTs. In [180], a value between 0.5 and 2.5 is chosen for E.

DLTs have been found to give significant performance gain over ML for supervised adap-

tation [180, 202]. However, the gain is significantly reduced in the unsupervised mode of

adaptation [147, 202]. This is because discriminative criteria are based on phone or word er-

ror metrics. Transforms estimated using discriminative criteria are very sensitive to errors in

the supervision hypothesis. The sensitivity of discriminative transforms to such errors limits

the performance gain with DLTs. To reduce the impact of hypothesis errors, confidence scores

based approaches [179, 180, 182] and lattice-based adaptation [137, 174, 202] have also been

investigated for discriminative adaptation as well. A discriminative version of MAP, and the

use of N-best list for accumulating the weighted statistics for discriminative transforms have

been investigated in [56]. However, they yield only a little improvement, if any. To address

this problem, discriminative mapping transforms (DMTs) [202, 203] have been also proposed,

which is a speaker-independent transform and is applied to speaker-specific ML transforms.

DMTs do not directly depend upon the supervision hypothesis of test data and thus are not

sensitive to any errors in it. The form and estimation of DMTs are described in the next

section.

4.1.2 Discriminative Mapping Transforms (DMT)

A discriminative mapping transform [202, 203] aims to transform a speaker specific ML trans-

form into a discriminative one. This transform mapping is estimated in a speaker-independent

fashion. The DMTs are discriminatively-estimated speaker independent transforms, and thus

the same transforms can be used for the training and the test data. There is no need to

estimate speaker-specific discriminative transforms on the test data. Thus the sensitivity to

errors in the supervision hypothesis that has a severe impact on the performance of DLTs

for unsupervised adaptation should not be a problem. A general form of the DMT [202] is

expressed as 1

vec(W
(s)
d ) = Hdvec(W

(s)
ml ) + cd (4.23)

where W
(s)
d is the final discriminative-like speaker transform, Hd and cd are the speaker

independent parameters of the DMT and W
(s)
ml is the speaker specific ML transform. The

operator ‘vec()’ maps a matrix to a vector. The matrix Hd is of size D(D + 1) ×D(D + 1)

and the vector cd is of size D(D + 1) for D-dimensional features.

1The subscripts ml and d have been used to distinguish ML and discriminative transforms, as both of them
are involved in this section.
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A simple form of the transformation can be obtained by restricting Hd to be block-diagonal

with each block being tied and restricting cd to yield a bias on the mean. In this case, the

final adapted mean obtained using the MLLR-based DMT adaptation may be expressed as

µ̂(s) = Adµ̂
(s)
ml + bd = Wdξ̂

(s)
ml (4.24)

where Wd = [Ad bd] is the DMT transform, and ξ̂
(s)
ml = [µ̂

(s)T
ml 1]T with the speaker-adapted

mean µ̂
(s)
ml given by

µ̂
(s)
ml = A

(s)
ml µ+ bml = W

(s)
ml ξ. (4.25)

In the above equation, W
(s)
ml = [A

(s)
ml bml] is the MLLR transform for speaker s, obtained as

described in section 3.1.2.1. The above simplification leads the DMT adaptation to have the

same form as the DLT adaptation and DMTs can be estimated in a similar manner as the

DLT.

Considering the MPE criterion, the parameters of the DMT are estimated as

Ŵd = arg max
W

{

∑

s

∑

H

P (H|O(s);W,W
(s)
ml ,M)A(H,H(s))

}

(4.26)

This form of optimisation is related to the DLT optimisation in equation (4.2). The optimi-

sation for the DMT objective function in equation (4.26) is done using a weak-sense auxiliary

function and the parameter estimation turns into a slightly modified version of DLT trans-

form estimation given in the previous section. However, as DMT is a speaker independent

transform, data from all speakers are used to estimate it. Therefore the sufficient statistics

are obtained by summing over over all training speakers, and they are accumulated using

speaker-specific MLLR adapted models. The sufficient statistics for the DMT estimation can

be thus written as

γm(ts) = γnumm (ts) − γdenm (ts) + αIγmlm (ts) (4.27)

Gd =
∑

sm

∑

ts

γm(ts)
ξ̂

(s)
ml,mξ̂

(s)T
ml,m

σ2
md

+
∑

sm

D(s)
m

ξ̂
(s)
ml,mξ̂

(s)T
ml,m

σ2
md

(4.28)

kd =
∑

sm

∑

ts

γm(ts)o
(s)
tsd

ξ̂
(s)
ml,m

σ2
md

+
∑

sm

D(s)
m

ξ̂
(s)
ml,mξ̂

(s)T
ml,mwd

σ2
md

(4.29)

where ts is the time index for speaker s, and γnumm (ts) and γdenm (ts) are posterior occupancies

for the component m being at time ts. The smoothing constant D
(s)
m can be computed as

D(s)
m = E

∑

ts

γdenm (ts) (4.30)
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where E is a constant usually selected between 0.5 and 2.5 [180]. With these statistics, each

row of the DMT is estimated by equation (4.21) as used for estimating DLTs.

In the same way as MLLR, DMTs can make use of multiple regression classes. An inter-

esting aspect of DMTs is that the number of transform parameters can be made very large

compared to the number of speaker-specific linear transforms. This is because all the acoustic

model training data are used to estimate the DMT parameters, rather than using the data

just from a specific speaker.

4.2 Discriminative Speaker Adaptive Training (DSAT)

As described in the previous chapter, speaker adaptive training (SAT) is an important tech-

nique to build a speech recognition system from non-homogeneous training data. In SAT,

the speech and non-speech variabilities are modelled separately through canonical models

and adaptation transforms. Originally, the canonical models and transforms were both esti-

mated using the maximum likelihood criterion [5, 43]. However, state-of-the-art systems use

discriminative training criteria such as minimum phone error (MPE). Therefore, the use of

these discriminative criteria has also been investigated for estimating the canonical models

and transforms in the SAT framework [118, 171, 180, 181]. Similarly, as discriminative linear

transforms (DLTs) are highly sensitive to errors in the supervision hypothesis, an alternative

approach uses ML transforms with discriminatively estimated canonical models [106, 181].

In the following sections, MLLR transforms and DLTs based discriminative speaker adaptive

training (DSAT) schemes are described.

4.2.1 MLLR-based DSAT

The ML transform based DSAT is the most commonly used form of discriminative adap-

tive training for unsupervised adaptation tasks [106, 180, 181]. In this approach, ML-based

transforms are used in conjunction with the discriminatively trained canonical models. In

MLLR-based DSAT, the ML-SAT scheme is initially run as shown in algorithm 3 in sec-

tion 3.2.1. A final set of speaker-specific MLLR transforms is estimated using the final ML

canonical model set in equation (3.41). These transforms are then fixed and used for all

subsequent discriminative canonical model updates. The canonical models are updated using

discriminative criteria given the set of speaker transforms. This may be expressed for the

MPE criterion as

M̂d = arg max
M

{

∑

s

∑

H

P (H|O(s);W
(s)
ml ,M)A(H,H(s))

}

(4.31)
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where P (H|O(s);W
(s)
ml ,M) is the posterior probability of hypothesis H for the given obser-

vation and transform for speaker s, A(H,H(s)) is the raw phone accuracy of the hypothesis

H for the given supervision H(s), and W
(s)
ml is the MLLR transform for speaker s estimated

through equation (3.41) using final ML-SAT canonical models.

The optimisation of discriminative SAT objective function in equation (4.31) can be done

by defining a weak-sense auxiliary function as done in section 2.3.4 for discriminative training

of models. The auxiliary function for the discriminative canonical model update can be

expressed as [180]

Q(M̂;M,W) = Qnum(M̂;M,W) −Qden(M̂;M,W) + Qsm(M̂;M,W)

+ QI(M̂;M,W) (4.32)

where W is the set of transforms for all S speakers. The subscript ml has been dropped

from the transforms, as the optimisation for model parameters update being described is

not dependent on whether the transforms are ML or discriminative estimates, and is thus

applicable to both.

The numerator auxiliary function in the above equation can be expressed in the same form

as the ML-SAT auxiliary function in equation (3.48) though using numerator occupancies as

Qnum(M̂;M,W) = −
1

2

∑

sm

∑

ts

γnumm (ts)

{

log
∣

∣Σ̂m

∣

∣

+
(

o
(s)
ts − W(srm)ξ̂m

)T

Σ̂−1
m

(

o
(s)
ts − W(srm)ξ̂m

)

}

(4.33)

where W(srm) is the MLLR transform for speaker s and regression base class rm of the mth

component. The numerator occupation γnumm (ts) is already defined in equation (2.102) for

the MPE criterion, and they are computed using current estimate of model parameters and

transforms. The above numerator auxiliary function can be expressed in a sufficient statistics

form for the mean update as

Qnum(M̂;M,W) = Gsat(M;Γnum)

= −
1

2

∑

m

{

µ̂T
mGnum

m µ̂m − 2µ̂T
mknum

m

}

(4.34)

where the sufficient statistics is given as

Γnum = {Gnum
m ,knum

m } (4.35)

These are defined in the same way as for the maximum-likelihood case given in equation (3.49)

and equation (3.50). The auxiliary function and statistics for the denominator term are also
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defined in the same form as numerator, however using the denominator occupation probability

γdenm (ts) as defined in equation (2.103).

The smoothing term in equation (4.36) for the mean update is given by [180]

Qsm(M̂;M,W) = −
1

2

∑

sm

Dmν
(s)
m

(

ξ̂m − ξm
)T

W(srm)TΣ−1
m W(srm)

(

ξ̂m − ξm
)

(4.36)

where ξm represents the extended mean at the current model estimate and Dm is a smoothing

factor. The smoothing for each speaker is usually made proportional to the amount of data

available for the speaker, rather than using the same smoothing for all speakers. This is done

by using a scaling constant ν
(s)
m in the above equation representing the proportion of the data

for a speaker, which is generally taken as [199]

ν(s)
m =

∑

ts
γnumm (ts)

∑

sts
γnumm (ts)

(4.37)

In terms of sufficient statistics, the auxiliary function for the smoothing term in equa-

tion (4.36) can be expressed as

Qsm(M̂;M,W) = Gsat(M̂;Γsm) (4.38)

where

Γsm =
{

DmGsm
m ,Dmksm

m

}

(4.39)

Gsm
m =

∑

s

ν(s)
m A(srm)TΣ−1

m A(srm) (4.40)

ksm
m = Gsm

mξm (4.41)

An I-smoothing prior [142] p(M̂|Φ) can be also used in a similar way as in the standard

discriminative training of HMMs in section 2.3.4 [180]. The I-smoothing can be done to the

ML statistics, which can be expressed in terms of sufficient statistics as

QI(M̂;M,W) = Gsat(M;ΓI) (4.42)

ΓI =
{

GI
m,k

I
m

}

(4.43)

GI
m = αIGml

m (4.44)

kI
m = αIkml

m (4.45)

where αI determines the contribution of I-smoothing prior. The ML statistics for SAT are

already defined in equation (3.49) and equation (3.50). In case of the MPE criterion based

training, as being described here, an MMI prior can be used as the I-smoothing prior.
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Defining each of the terms of the auxiliary function in equation (4.32) in terms of sufficient

statistics as above, the overall sufficient statistics for the mean update is given by

Gm = Gnum
m − Gden

m +DmGsm
m + GI

m (4.46)

km = knum
m − kden

m +Dmksm
m + kI

m (4.47)

The new estimate of the mean vector can be thus obtained by maximising the auxiliary

function in equation (4.32) as

µ̂m = G−1
m km (4.48)

As in the ML-SAT in section 3.2.1, covariance matrices are estimated only after the mean

update. The auxiliary function for the covariance matrix update is derived from the same

discriminative SAT model update auxiliary function in equation (4.32), by expressing its parts

in sufficient statistics form relevant to the covariance update and ignoring other independent

terms. First, the numerator part in equation (4.33) can be expressed using sufficient statistics

for the covariance matrix update as

Qnum(M̂;M,W) = Gsat(M̂;Γnum)

= −
1

2

∑

m

{

γnumm log
∣

∣Σ̂m

∣

∣+ tr
(

Lnum
m Σ̂−1

m

)

}

(4.49)

where the sufficient statistics are given as

Γnum =
{

γnumm ,Lnum
m

}

(4.50)

γnumm =
∑

s

∑

ts

γnumm (ts) (4.51)

Lnum
m =

∑

s

∑

ts

γnumm (ts)
(

o
(s)
ts − W(srm)ξ̂m

)(

o
(s)
ts − W(srm)ξ̂m

)T

(4.52)

The denominator statistics can be also given in the same form. Similarly, the smoothing term

for the covariance update is given by

Qsm(M̂;M,W) = Gsat(M̂;Γsm) = −
1

2

∑

m

Dm

{

log
∣

∣Σ̂m

∣

∣+ tr
(

ΣmΣ̂−1
m

)}

(4.53)

with the sufficient statistics

Γsm =
{

Dm,DmΣm

}

(4.54)

where Σm is the covariance matrix of the mth component of the current canonical model.

In this case also, the I-smoothing to ML statistics can be done as in the mean update. The

I-smoothing sufficient statistics for the covariance update can be expressed as

ΓI =
{

αIγmlm , α
ILml

m

}

(4.55)



CHAPTER 4. DISCRIMINATIVE ADAPTATION AND ADAPTIVE TRAININ G 79

where αI controls the impact of the prior. In this way, once the terms of the auxiliary function

in equation (4.32) are expressed in terms of sufficient statistics for the covariance update, the

new estimate of the covariance can be obtained by maximising the same auxiliary function.

This gives the new estimate of the covariance matrix as

Σ̂m = diag

(

Lnum
m − Lden

m +DmΣm + αILml
m

γnumm − γdenm +Dm + αIγmlm

)

(4.56)

In this way, both means and covariances of canonical models can be estimated for the DSAT

system.

The testing procedure for the MLLR-based DSAT has the same starting point as the

ML-SAT scheme. The ML-SAT test procedure, as shown in figure 3.5 is first run to obtain

the final ML-SAT speaker transforms. Based on these final ML-SAT transforms and the

final DSAT canonical models, additional ML-based transform estimations can be performed

to obtain the final testset transforms. These are then used with the final DSAT models to

decode the test data.

The ML-transforms based DSAT scheme is applicable to both supervised and unsupervised

tasks and has been found to yield consistent reductions in word error rate [106, 181]. In

this approach, as ML-based speaker-specific transforms are used, they are relatively robust

to errors in the supervision hypothesis, and thus the system can be used for unsupervised

adaptation as well. However, an adaptive training scheme based on the discriminative linear

transforms can be also formulated. The next section describes a DLT-based DSAT scheme,

and the problems associated with it are also discussed.

4.2.2 DLT-based DSAT

As previously mentioned, it is possible to estimate both the transforms and the canonical mod-

els using discriminative criteria. Hence, the use of discriminative linear transforms in adaptive

training has been investigated [118, 171, 180]. In the DLT-based DSAT scheme, again the

ML-SAT procedure is initially run and a set of ML speaker transforms are estimated using the

final ML canonical models, using ML-SAT algorithm 3 presented in section 3.2.1. Thereafter,

the DLT estimation and model parameters update is performed in an interleaved fashion as

given in algorithm 4. The DLT estimation involves optimising the same discriminative objec-

tive function as given in equation (4.2), and involves accumulating statistics as described in

section 4.1.1. The model parameters are updated using equation (4.58) in a similar way to

the standard MLLR-based DSAT scheme described in the previous section, thus giving the

same update formulae though using DLTs in place of the MLLR transforms.
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Step 1: Initialise canonical model set and transforms.
Md = Mml ML Canonical Model

W
(s)
d = W

(s)
ml ML-SAT Transforms

Step 2: Estimate DLT transforms for each speaker.

W
(s)
d = arg max

W

{

∑

H

P (H|O(s);W,Md)A(H,H(s))

}

(4.57)

Step 3: Update model parameters.

Md = arg max
M

{

∑

s

∑

H

P (H|O(s);W
(s)
d ,M)A(H,H(s))

}

(4.58)

Step 4: Go to step (2) unless converged.

Algorithm 4: The DLT-based DSAT algorithm

The testing procedure for DLT-based DSAT again uses the ML-SAT testing procedure first

as described in section 3.2.1, to obtain initial set of speaker transforms. A modified version

of the DLT-DSAT training procedure given in the algorithm 4 is then run, omitting the

model-update stage to obtain testset discriminative transforms corresponding to the successive

training iterations. The testset DLTs corresponding to the final DSAT iteration are then used

for decoding of test data.

As previously discussed, discriminative transforms are sensitive to errors in the supervision

hypothesis. During training, the DLTs are estimated using the reference transcripts, so there

are no supervision errors. If used in a supervised adaptation mode, DLTs can be robustly

estimated and reductions in the error rate are obtained [180]. However, this is not the

case for unsupervised adaptation. The errors in the supervision hypothesis in unsupervised

mode of adaptation greatly degrade the performance of DLT-based DSAT scheme [147]. To

reduce the impact of hypothesis errors, it is possible to use confidence scores and lattice-

based adaptation as investigated in [180, 202]. Though these approaches yield slightly greater

robustness to hypothesis errors, the improvements over MLLR-based DSAT are still normally

small [180, 202].
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4.3 Adaptive Training using Discriminative Mapping
Transforms

As described in the last section, the DLT-based DSAT approach is not used with unsupervised

adaptation, as the testset transforms are sensitive to supervision hypothesis errors. In prac-

tice, ML transforms are used in the adaptive training framework, and only canonical models

are trained using discriminative criteria as described in section 4.2.1. This does not yield a

full and consistent discriminative adaptive training framework. However, in the same way

as discriminative training of canonical models leads to performance gains, if discriminative

transforms could be robustly estimated, additional gains should be possible by using them in

a SAT framework. This would also yield a full DSAT system, where both the transforms and

canonical models are updated discriminatively. One of the contributions of this thesis is to

address this problem, by using discriminative mapping transforms in the adaptive training

framework. A DMT is a discriminatively estimated speaker-independent transform based on

speaker-specific ML transforms, as described in section 4.1.2. The use of DMT in adaptive

training framework makes it possible to use with unsupervised adaptation, as DMTs do not

depend upon the testset supervision hypothesis. The DMT-based DSAT framework is de-

scribed in algorithm 5. The algorithm can be compared to the DLT-based DSAT procedure

described in algorithm 4, where the DLT estimation step has been replaced by the estimation

of MLLR transforms and DMTs. It should be noted that each of the steps in algorithm 5

for estimating MLLR transforms, DMTs and updating model parameters is itself an iterative

process involving estimation through the EM-algorithm.

The starting point for the DMT-based DSAT procedure is the same as the other DSAT

approaches. The final ML-SAT models and corresponding speaker-specific MLLR transforms

are used to initialise canonical models and ML transforms for the DMT-based DSAT system.

An identity transform and zero bias is used for initialising the DMTs. The DMT-based DSAT

procedure is iterated by estimating DMTs constrained on current ML transforms (Step 2),

and updating the model parameters (Step 3) in an interleaved fashion as shown in algorithm 5.

The iteration is stopped when the estimated parameters converge, or the desired number of

iterations are completed.
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Step 1: Initialise canonical model set and transforms.
Md = Mml, ML Canonical Models

W
(s)
ml : ML-SAT Transforms

Wd : Ad = I,bd = 0

Step 2: Estimate DMTs.

Wd = arg max
W

{

∑

s

∑

H

P (H|O(s);W,W
(s)
ml ,Md)A(H,H(s))

}

(4.59)

constrained to

W
(s)
ml = arg max

W

{

log p(O(s)|H(s);Wd,W,Md)
}

(4.60)

Step 3: Update model parameters.

Md = arg max
M

{

∑

s

∑

H

P (H|O(s);Wd,W
(s)
ml ,M)A(H,H(s))

}

(4.61)

Step 4: Go to step (2) unless converged.

Algorithm 5: The DMT-based DSAT algorithm

In the DMT-based DSAT, DMTs are estimated using equation (4.59), constrained to

MLLR transforms in (4.60). The optimisation of the DMT objective function is described

in section 4.1.2, and the sufficient statistics required for its estimation are given in equa-

tions (4.28) and (4.29). The only difference is that the models used are the available canonical

models at the current iteration of the DSAT procedure.

The MLLR transforms for the DMT-based DSAT are estimated using equation (4.60),

given the current set of canonical models, DMTs and speaker-specific MLLR transforms.

The MLLR transforms are estimated by maximising the objective function in equation (4.60)

through the EM algorithm using an auxiliary function given as

Q(Ŵ
(sr)
ml ;W

(sr)
ml ) = −

1

2

∑

ts,m∈R

γmlm (ts) logN (o
(s)
ts ;A

(ρm)
d Ŵ

(srm)
ml ξm + b

(ρm)
d ,Σm) (4.62)

where γmlm (ts) are component occupancies computed using current MLLR transforms W
(srm)
ml ,

DMTs Wd
(ρm) and model parameters Md. In the equation, rm and ρm represent the regres-

sion base class of mixture component m for MLLR transforms and DMTs, respectively, and

R represents a set of all mixture components belonging to regression class r of the MLLR

transform. The above auxiliary function can be re-expressed by ignoring the terms indepedent
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of Ŵ
(sr)
ml as

Q(Ŵ
(sr)
ml ;W

(sr)
ml )

= −
1

2

∑

ts,m∈R

γmlm (ts)
(

o
(s)
ts −A

(ρm)
d Ŵ

(srm)
ml ξm−b

(ρm)
d

)T

Σ−1
m

(

o
(s)
ts −A

(ρm)
d Ŵ

(srm)
ml ξm−b

(ρm)
d

)

= −
1

2

∑

ts,m∈R

γmlm (ts)
(

õ
(s)
ts − A

(ρm)
d Ŵ

(srm)
ml ξm

)T

Σ−1
m

(

õ
(s)
ts − A

(ρm)
d Ŵ

(srm)
ml ξm

)

(4.63)

where õ
(s)
tsm = o

(s)
ts − b

(ρm)
d . The above equation can be rewritten by keeping only the terms

dependent on Ŵ
(sr)
ml as

Q(Ŵ
(sr)
ml ;W

(sr)
ml ) = −

1

2

∑

ts,m∈R

γmlm (ts)

(

− 2õ
(s)T
tsmΣ−1

m A
(ρm)
d Ŵ

(srm)
ml ξm

+ξTmŴ
(srm)T
ml A

(ρm)T
d Σ−1

m A
(ρm)
d A

(srm)
ml ξm

)

(4.64)

Taking the derivative with respect to Ŵ
(srm)
ml and equating to zero leads to

∑

ts,m∈R

γmlm (ts)A
(ρm)T
d Σ−1

m õ
(s)
tsmξ

T
m =

∑

ts,m∈R

γmlm (ts)A
(ρm)T
d Σ−1

m A
(ρm)
d Ŵ

(srm)
ml ξmξ

T
m (4.65)

Representing left-hand side of equation (4.65) as

Z =
∑

ts,m∈R

γmlm (ts)A
(ρm)T
d Σ−1

m õ
(s)
tsmξ

T
m (4.66)

and defining

Vm =
∑

ts

γmlm (ts)A
(ρm)T
d Σ−1

m A
(ρm)
d (4.67)

Ym = ξmξ
T
m (4.68)

for right-hand side, the equation can be re-expressed as1

vec(Z) =

(

∑

m

kron(Vm,Ym)

)

vec(Ŵ
(sr)
ml ) (4.70)

where ‘vec’ represents vectorisation of a matrix and ‘kron’ is Kronecker tensor product. The

estimation of Ŵ
(sr)
ml through a direct solution of equation (4.70) involves inverting a (D2+D)×

(D2+D) matrix and thus is computationally expensive. These equations for estimating MLLR

1The following identity is used [80]

vec(C) = vec(AXB) = (A ⊗B
T)vec(X) (4.69)

where ⊗ is the Kronecker product and ‘vec’ is the vectorisation of the matrix formed by stacking rows into a
single vector.
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transforms given DMTs can be compared to the MLLR estimation equation for full covariance

matrices in [51, 103] 1. However, in the standard MLLR estimation described in [51, 103], for

diagonal covariance matrices each row of transforms can be estimated efficiently, that involves

inverting matrices of size (D + 1) × (D + 1) only. By contrast, in this case, even though

the covariance matrices are diagonal, the multiplication with a full A
(ρm)
d matrix as seen in

equation (4.67) makes the result a full matrix, and thus the transform estimation equation

involves tensor products. Thus even for the diagonal covariance matrices, the estimation

of MLLR transforms through equation (4.60) is computationally very expensive. It should

be noted that when a diagonal transform A
(ρm)
d is used along with the diagonal covariance

matrices, a simple solution for estimating each row of the transform can be still obtained that

involves inverting matrices of size (D + 1) × (D + 1) only. In the experiments in this work,

however, a full DMT is used, and to deal with the computational complexities of the MLLR

transform estimation in the DMT-based DSAT procedure, further assumptions are made as

described later in this section.

Once the MLLR transforms and DMTs are estimated, the canonical models are updated

using equation (4.61). By using equations (4.24) and (4.25), it is possible to combine the

effects of the DMT and MLLR transform into a single linear transform of the means for each

speaker. The mean of mth Gaussian component is first adapted by an MLLR transform and

then DMT to yield the final adapted mean

µ̂(s)
m = A

(ρm)
d W

(srm)
ml ξm + b

(ρm)
d (4.72)

where rm and ρm represent the regression base class of component m for MLLR transforms

and DMTs, respectively, and ξm = [µT
m 1]T is the extended mean vector for component m.

W
(ρm)
d = [A

(ρm)
d b

(ρm)
d ] and W

(srm)
ml = [A

(srm)
ml b

(srm)
ml ] are the DMT and MLLR transforms.

The above expression can be re-expressed as

µ̂(s)
m = A

(ρm)
d

(

A
(srm)
ml µm + b

(srm)
ml

)

+ b
(ρm)
d

= A
(ρm)
d A

(srm)
ml µm +

(

A
(ρm)
d b

(srm)
ml + b

(ρm)
d

)

(4.73)

Thus the MLLR and DMT adaptation for a mixture component can be combined into a single

1The equation for estimating the standard MLLR transform for the full covariance matrices is given
by [51, 103]

X

ts,m∈R

γ
ml
m(ts)Σ

−1
m o

(s)
ts
ξ
T
m =

X

ts,m∈R

γ
ml
m(ts)Σ

−1
m Ŵ

(srm)
ml ξmξ

T
m (4.71)

This should be compared to equation (4.65).
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transform with parameters given as

A
(s)
d = A

(ρm)
d A

(srm)
ml (4.74)

b
(s)
d = A

(ρm)
d b

(srm)
ml + b

(ρm)
d (4.75)

This allows to use the standard procedure for discriminative canonical model estimation as

described in section 4.2.1, and the model update equations can be obtained by replacing the

ML transforms parameters with the transform parameters in equations (4.74) and (4.75).

The mean and variance update equations are given in equations (4.48) and (4.56).

The recognition procedure for the DMT-based DSAT system follows its training proce-

dure, however only MLLR transforms need to be re-estimated for a testset. The evaluation

procedure for the DMT-based DSAT scheme is shown in figure 4.1. First, the ML-SAT eval-

uation procedure is followed and the final MLLR transforms for the testset are obtained as

shown in figure 3.5. The DMT-based DSAT procedure is started with these ML transforms

and identity DMTs. Using the canonical models of the DMT-based DSAT system for each

iteration, the testset MLLR transforms are re-estimated given the DMTs and the test set

MLLR transforms from the previous iteration. Once the final test set MLLR transforms are

obtained, they are used along with the canonical models and DMTs from the final iteration

of the DSAT system for decoding the test data.

   DSAT (0) MLLR DMT (0)

DSAT (1) MLLR DMT (1)

DSAT (N) MLLR DMT (N)

Figure 4.1: A recognition setup for test data using the DMT-based DSAT system. DSAT(k)
and DMT(k) represent canonical models and DMTs from the kth iteration of the DSAT
procedure. Only the shaded blocks (MLLR transforms) need to be estimated for the test
data, others are estimated during the training of the DMT-based DSAT system.

In the DMT-based DSAT procedure described above, other forms of MLLR transform

figure/dmtdsateval-1.eps
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contraints can be also used for estimating DMTs. In the experiments in this work, the MLLR

transforms for the DMT-based DSAT iterations are estimated through the standard MLLR

estimation procedure described in section 3.1.2.1. This leads to the sufficient statistics given

in equations (3.10) and (3.11) for MLLR transforms, however the posterior occupations for

components based on the current estimates of MLLR transforms and DMTs are used. The

advantage of this approach is that it avoids the computational complexities involved with

estimating MLLR transforms through equation (4.60) leading to equation (4.65). However,

this estimation approach does not fully consider the current estimates of DMTs in accumulat-

ing sufficient statistics for MLLR transforms estimation, as only the occupation probabilities

are based on the current estimates of both MLLR transforms and DMTs. The recognition

procedure in this case also is same as described above and shown in figure 4.1.

In an another alternative DMT-based DSAT scheme, the MLLR transforms can be also

kept fixed while updating the canonical models and DMTs only. This is similar to the com-

monly used DSAT procedure described in section 4.2.1 where ML-transforms are kept fixed

while updating only the canonical models discriminatively. When the final canonical models

are obtained, MLLR transforms are estimated using the standard procedure given current

estimates of MLLR transforms and DMTs. The final set of DMTs are trained with these

estimated MLLRs and final canonical models. This method is simple and computationally

inexpensive, however MLLR transforms used to estimate DMTs (and model parameters) are

not updated at each iteration of the DSAT procedure, and thus it may not lead to the best

possible estimates for DMTs. In this case also, for recognition of test data, the ML-SAT eval-

uation procedure as shown in figure 3.5 is run to obtain final ML-SAT test set transforms.

The final DSAT test set MLLR transforms are obtained using the canonical models from the

last iteration of the DMT-based DSAT, following the same procedure for estimating final

iteration MLLR transforms as in training.

In the DMT-based DSAT system, DMTs used are speaker-independent transforms, and

the same DMTs are used during training and test. There is no need to re-estimate the DMTs

on testset and thus they are not affected by the testset supervision hypothesis errors. There-

fore the DMT-based DSAT scheme should be able to deal with the unsupervised adaptation.

4.4 Summary

This chapter has presented techniques for discriminative adaptation and adaptive training.

To overcome the limitations of the conventional maximum likelihood based adaptation, dis-

criminative criteria such as minimum phone error can be used to estimate the transforms.
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However, discriminative linear transforms (DLTs) are biased towards the supervision hypoth-

esis and very sensitive to any errors in the supervision hypothesis. This problem can be dealt

by using a discriminative mapping transform (DMT), which is a speaker-independent trans-

form applied to speaker-specific ML transforms. Both the forms and the estimation of DLTs

and DMTs have been described. Similarly, adaptive training can be performed using discrim-

inative criteria to estimate both the canonical models and transforms. Discriminative adap-

tive training has been described using both MLLR and DLT. However, maximum-likelihood

transforms are commonly preferred in the discriminative adaptive training framework, due

to the same problem of sensitivity of discriminative transforms to errors in the supervision

hypothesis. To deal with this issue, a DMT-based adaptive training scheme was proposed to

give a complete discriminative adaptive training framework that can be effectively used for

unsupervised adaptation as well.



CHAPTER 5
Bayesian Adaptive

Training and Inference

As seen in chapter 3, adaptive training is an important technique when building speech

recognition systems on non-homogeneous data. The adaptive training scheme yields

canonical models and a set of speaker-specific transforms. However a major problem with the

adaptive training approach is that this canonical models must always be used in conjunction

with the transforms for recognition [40]. When no transform is available or the transform

is poorly estimated, the performance of the system may be degraded. This problem may

occur for online adaptation, for example, where there is only a small amount of adaptation

data and reliable estimates of the transforms cannot be obtained. This issue is addressed by

formulating a Bayesian framework for adaptive training where both the model parameters

and the transforms are regarded as random variables [43, 170, 200]. In this chapter, the form

of Bayesian adaptive training and inference based on the likelihood criterion is described.

Adaptive training is first described from a Bayesian perspective in section 5.1. This is followed

by several approximation schemes used for Bayesian inference in section 5.2. Thereafter, an

expectation propagation based Bayesian inference scheme for adaptive training is proposed

in section 5.3.

88
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Figure 5.1: The dynamic Bayesian networks (DBNs) of a standard HMM and an adaptive
HMM

5.1 Bayesian Adaptive Training

In adaptive training, speech and non-speech variabilities are modelled separately, using canon-

ical models and a set of transforms. In a Bayesian framework for adaptive training [43, 200],

both the model parameters and the transforms are regarded as random variables. The in-

teraction of the model parameters and transforms with the observations can be seen in a

dynamic Bayesian network for adaptive training shown in figure 5.1(b). The DBN for a stan-

dard HMM is also shown in figure 5.1(a). In the DBN for the standard HMM, the observation

at time t depends on the component θt, and is conditionally independent of the observations

or components at any other time, given the component θt. In contrast, in the DBN for the

adaptive HMM, the observation at the time t depends both on the component θt and the

transform Wt at time t. Moreover, the transforms in an adaptive HMM are forced to be

constant for each homogeneous block. This is expressed for one homogeneous block as

p(Wt|Wt−1) = δ(Wt − Wt−1) (5.1)

where δ(.) represents a Dirac-delta distribution. In this section, Bayesian adaptive training

based on maximum-likelihood is described following [43, 200].

In the Bayesian framework for adaptive training, as both the canonical models and the

transforms are regarded as random variables, the likelihood of the training data is given by

a marginalisation over the distribution of the model parameters. Therefore, the marginal

likelihood for the observation set O = {O(1), . . . ,O(S)} from all S speakers is given by

p(O|H) =

∫

M
p(O|H,M)p(M|Φ) dM (5.2)

where H = {H(1), . . . ,H(S)} is the set of transcripts for corresponding observations, and

p(M|Φ) is the prior distribution for the canonical model parameters M with Φ as the hyper-

parameters of the prior. Each homogeneous block of data O(s) is regarded as conditionally

figure/DBN_stdhmm.eps
figure/DBN_adapt.eps
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independent of all others. Thus the likelihood of all blocks of the data, inside the integral in

the above equation, can be expressed as

p(O|H,M) =

S
∏

s=1

∫

W

p(O(s)|H(s),M,W)p(W|φ) dW (5.3)

where p(W|φ) is a prior distribution over the transform parameters with hyperparameters

φ. The likelihood of each homogeneous block of data, used inside the integral in the above

equation, is given as

p(O(s)|H(s),M,W) =
∑

θ

P (θ|H(s),M)
∏

t

p(o
(s)
t |M,W, θt) (5.4)

where P (θ|H(s),M) is the probability of component sequence θ, and p(o
(s)
t |M,W, θt) is the

likelihood of observation vector o
(s)
t given the Gaussian component θt at the time t.

Thus, Bayesian adaptive training involves the prior distributions over the model param-

eters as well as the transforms. They should be estimated from the training data. However,

the forms of the prior distributions are first defined before estimating them. The form of

the prior is generally limited to a conjugate prior. Once the forms of the priors are defined,

the hyperparameters of these priors are estimated by maximising the marginal likelihood in

equation (5.2), using an empirical Bayes approach, as described next.

The hyperparameters for the model prior p(M|Φ) are estimated by maximising a lower

bound to the marginal likelihood in equation (5.2), as its direct optimisation is imprac-

tical [200]. The lower bound to the marginal likelihood in equation (5.2) is obtained by

introducing a variational distribution q(M) and using Jensen’s inequality as

log p(O|H) ≥

〈

log
p(O|H,M)p(M|Φ)

q(M)

〉

q(M)

=
〈

log p(O|H,M)
〉

q(M)
− KL

(

q(M)||p(M|Φ)
)

(5.5)

where KL(·||·) is the Kullback-Leibler (KL) divergence between the two distributions 1 . The

inequality in the above equation turns out to be an equality when

q(M) = p(M|O,H) (5.6)

The maximisation of the lower-bound in equation (5.5) with respect to model prior hyper-

parameters Φ is equivalent to minimising the KL-divergence between q(M) and p(M|Φ).

1The KL divergence between two distributions is defined as

KL

`

q(z)||p(z)
´

=

Z

z

q(z) log
q(z)

p(z)
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Therefore, the empirical Bayesian estimate of the canonical model prior is given by [199]

p(M|Φ) = q(M) = p(M|O,H) (5.7)

The required posterior p(M|O,H) can be estimated by maximising log p(O|H) with respect

to p(M|O,H) for a non-informative prior.

Similarly, the hyperparameters for the transform prior p(W|φ) are estimated by maximis-

ing the marginal likelihood. First, a lower-bound of the conditional likelihood for a given

model set as defined in equation (5.3) for independent blocks of data is obtained. The lower-

bound to the conditional likelihood is found by introducing a variational distribution q(s)(W)

and applying Jensen’s inequality as

log p(O|H,M) ≥
S
∑

s=1

〈

log
p(O(s)|H(s),M,W)p(W|φ)

q(s)(W)

〉

q(s)(W)

=
S
∑

s=1

〈

log p(O(s)|H(s),M,W)
〉

q(s)(W)
−

S
∑

s=1

KL
(

q(s)(W)||p(W|φ)
)

(5.8)

The above lower-bound is maximum when

q(s)(W) = p(W|O(s),H(s),M) (5.9)

The transform variational distribution q(s)(W) in above equation is associated with each

homogeneous block of data. However, the transform prior p(W|φ) is taken as independent

of the acoustic conditions. Furthermore, the above equations are for a given specific model

set, and if the distribution over model parameters is to be considered, the transform posterior

estimate should also consider marginalisation over model parameters. This makes it difficult

to directly minimise the KL divergence included in equation (5.8). Thus further assumptions

are made to estimate the transform prior distribution. A sufficient amount of data is assumed

during training, such that the posteriors of the model and transforms parameters reduce to

the Dirac-delta distributions as

p(M|O,H) ≈ δ(M−M̂ml) (5.10)

p(W|O(s),H(s)) ≈ δ(W − Ŵ
(s)
ml ) (5.11)

where Ŵ
(s)
ml and M̂ml are the point estimates of the transform for the homogeneous block s

and canonical models, respectively. This yields the canonical model prior as

p(M|Φ) ≈ δ(M−M̂ml) (5.12)



CHAPTER 5. BAYESIAN ADAPTIVE TRAINING AND INFERENCE 92

The transform estimate for each acoustic condition s becomes an ML estimate Ŵ
(s)
ml given by

Ŵ
(s)
ml = arg max

W

{

p(O(s)|H(s),M̂,W)
}

(5.13)

These point estimates of the transforms are used to find the point estimate of the canonical

models as well as the hyperparameters of the prior distribution of the transform p(W|φ). The

point estimate of the canonical model is given as

M̂ml = arg max
M

{

p(O|H,M, Ŵml)
}

(5.14)

where Ŵml =
{

Ŵ
(1)
ml , . . . ,Ŵ

(S)
ml

}

is the set of the transforms for all S homogeneous blocks.

Similarly, using p(M|O,H) ≈ δ(M − M̂ml) and p(W|O(s),H(s)) ≈ δ(W − Ŵ
(s)
ml ), the lower

bound in equation (5.8) can be re-expressed as

log p(O|H,M̂ml)

≥
S
∑

s=1

(

log p(O(s)|H(s),M̂ml,Ŵ
(s)
ml ) + H

(

δ(W−Ŵ
(s)
ml )
)

+ log p(Ŵ
(s)
ml |φ)

)

(5.15)

where H(.) is the entropy of a function. Maximisation of above auxiliary function ignoring the

−∞ entropy term1 with respect to hyperparameters φ of the transform prior leads to

φ̂ = arg max
φ

{

S
∑

s=1

log p(Ŵ
(s)
ml |φ)

}

(5.16)

Therefore, Bayesian adaptive training under the sufficient data assumption leads to a

point estimate of the canonical model as in equation (5.14) and a non-point transform prior

distribution with hyperparameters given in equation (5.16). It is thus similar to the standard

SAT procedure described in section 3.2.1 except that a transform prior is also estimated.

Once the canonical model and the prior distribution for the transform are obtained from the

training data, they can be used for Bayesian adaptive inference, as described in the next

section.

5.2 Bayesian Adaptive Inference

Bayesian adaptive inference attempts to find the best hypothesis by using the marginal like-

lihood p(O|H) and the language model score P (H) as [200]

Ĥ = arg max
H

{

p(O|H)P (H)
}

(5.17)

1The entropy of a delta function is −∞.
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The inference equation is same as the standard decoding equation (2.117), however it now

uses the marginal likelihood as the acoustic score. The marginal likelihood for the given point

estimate of the canonical model is given by1

p(O|H) =

∫

W

p(O|H,W)p(W) dW (5.18)

In supervised adaptation, a transform posterior distribution is estimated from the given ob-

servation and corresponding supervision transcript as

p(W|Osupv,Hsupv) =
p(Osupv|W,Hsupv)p(W|φ)

p(Osupv|Hsupv)
(5.19)

where Osupv and Hsupv are the observations and the hypothesis of the supervision data, re-

spectively, and p(W|φ) is the prior transform distribution. This posterior distribution over

the transform is then used as p(W) to compute the acoustic score. This is also called a

posterior adaptation [43]. When there is no supervision transcript available in an unsuper-

vised mode, the marginal likelihood of the test data is computed using the transform prior

distribution.

The goal of the Bayesian adaptive inference is to compute the inference evidence for

each possible hypothesis and select the one with the best evidence. The computation of

the inference evidence involves finding the marginal likelihood in equation (5.18), which is

intractable due to coupling between transform parameters and hidden state/component se-

quences. Therefore, several approximations are used to estimate the inference evidence. Some

of them are described in the next sections.

5.2.1 Monte-Carlo Approximation

In the Monte-Carlo approximation, a large number of samples are drawn from the trans-

form distribution, and the average of the integral function values is used to approximate the

marginal integral in equation (5.18) as

p(O|H) ≈
1

N

N
∑

n=1

p(O|H,Ŵn) (5.20)

where N is the total number of samples and Ŵn is the nth sample drawn from p(W). As

N → ∞, the value obtained by the sampling approximation in above equation will tend to the

true value of the marginal likelihood. However, a transform has large number of parameters.

For example, a full transform with a bias for a 39-dimensional feature has 1560 dimensional

distribution in a vectorised form. With a large number of transform parameters, the number

1The canonical model M̂ml has been dropped from the equations, when there is no confusion.
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of samples required for a reasonable approximation increases dramatically. Therefore, the

method is computationally expensive, as inference evidence is computed for each sample Ŵn

of the transform using a forward/backward algorithm. Therefore, this method is seldom used

for doing inference in a large speech recognition system, rather other computationally efficient

methods are investigated. The sampling approach has been also investigated in [159] using

Gibbs sampling. The Bayesian speaker adaptive training (BSAT) approach given in [170]

uses a mixture of transforms instead of a continuous distribution for transforms, and can be

regarded as a case of sampling approaches. The likelihood of an utterance is given as weighted

sum of likelihoods obtained by applying each of the transform in the mixture with weights

set to the transform priors [170]. The method uses feature domain transforms.

5.2.2 Frame-Independence Approximation

In a frame-independence approximation, the transform at each frame is assumed to be in-

dependent, and is allowed to vary at every frame. This assumption is inherent in Bayesian

prediction approaches [88, 183], and has been used for adaptation as well [23, 42, 168]. This

assumption turns the DBN of an adaptive HMM in figure 5.2(a) into a modified DBN as

shown in figure 5.2(b) with the links between transform states removed as they are no longer

constrained to be the same. The likelihood in this case is approximated as [199]

p(O|H) ≈
∑

θ

P (θ|H,M)
∏

t

p̄(ot|M, θt) (5.21)

where p̄(ot|M, θt) is the predictive distribution given by

p̄(ot|M, θt) =

∫

W

p(ot|M,W, θt)p(W) dW (5.22)

When the form of p(W) is selected as a conjugate prior to the likelihood of the obser-

vations, this integral at the frame-level becomes tractable and a standard Viterbi algorithm

can be used to compute the likelihood. For the mean transform, a Gaussian distribution is

often used for the transform prior which is a conjugate prior to the likelihood [23, 42]. A

single-component Gaussian transform prior is often used [23, 42, 199] as given in (3.30). This

is reproduced here as

p(W) =

D
∏

d=1

N (wd;µ
W
d,Σ

W
d) (5.23)

where the rows of transforms are assumed independent. This is in consistent with the diagonal

covariance matrix for the HMM components. In this case, the likelihood in equation (5.22)
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Figure 5.2: The dynamic Bayesian networks for constrained and frame-independent trans-
forms

can be simply computed by using the parameters of the resulting predictive distribution. The

parameters of the resulting predictive distributions are given as

µ̄md = µW T
d ξm

σ̄2
md = σ2

md + ξTmΣW
dξm

where µ̄md and σ̄2
md are the predictive component mean and variance for component m and

dimension d. A GMM can be also used as the transform prior, however the resulting predictive

distribution for a component will also turn out to be a GMM, as a GMM is not a conjugate

prior for the likelihood [199].

The frame-independence approximation gives a computationally efficient and simple method

to calculate the marginal likelihood. The disadvantage of this approximation is that it breaks

the assumption in the original DBN for the adaptive HMMs in figure 5.2(a), and the transform

is allowed to change at every frame, rather than constraining it to be same for one homo-

geneous block. This makes it more similar to training of multistyle or speaker-independent

models [42]. Thus it may degrade the performance of the speech recognition systems, com-

pared to the standard adaptation approaches.

5.2.3 Lower Bound Approximations

In a lower bound approximation, a lower bound to the marginal likelihood L(O|H) is found

and used in place of the marginal likelihood log p(O|H) in the inference criteria in equa-

tion (5.17). In this approach, the lower-bounds to the likelihood are assumed to give the

same rank ordering as the real marginal likelihood, when used for the inference as in equa-

tion (5.17) [199]. Therefore, for two different hypotheses Hi and Hj , if

L(O|Hi) + logP (Hi) > L(O|Hj) + logP (Hj)

figure/DBN_adapt.eps
figure/DBN_fi.eps
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this assumption implies that

log p(O|Hi) + logP (Hi) > log p(O|Hj) + logP (Hj). (5.24)

The lower bound to the marginal likelihood in equation (5.18) is obtained by introduc-

ing a joint variational distribution q(θ,W) over the component sequence θ and transform

parameters W and applying Jensen’s inequality, and is given by

log p(O|H) ≥ L(O|H) =

〈

log
p(O,θ|W,H)p(W)

q(θ,W)

〉

q(θ,W)

(5.25)

where L(O|H) represents the lower bound to log p(O|H). The above lower-bound is maximum

when

q(θ,W) = p(θ,W|O,H) = P (θ|O,H,W)p(W|O,H) (5.26)

However, the computation of the transform posterior distribution p(W|O,H) in the above

equation requires the marginal likelihood p(O|H). Hence, further approximations are required

to make the ideal joint variational distribution in equation (5.26) tractable. The next sections

describe two different approximations for it.

5.2.3.1 MAP Point Estimates

In the MAP point-estimate approximations, a sufficient amount data is assumed for trans-

form estimation, such that the transform posterior can be approximated by a Dirac-delta

distribution. Thus the joint variational distribution in equation (5.26) becomes

q(θ,W) = P (θ|O,H,W)δ(W − Ŵ) (5.27)

where Ŵ represents the point estimate of the transform. Hence, the lower-bound in equa-

tion (5.25) can be expressed as

log p(O|H) ≥ Lmap(O|H,Ŵ) = log p(O|H,Ŵ) + log p(Ŵ) + H
(

δ(W − Ŵ)
)

(5.28)

As the entropy of Dirac-delta function is −∞ for all transforms Ŵ [30], the rank-ordering

can be simply obtained by avoiding the entropy term. Therefore, the MAP objective function

can be given as

Fmap(Ŵ) = log p(O|H,Ŵ) + log p(Ŵ) (5.29)

Thus the MAP estimation as described in section 3.1.2.4 can be derived from the lower-bound

approach. As seen in section 3.1.2.4, the MAP objective function can be maximised by using

the auxiliary function [24, 28]

Q(Ŵ;W) =
〈

log p(O,θ|Ŵ,H)
〉

P (θ|O,H,W)
+ log p(Ŵ) (5.30)
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where W represents the current transform. Thus by iteratively maximising the above MAP

auxiliary function, the MAP estimate of the transform can be obtained. They are then

used in equation (5.29) to compute the acoustic score to be used in doing inference using

equation (5.17).

It should be noted that the MAP approximation produces a very loose lower bound as

given in equation (5.28), as there is −∞ term present in it. Therefore, it may not produce a

good rank ordering of the hypotheses, as produced by other tighter bounds. The next section

describes a variational Bayes lower-bound.

5.2.3.2 Variational Bayes

Variational Bayes can be used to find a lower-bound to the marginal likelihood using equa-

tion (5.25) [14, 199]. In the variational Bayes approximation, the component sequence pos-

terior and the transform posterior are assumed to be conditionally independent [199]. Thus

the joint distribution of the component sequence and the transform in equation (5.26) is

approximated as

q(θ,W) = q(θ|O,H)q(W|O,H) (5.31)

In the VB approximation, the uncoupled posteriors 1 q(θ) and q(W) are then iteratively

refined to make the lower-bound in equation (5.18) tighter. The variational posteriors can be

updated using an auxiliary function obtained by re-expressing the lower bound for the kth

iteration as [199]

log p(O|H) ≥ Lvb

(

O|H
)

= Qvb

(

qk+1(θ), qk(W)
)

=
〈

log p(O,θ|W,H)
〉

qk+1(θ)qk(W)
+ H
(

qk+1(θ)
)

− KL
(

qk(W)||p(W)
)

(5.32)

A variational Bayes expectation maximisation (VBEM) algorithm is used for updating the

component and transform posteriors in an interleaved fashion as described in [199]. The

algorithm is summarised below.

1. Initialise: q0(W) = p(W), k = 1.

2. VB Expectation (VBE): The variational component sequence posterior distribution

is estimated by

qk(θ) =
1

ZΘ(O,H)
exp

(

〈log p(O,θ|W,H)〉qk−1(W)

)

(5.33)

1q(θ) and q(W) are used as the short-hand notations for q(θ|O,H) and q(W|O,H), respectively.
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where ZΘ(O,H) is a normalisation constant that makes qk(θ) a valid distribution, and

Θ is a set of all possible component sequences. The expectation of the joint distribution

log p(O,θ|W,H) can be computed by factoring it to the frame level as

〈log p(O,θ|W,H)〉qk−1(W) = 〈logP (θ)〉qk−1(W) +
∑

t

〈log p(ot|W, θt)〉qk−1(W) (5.34)

The required normalisation constant is given as

ZΘ(O,H) =
∑

θ

P (θ|H,M)
∏

t

p̃(ot|θt) (5.35)

where

p̃(ot|θt) = exp
(

< log p(ot|W, θt) >qk−1(W)

)

(5.36)

is a pseudo-distribution (unnormalised) distribution for the components.

3. VB Maximisation (VBM): The optimal transform variational posterior qk(W) for

given variational component sequence posterior qk(θ) is expressed as

qk(W) =
1

ZW(O,H)
p(W) exp

(

〈log p(O,θ|W,H)〉qk(θ)

)

(5.37)

where ZW(O,H) is a normalisation constant.

4. k = k + 1. If not converged, go to step 2.

Finally, with the estimated variational transform distribution q(W), the component sequence

distribution q(θ) is computed based on q(W) using equation (5.33). By substituting it into

equation (5.32), the resulting lower bound is expressed as

log p(O|H) ≥ Lvb (q(W)) = logZΘ(O,H) − KL (q(W)||p(W)) (5.38)

This lower bound is then used as the acoustic score for inference.

The variational Bayes approximation avoids the negative entropy term as in the MAP

point estimates, and gives a tighter bound. However, it still gives a lower bound to the

marginal likelihood, not the true marginal likelihood. Therefore, in the VB based Bayesian

inference, the lower-bounds are assumed to produce the same rank-ordering of N-best hy-

potheses as obtained with true marginal likelihood. However, if the bound is not very tight,

this may not be the true and the performance of the speech recognition system may be af-

fected badly. Therefore, it is important to investigate more accurate approximations to the

marginal likelihood and thus the inference evidence. Expectation propagation (EP) [67, 119]

is an attractive choice, which has been generally reported to give more accurate estimates for

the state-posteriors than VB. In the next section, an expectation propagation based approach

is proposed for Bayesian adaptive inference.
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5.3 Expectation Propagation Based Bayesian
Adaptive Inference

Expectation propagation [67, 119] is an iterative algorithm for doing approximate Bayesian

inference through tractable approximations to complex distributions. The approximating

distribution is usually chosen in the exponential family for tractability, and is constrained to

have the same moments as the distributions to be approximated. In this section, expectation

propagation is used for inference in an adaptive HMM.

A DBN for the adaptive HMM is shown in figure 5.3. In the DBN, ψt and Wt represent

the discrete HMM state and the continuous transform state at time t, respectively. The

observation ot at time t depends on both the speech and the transform states at time t. A state

in the adaptive HMM comprises of both the discrete speech state and continuous transform

state, therefore the state of the HMM at time t is represented as {ψt,Wt}. This also makes

all state posteriors and forward/backward messages1 a function of both the speech state ψt

and transform state Wt. Therefore, for example, the forward probability is represented as

αt(ψt,Wt), as function of both ψt and Wt, and is no more a discrete probability as in the

standard HMM described in section 2.3. This notation has been used in this section for

describing the expectation propagation based inference.

tWt−1

t−1 t

W

otot−1

ψ ψ
Σ

α     (i-1,W
t−1)

α
t−1(i,Wt−1)

 
t−1

t-1 tframes

marginalise

α
t
( j,W

t
)

∫

st
at

es

ai-1,j

aij
bj(ot)

Figure 5.3: A DBN for the adaptive HMM and the computation of forward messages for exact
inference in it

The exact inference in the adaptive system shown in figure 5.3 leads to the exponential

growth of mixture components. If an attempt is made to compute the likelihood through

the forward/backward message passing algorithm, the number of mixture components will

1The word ‘message’ rather than probability is used in this case as generalisation, as they can be also
unnormalised.

figure/DBNadaptep.eps
figure/exactfb.eps
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increase due to the summation of the messages from incoming states as shown in figure 5.3.

As this process is repeated over the subsequent speech frames, it will give rise to an exponential

growth in the number of mixture components in the messages. This can be prevented by using

EP, by approximating the resulting complex mixture into a Gaussian with the same moments.

This will make the inference in the adaptive system tractable. However, it is the state-

belief (comparable to the state-posterior in the standard forward-backward algorithm) rather

than the messages (comparable to the forward/backward probabilities) that is projected or

approximated in the expectation propagation algorithm [119, 122]. The projection operation,

denoted by ‘proj(.)’ in this work, implies approximating a complex probability distribution

by a simple distribution, in this case by a Gaussian with the same moments.

The expectation propagation has been applied for estimating state posteriors and likeli-

hood in the adaptive system in appendix A. The EP-based forward-backward algorithm has

been derived for iteratively updating the forward and backward messages. The EP-based

forward-backward iteration is summarised in algorithm 6. The algorithm is given for a left-

to-right HMM with non-emitting end-states and T frames of observation vectors in total1.

The output probability distribution is assumed to be GMMs as in equation (2.17) such that

p(ot|ψt = j,Wt) =

M
∑

m=1

cjm N (ot;Wtξjm,Σjm) (5.39)

where cjm is the mixture component weight, ξjm is the extended mean vector ξjm = [µT
jm 1]T,

and Σjm is the covariance matrix for the mth mixture component of the jth state. Also, the

transition parameters are given as

P (ψt = j|ψt−1 = i) = aij (5.40)

p(Wt|Wt−1) =

{

p(W|φ) t = 0
δ(Wt − Wt−1) t = 1, . . . , T + 1

(5.41)

The rows of the transform are assumed independent, and the prior distribution for the trans-

forms is given by

p(W) = N (vec(W);µW,ΣW) =

D
∏

1

N (wd;µ
W
d,Σ

W
d) (5.42)

where wd is the dth row of the transform W. The rows of the transforms are assumed

independent. As described before, the forward and backward messages in this case are a

1In the form presented, hypothetical observations are assumed to be generated by non-emitting states thus
extending the sequence from 0 to T + 1. This allows the same formula to be used for the end-states also,
however care should be taken to assign appropriate output probabilities to states at the both ends.
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function of both the speech state ψt and transform Wt. The forms of forward and backward

messages are constrained as

αt(ψt = i,Wt) = Pαt,i N (vec(Wt);µ
α
t,i,Σ

α
t,i) (5.43)

βt(ψt = i,Wt) = P βt,i N (vec(Wt);µ
β
t,i,Σ

β
t,i) (5.44)

As the rows of transforms are assumed independent, they have block-diagonal covariance

matrices. These parameter specifications are used for doing inference in the adaptive system

through expectation propagation.

In the EP-based forward-backward algorithm given in algorithm 6, the forward and back-

ward messages are first initialised as given in step (1) of the algorithm. Once the mes-

sages are initialised, the forward-pass is run from from t = 1 to T + 1 using the equa-

tion given in step (2). It is worthwhile to look at the equation and find similarity to

the equation (2.22) used in the standard forward algorithm. In the equation in step(2),

the quantity inside the integral/summation is called the current estimate of the two-slice

marginal p̂t−1,t(ψt−1, ψt,Wt−1,Wt)
1 , which can be compared to the transition posterior

P (ψt−1 = i, ψt = j|O,H,M) in equation (2.30) for the standard HMM. Both equations

consist of the forward message/probability, the transition probability, the observation prob-

ability and the backward message/probability. After marginalisation, the quantity in the

numerator in equation (2.22) is called the state-belief p̂t(ψt,Wt), which can be compared

to the state-occupancy P (ψt = j|O,H,M) ≡ γj(t) in equation (2.28). However, the main

difference is that the forward and backward messages are no more discrete distributions as

in equations (2.28) and (2.30), but a function of continuous transform parameters. As in the

standard HMM, the state-occupancy is the product of forward and backward messages for a

state, therefore the forward message is obtained by dividing the state-belief by the backward

message. However, this is done only after projection (proj) in the EP-based forward backward

algorithm, as after marginalisation, the state-belief has a larger number of mixture compo-

nents. The resulting mixture for the state-belief is projected to a Gaussian, by minimising

the KL-divergence through moment matching.

1It should be noted that the two-slice marginal p̂t−1,t(ψt−1, ψt,Wt−1,Wt) is only an approximate value,
based on the current estimates of messages, which is refined in successive iterations and therefore, a .̂ (hat)
has been used in the notation.
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Step 1. Initialisation
The forward and backward messages are initialised as follows:

t = 0 : α0(ψ0 = 1,W0) = p(W)
α0(ψ0 = i,W0) = 0 i = 2, . . . , N

t = T + 1 : βT+1(ψT+1 = N,WT+1) = 1
βT+1(ψT+1 = j,WT+1) = 0 j = 1, . . . , N − 1

All other messages are initialised to one.

Step 2. Forward Pass, for t = 1 to T + 1
As described in section A.1, the forward message αt(ψt = j,Wt) is obtained by projecting
the state-belief p̂t(ψt,Wt) at time t and conditioning it with respect to the backward
message as1

αt(j,Wt) =
proj

(

∑

i

∫

Wt−1

1
kt
αt−1(i,Wt−1) aijδ(Wt−Wt−1)p(ot|j,Wt) βt(j,Wt)

)

βt(j,Wt)

Step 3. Backward Pass, for t = T + 1 to 1
As described in section A.1, the backward message βt−1(ψt−1 = i,Wt−1) is obtained
by projecting the state-belief p̂t−1(ψt−1,Wt−1) at time t − 1 and conditioning it with
respect to the forward message as

βt−1(i,Wt−1) =
proj

(

∑

j

∫

Wt

1
kt
αt−1(i,Wt−1) aijδ(Wt−Wt−1)p(ot|j,Wt) βt(j,Wt)

)

αt−1(j,Wt−1)

Step 4. Go to step (2), until converged.

Algorithm 6: The EP-based forward-backward algorithm

For the im mixture component in the state-belief for state j, each with weight P̂imj , mean

µ̂imj and covariance Σ̂imj , the parameters for the projected state-belief is given as [67]

P̄j =
∑

im

P̂imj (5.45)

µ̄j =
∑

im

P̂imj

P̂j
µ̂imj (5.46)

Σ̄j =
∑

im

P̂imj

P̂j
Σ̂imj +

∑

im

P̂imj

P̂j
(µ̂imj − µ̂j)(µ̂imj − µ̂j)

T (5.47)

Though this projection leads to full covariance matrices, they are constrained to be block-

diagonal. Once the state-belief is projected, it can be conditioned with respect to the backward

message to obtain the forward message. It should be noted that the multiplication and division

1The same formula can be used for t = T + 1 also, by removing the p(ot|j,Wt) term.
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of the messages are easily done in the canonical representation of the distributions. Therefore,

the messages are converted from moment form to canonical form, and vice-versa during the

recursive estimate of forward messages. This can be done as described in appendix A.2.

Similarly, once the forward pass is completed and all forward messages are obtained, the

backward pass is run as in step (3) of the algorithm. This also involves a similar procedure

as when estimating the forward message in step (2).

It should be noted that in the forward/backward message estimation in step (2) and

step (3) of the algorithm, both messages interact with each other. The current estimate of

the backward message is used while finding new values of the forward message and vice-

versa. This allows iterative refinement of the forward and backward messages, by running

interleaved forward and backward passes. After iterating the forward and backward passes

until the messages are converged, the value of the posteriors/state beliefs can be obtained

and likelihood can be also estimated. The likelihood is estimated from the normalisation

constants in equations in step (2) or (3) of the algorithm as equation (A.15) as

p(O|H) =

T
∏

t=1

kt (5.48)

In this way, the marginal likelihood is estimated using the EP-based forward-backward

algorithm. The beauty of the above EP based algorithm is that for a point estimate of a

transform, it reduces to the standard forward-backward algorithm. In other words, given

p(W) = δ(W−Ŵ), the forward/backward messages again becomes discrete distributions. In

this case, the projection step will not be required and thus no approximation step is involved.

The forward/backward messages do not interfere and therefore one iteration will be sufficient

to compute the posteriors or likelihood.

Though the EP-based approach is computationally much superior to the exact inference

approach, and makes Bayesian inference tractable, the storage requirement for the method

is still very high. This is because a transform distribution is associated with each (valid)

node (each state j for each time t) in the forward-backward trellis. As the dimensionality

of the transform is large, it requires a large amount of space for the computation of for-

ward/backward messages, as the messages need to be stored for use in the next pass. The

conversion of distributions from the canonical form to the moment form and vice-versa is also

computationally expensive.
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5.4 Summary

In this chapter, a Bayesian framework for adaptive training has been presented, in which both

the model parameters and transforms are regarded as random variables. In the Bayesian

framework, the adaptation and inference becomes an integral process, and the canonical

model can be directly used for the inference. The Bayesian framework can deal with a small

amount of adaptation data, thus making instantaneous adaptation feasible. However, the

Bayesian inference leads to an intractable integral for the marginal likelihood, and some

forms of approximations are required. Several forms of approximations including sampling

approaches, frame-independence assumption, and lower bound approaches like variational

Bayes and maximum-a-posteriori estimation can be used. The accuracy of the approxima-

tion or tightness of the bound in the lower-bound approaches is very important for accurate

ranking of the hypotheses and doing inference. The lower bound approaches may not be able

to produce a good rank ordering of the hypotheses if the bound is not very tight. There-

fore, to deal with this problem, an expectation propagation based approach was proposed to

approximate the marginal likelihood for doing Bayesian adaptive inference.



CHAPTER 6
Bayesian Discriminative

Adaptive Training and
Inference

In chapter 4, discriminative adaptation and adaptive training schemes were described which

use discriminative criteria such as minimum phone error to estimate adaptation transforms

and acoustic models. Though discriminative transforms can give performance gains for su-

pervised adaptation, they are seldom used for unsupervised adaptation for which the correct

transcript is not known [147, 180, 202]. This is because discriminative transforms are biased

towards the supervision hypothesis and are highly sensitive to errors in it. In this chap-

ter, approaches to handle the issue of bias and limited amount of data in discriminative

adaptation are proposed. The maximum-likelihood Bayesian framework for adaptation and

adaptive training [43] described in the last chapter is extended to discriminative criteria to

handle these issues. First, discriminative adaptive training and inference is described in a

Bayesian framework in sections 6.1 and 6.2. This is followed by the investigation of various

forms of the maximum-a-posteriori estimation of discriminative transforms, and also the use

of discriminative mapping transforms for Bayesian adaptation, in section 6.3.

105
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6.1 Bayesian Discriminative Adaptive Training

In section 5.1 in the last chapter, a Bayesian framework for adaptive training was described

for the maximum-likelihood criterion. This can be extended to discriminative criteria as

well [43, 199]. In the experiments in [199], transforms and the associated prior are still based

on the ML criterion and the used framework is thus not fully discriminative. In this work,

a complete discriminative Bayesian framework is considered with both the canonical models

and transforms using discriminative criteria. The Bayesian discriminative adaptive training

is described in this section using the MMI criterion as given in equation (2.55). However, it

can be similarly formulated for other discriminative criteria such as MPE or MWE.

In the Bayesian framework for adaptive training, as noted before, both the model parame-

ters and the transforms are regarded as random variables with valid probability distributions.

Thus the posterior of the hypothesis set H = {H(1), . . . ,H(S)} for the corresponding observa-

tion set O = {O(1), . . . ,O(S)} for all S homogeneous blocks is expressed as a marginal given

by

log P (H|O) = log

∫

M
P (H|O,M)p(M|Φ) dM (6.1)

where p(M|Φ) is a prior over model M with hyperparameters Φ. The conditional indepen-

dence of different homogeneous blocks allows the conditional posterior for the specific model,

used inside the above equation, to be expressed as

P (H|O,M) =
S
∏

s=1

∫

W

P (H(s)|O(s),M,W)p(W|φ) dW (6.2)

where s represents each speaker or homogeneous block, and p(W|φ) is the transform prior

with hyperparameters φ. In the above equation, the posterior of the hypothesis for each

homogeneous block of data s is given by

P (H(s)|O(s),M,W) =
p(O(s)|H(s),M,W)P (H(s))
∑

H̆ p(O
(s)|H̆,M,W)P (H̆)

(6.3)

where H̆ represents a set of all possible hypotheses for the homogeneous block s.

The priors p(M|Φ) and p(W|φ) used in equations (6.1) and (6.2) are estimated from the

training data, after determining their appropriate forms. The estimation of the priors is a

goal of the Bayesian adaptive training and is described next. The hyperparameters of these

priors are estimated by using discriminative criteria. Thus in this case, the hyperparameter

Φ for the prior over model parameters is estimated by maximising the marginal posterior for
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all data. This is done by finding a lower-bound to the marginal posterior in equation (6.1)

by introducing a variation distribution q(M) and applying Jensen’s inequality, which gives

logP (H|O) ≥
〈

log P (H|O,M)
〉

q(M)
− KL

(

q(M)||p(M|Φ)
)

(6.4)

where KL
(

q(M)||p(M|Φ)
)

is the Kullback-Leibler (KL) divergence between the two distribu-

tions. The above lower-bound is maximised when

q(M) = p(M|O,H) (6.5)

The maximisation of the lower bound in equation (6.4) with respect to model prior hyper-

parameters Φ is equivalent to minimising the KL-divergence between p(M|Φ) and q(M), as

noted earlier in section 5.1. This yields the estimate for the model prior as

p(M|Φ) = p(M|O,H) (6.6)

Similarly, for estimating the hyperparameter φ of the transform prior p(W|φ), a lower

bound to the conditional posterior in equation (6.2) is first obtained by introducing a vari-

ational transform distribution q(s)(W) for each homogeneous block, and applying Jensen’s

inequality, thus leading to

logP (H|O,M) ≥
S
∑

s=1

〈

log P (H(s)|O(s),M,W)
〉

q(s)(W)
−

S
∑

s=1

KL
(

q(s)(W)||p(W|φ)
)

(6.7)

The above inequality is maximum when

q(s)(W) = p(W|O(s),H(s),M) (6.8)

Again, the maximisation of the lower bound in equation (6.7) is equivalent to minimising the

KL-divergence in the equation between the variational distributions and the prior. However,

for the same problem as described for the maximum likelihood Bayesian adaptive training,

a simple form as obtained for the model prior cannot be obtained for the transform prior in

terms of p(W|O(s),H(s),M). This is because there are a set of transform variational/posterior

distributions, one for each homogeneous block of data whereas the transform prior is tied

across all the blocks. Moreover, the lower-bound in equation (6.7) is for the conditional

posterior, for a specific estimate of canonical models, and therefore the estimation of the

transform prior should also consider the marginalisation over model parameters. Therefore,

further assumptions are made.
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A sufficient amount of data is assumed during training for the given complexity of models,

such that both canonical models and transforms for each homogeneous block reduce to point

estimates. The point estimate of the canonical model is given by

M̂d = arg max
M

{

P (H|O,M, Ŵd)
}

(6.9)

where Ŵd =
{

Ŵ
(1)
d , . . . ,Ŵ

(S)
d

}

is the set of the transforms for all S homogeneous blocks.

The point estimate of the transform Ŵ
(s)
d for each homogeneous block s is expressed as

Ŵ
(s)
d = arg max

W

{

P (H(s)|O(s),M̂d,W)
}

(6.10)

It should be noted that the point estimate of the transform in this case is discriminative,

obtained by maximising the posterior probability of the hypothesis for each speaker. As

there is a point estimate of the transform associated with each homogeneous block of data,

the transform prior is a non-point distribution, and is estimated using transforms from all

homogeneous blocks. The estimation formula for the transform prior can be shown to be same

as in equation (5.16), however using the discriminative transform Ŵd for each homogeneous

block. This can be derived by re-expressing equation (6.7) using p(M|O,H) ≈ δ(M − M̂d)

and p(W|O(s),H(s)) ≈ δ(W − Ŵ
(s)
d ), as

log P (H|O) ≈ log P (H|O,M̂d) ≥
S
∑

s=1

(

log P (H(s)|O(s),M̂d,Ŵ
(s)
d ) + H

(

δ(W − Ŵ
(s)
d )
)

+ log p(Ŵ
(s)
d |φ)

)

(6.11)

The hyperparameter of the transform prior distribution can be obtained by maximising the

above lower bound and is given as

φ̂ = arg max
φ

{

S
∑

s=1

log p(Ŵ
(s)
d |φ)

}

(6.12)

Thus, for the sufficient training data condition, the Bayesian discriminative adaptive train-

ing gives a point estimate of the discriminatively trained canonical model as in equation (6.9)

and a prior over discriminative transforms with hyperparameters given in equation (6.12).

Both of them are subsequently used for doing inference. The next section describes tech-

niques for Bayesian inference in a discriminative adaptive system.

6.2 Bayesian Inference in Discriminative Adaptive
Systems

Speech recognition systems use different criteria such as maximum-a-posteriori (MAP) or

minimum Bayes risk (MBR) for decoding, as described in section 2.6. This section describes
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inference in adaptive speech recognition systems using the maximum-a-posteriori criterion.

However, the approaches described in this section can be also extended for the MBR criterion.

In MAP decoding, the inference on a homogeneous block of data is done by searching the

hypothesis that gives the maximum a-posterior probability value as1

Ĥ = arg max
H

{

P (H|O)
}

(6.13)

where O is the observation sequence of the test data, and H is one possible hypothesis se-

quence. In a non-adaptive system, applying Bayes’ rule and ignoring the normalisation con-

stant in the denominator of the resulting expression leads to the standard decoding criterion

commonly used in speech recognition systems as described in section 2.6.1

Ĥ = arg max
H

{

p(O|H)P (H)
}

(6.14)

However, in an adaptive system, the form of the inference evidence depends upon the

assumption of the underlying adaptation process as generative or discriminative. The follow-

ing sections distinguish generative and discriminative processes, and describe inference with

them.

6.2.1 Generative and Discriminative Processes

A generative system models the data likelihood directly rather than modelling the posterior

probability of the hypothesis. The data is assumed to be “generated” by the model. Thus in

an adaptive system with a generative process assumption, the data likelihood is marginalised

with respect to the transform to obtain the total or marginal likelihood. This is given as

p(O|H) =

∫

p(O|H,W)p(W|φ)dW (6.15)

The posterior probability of the hypothesis is computed by using the Bayes’ rule as

P (H|O) =
p(O|H)P (H)

p(O)
(6.16)

Thus the posterior can be split into a acoustic score and a language model score parts, and

the marginal likelihood in equation (6.15) is used for the acoustic score.

On the other hand, with a discriminative process assumption, the posterior probability

of the hypothesis is directly modelled (not split with Bayes’ rule). Therefore, with this

assumption in the adaptive system, the posterior of the hypothesis is directly marginalised

with respect to the adaptation transform to obtain the marginal posterior as

P (H|O) =

∫

P (H|O,W)p(W|φ)dW (6.17)

1The superscript (s) has been dropped during the discussion of inference in the following sections.
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These different levels of marginalisation with respect to the adaptation transform lead to

different inference evidences in the discriminative adaptive system, as described in the next

sections.

6.2.2 Generative Adaptive Inference

With a generative model assumption for adaptation, the best hypothesis according to the

maximum-a-posteriori criterion is searched as

Ĥ = arg max
H

{

P (H|O)
}

= arg max
H

{

p(O|H)P (H)
∑

H̆ p(O|H̆)P (H̆)

}

(6.18)

where the summation in the denominator is over all possible hypotheses H̆. The generative

system models the data likelihood, and uses Bayes rule in equation (6.16) as above to form

the posterior of the hypothesis. The inference evidence in equation (6.18) can be re-expressed

for an adaptive system with a generative model assumption as

Ĥ = arg max
H

{

∫

p(O|H,W)p(W|φ)dW P (H)
∑

H̆

∫

p(O|H̆,W)p(W|φ)dW P (H̆)

}

(6.19)

where the data likelihood is a marginal over the transform prior distribution with hyperpa-

rameters φ. The denominator term in the above equation is same for all possible hypotheses

in the search space. Therefore, it does not affect the ranking of the hypotheses and thus can

be dropped. The best hypothesis can be simply searched as

Ĥ = arg max
H

{∫

p(O|H,W)p(W|φ)dW P (H)

}

. (6.20)

This form of inference is referred as generative adaptive inference in this work. This is the form

of Bayesian adaptive inference used in section 5.2 for the maximum-likelihood case. However,

the integral in equation (6.20) is generally intractable, and some forms of approximation

are required. Several approaches including the sampling approach, the frame-independence

assumption, lower-bound approaches and expectation propagation have been described in

section 5.2 to approximate the inference evidence in equation (6.20).
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6.2.3 Discriminative Adaptive Inference

With the discriminative process assumption, the best hypothesis is selected by looking at the

marginal posterior of the hypothesis as

Ĥ = arg max
H

{

P (H|O)
}

= arg max
H

{
∫

P (H|O,W)p(W|φ)dW

}

. (6.21)

This is referred as discriminative adaptive inference in this work, and the evidence used is

called discriminative inference evidence. Using Bayes’ rule to express the conditional posterior

in the above equation, the marginal posterior can be re-expressed as

P (H|O) =

∫

P (H|O,W)p(W|φ)dW

=

∫

p(O|H,W)P (H)
∑

H̆ p(O|H̆,W)P (H̆)
p(W|φ)dW (6.22)

where the language model probability is assumed independent of the transform, i.e. P (H|W) =

P (H). It should be noted that the denominator term in this case cannot be ignored as in

equation (6.19).

The integral for the marginal posterior in equation (6.22) used as the inference evidence

is again intractable. Therefore, some form of approximation is required, as used for approx-

imating the marginal likelihood in equation (5.18) in section 5.2. However, one important

difference compared to the marginal likelihood approximations is that a Variational Bayes

lower-bound based inference scheme cannot be used in this case. This is due to the denom-

inator term present in equation (6.22). Some of the applicable forms of the approximations

for the marginal posterior are described in the following sections.

6.2.3.1 Monte-Carlo Approximation

In this approach, the marginal posterior in equation (6.22) required for the inference is ap-

proximated by using a large number of samples drawn from the transform distribution. The

approximate marginal posterior of the hypothesis is given by

P (H|O) ≈
1

N

N
∑

n=1

P (H|O,Ŵn)

=
1

N

N
∑

n=1

(

p(O|H,Ŵn)P (H)
∑

H̆ p(O|H̆,Ŵn)P (H̆)

)

(6.23)

where N is the total number of samples and Ŵn is the nth sample drawn from p(W|φ). As

N → ∞, this approximation will tend to the true integral value for the marginal posterior.
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As described in section 5.2.1, a large number of transform parameters makes it hard to

obtain a reasonable estimate of the integral in an LVCSR system. The method is even more

computationally expensive than for the marginal likelihood estimation case, as computing

the inference evidence for each sample Ŵn also involves evaluating the denominator term in

equation (6.23).

6.2.3.2 Maximum-a-Posteriori (MAP) Approximation

This approximation is derived by formulating a lower-bound to the marginal posterior in equa-

tion (6.22) and then making further assumptions to obtain point estimates of discriminative

transforms. A lower-bound to the marginal posterior in equation (6.22) can be obtained by

introducing a variational transform distribution q(W) and applying Jensen’s inequality. This

gives

log P (H|O) ≥

〈

log
P (H|O,W)p(W|φ)

q(W)

〉

q(W)

(6.24)

where the lower-bound in the right hand side is maximum when

q(W) = p(W|O,H). (6.25)

When there is sufficient amount of adaptation data, the transform posterior in the above

equation can be approximated by the Dirac-delta distribution thus giving the point estimates

for the transform Ŵ. This is expressed as

q(W) ≈ δ(W − Ŵ). (6.26)

This distribution can be used in equation (6.24), which gives

log P (H|O) ≥ log
(

P (H|O,Ŵ)p(Ŵ|φ)
)

+ H
(

δ(W − Ŵ)
)

(6.27)

where H(.) is the entropy of the function. As the entropy of delta function H
(

δ(W − Ŵ)
)

is

always −∞ [30], it does not affect the rank ordering of the hypotheses. The only part that

plays a role in inference is the first term on the right hand side of equation (6.27). Hence,

the best hypothesis according to the maximum-a-posteriori approximation for the marginal

posterior is selected using the first term in equation (6.27) as

Ĥ = arg max
H

{

P (H|O,Ŵ)p(Ŵ|φ)
}

= arg max
H

{

p(O|H,Ŵ)P (H)
∑

H̆ p(O|H̆,Ŵ)P (H̆)
p(Ŵ|φ)

}

(6.28)
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The point estimates of the transforms in the above equation are obtained by maximising a

discriminative MAP objective function, also obtained from the same equation (6.27) by using

the first-term in the right hand side. The discriminative MAP objective function is expressed

as

Fdmap(W) = P (H|O,W)p(W|φ) (6.29)

Thus the maximum-a-posteriori estimate of the discriminative transforms (based on the MMI

criterion) is given as

Ŵdmap = arg max
W

{

P (H|O,W)p(W|φ)
}

(6.30)

Therefore, in the MAP approximation for discriminative Bayesian inference, a point estimate

of the discriminative transform should be obtained using equation (6.30) for a given transform

prior, and the best hypothesis is searched using it to compute the inference evidences as in

equation (6.28).

One issue with the inference through equation (6.28) is the marginalisation over the hy-

potheses in the denominator and computing the posteriors for the hypotheses. It is not

practical to marginalise over all possible hypotheses in practice. Therefore usually a lattice

or an N-best list is used to represent the set of possible hypotheses. The size of the lattice

or the N-best list is an important factor to obtain reasonable estimates of the posteriors,

as described in section 2.6.2. The size of the N-best list for computing the marginal in the

denominator, and for the search space can be made different. A larger N-best list is used to

estimate the posteriors to obtain reasonable estimates for them, whereas the best hypothesis

is searched over usually a smaller list.

Non-informative Prior

In the discriminative MAP approximation described above, when a non-informative prior is

used for the transform distribution, the point estimates of the transform in equation (6.30)

turns into the standard discriminative transform described in section 4.1.1

Ŵd = arg max
W

{

P (H|O,W)
}

. (6.31)

Similarly, for a non-informative prior, the discriminative adaptive inference as done through

equation (6.28) can be rewritten as

Ĥ = arg max
H

{

p(O|H,Ŵ)P (H)
∑

H̆ p(O|H̆,Ŵ)P (H̆)

}

. (6.32)
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This inference scheme in equation (6.32) gives a discriminative way to rank possible hypotheses

and select the best one even when no prior information for the transform is available. This can

be compared to the work in [111, 167, 206] for ranking hypotheses using discriminative criteria,

however they use non-adaptive inference evidences. It should be noted that the denominator

term in the inference evidence above is different for each possible hypothesis. Therefore,

the denominator term in equation (6.32) should be always considered for computing the

discriminative inference evidence for ranking the hypotheses. The corresponding generative

adaptive inference can be given as

Ĥ = arg max
H

{

p(O|H,Ŵ)P (H)
}

(6.33)

which is the standard inference procedure commonly used.

6.3 Bayesian Discriminative Adaptation and
Inference

The previous section described several approximations for Bayesian inference in discrimi-

native adaptive systems, including maximum-a-posteriori point estimates. In this section,

the maximum-a-posteriori estimation of discriminative transforms is investigated in detail,

discussing the issues involved with it. Thereafter, discriminative mapping transform based

Bayesian adaptation and inference is described.

6.3.1 Maximum-a-Posteriori Discriminative Adaptation

The objective function for the maximum-a-posteriori estimate of discriminative transforms

using the MMI criterion is given in equation (6.30). The discriminative MAP objective

function for the MPE criterion, which is used in the experiments in this work, can be similarly

given as

Fdmap(W) =
∑

H

pκ(O|H,M,W)P (H)
∑

H̆ p
κ(O|H̆,M,W)P (H̆)

A(H,Hr) + αp log p(W|φ) (6.34)

where H̆ represents all possible hypotheses, and p(W|φ) is the discriminative transform prior

with hyperparameters φ obtained through equation (6.12). κ and αp are the acoustic model

and the prior scaling factors, respectively. An I-smoothing to the ML transform log p(W|φml)

scaled by αI can be also added to the above objective function, as described for the discrim-

inative transforms estimation in section 4.1.1.

The optimisation of the MAP objective function for ML transforms in equation 3.24

is straightforward, as a strict-lower bound can be obtained for it and the EM algorithm
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can be used. However, the same is not true for the discriminative MAP objective function in

equation (6.34). Discriminative objective functions are optimised using a weak-sense auxiliary

function [140] or extended Baum-Welch algorithm [62], as seen for discriminative training

of HMMs in section 2.3.4.2 and estimating discriminative transforms in section 4.1.1. The

same approach is first investigated to optimise the discriminative MAP objective function in

equation (6.34). In addition, a reverse-Jensen inequality based approach and gradient based

optimisations are also described.

6.3.1.1 Weak-Sense Auxiliary Function Based Optimisation

The optimisation of the objective function for discriminative MAP transforms, through a

weak-sense auxiliary function, is similar to that for obtaining discriminative transforms in

section 4.1.1, however with an additional transform prior term. The auxiliary function for

the discriminative MAP objective function in equation (6.34) can be expressed as

Q(Ŵ;W) = Qnum(Ŵ;W) −Qden(Ŵ;W) + Qsm(Ŵ;W) + Qp(Ŵ;W) (6.35)

where W is the current estimate of the transform. The rows of the transforms are assumed

to be independent, and the numerator (num), the denominator (den) and the smoothing (sm)

terms are expressed in terms of row-wise sufficient statistics {G
num/den/sm
d ,k

num/den/sm
d } for the

dth row of transforms, as given in section 4.1.1. The log-likelihood term for the transform

over prior distribution in equation (6.34) itself is used as the auxiliary function Qp(Ŵ;W) for

the prior term. The transform prior is assumed to be Gaussian with mean µW
d and covariance

ΣW
d for each dth row of the transform wd. The form of prior is given in equation (5.23). The

row-wise sufficient statistics corresponding to the prior term is given by

G
p

d = αpΣW −1
d (6.36)

k
p

d = αpΣW −1
d µW

d (6.37)

The overall sufficient statistics {Gd,kd} is the summation of sufficient statistics of all terms,

and is given as

γm(t) = γnumm (t) − γdenm (t) (6.38)

Gd =
∑

m

∑

t

γm(t)
ξmξ

T
m

σ2
md

+
∑

m

Dm
ξmξ

T
m

σ2
md

+ αpΣW −1
d (6.39)

kd =
∑

m

∑

t

γm(t)otd
ξm

σ2
md

+
∑

m

Dm
ξmξ

T
mwd

σ2
md

+ αpΣW −1
d µW

d (6.40)

where γnumm (t) and γdenm (t) are numerator and denominator occupancies of the mth mixture

component at time t as defined in equations (2.102) and (2.103). ξm = [µT
m 1]T is the extended
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mean vector and σ2
md is dth diagonal element of the covariance matrix for component m. The

smoothing factor Dm is chosen in the same way as for the DLT estimation and is given by

Dm = Edγ
den
m ; Ed = max(E, 2Êd) (6.41)

where the value of Ed is separately chosen for each row of transforms. In the above equation,

E is a user-defined global constant and Êd is the minimum value to make Gd positive-definite.

It should be noted that for the DLT estimation [180], a value between 0.5 and 2.5 is chosen

for E.

The overall statistics in the above equations differ from the standard DLT sufficient statis-

tics only by the additional terms for the transform prior. Once the sufficient statistics are

accumulated as in equations (6.39) and (6.40), the MAP estimate of the dth row of the

discriminative transform is obtained as

ŵd = G−1
d kd (6.42)

In the weak-sense auxiliary function given in equation (6.35), Qnum(Ŵ;W) and Qden(Ŵ;W)

are effectively the lower bounds of the numerator and the denominator likelihoods of the dis-

criminative objective function in equation (6.34). They are obtained by applying the Jensen’s

inequality to the logarithm of summations over component sequences. As the lower bound

of the denominator term is subtracted in equation (6.35), the resulting expression is not

guaranteed to be a lower bound to the discriminative objective function. This implies that

maximising the auxiliary function is not guaranteed to maximise the objective function. As

the resulting expression may not even be concave, a smoothing term Qsm(Ŵ;W) is added,

which is tunable by a smoothing factor Dm for each component m, as seen above.

The smoothing factor plays a similar role to the learning parameter or step factor in

a gradient ascent or descent method, and controls the amount of update to the estimated

parameters. This is illustrated in figure 6.1. A small value of smoothing factor gives large

update, and the new estimate may be quite far from the current transform parameters and the

value of objective function may decrease leading to the unstable update of the parameters.

On the other hand, higher values of the smoothing factor tend to hold the new estimates

closer to the current parameters. Therefore, with small smoothing factors, the optimisation

may diverge, whereas very high values of smoothing factors may not give sufficiently large

updates to the transform parameters. It should be noted that even after adding the smoothing

term, the weak-sense auxiliary function is not a lower-bound. This is true when adding the

prior term as well. The next section investigates the possibility of a lower-bound for the

discriminative MAP objective function.
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Figure 6.1: The effect of the smoothing factor on the transform updates. A smaller value of
smoothing factor leads to large updates in transform parameters and may decrease the value
of objective function.

6.3.1.2 Reverse-Jensen Inequality Based Optimisation

Rather than using the weak-sense auxiliary function in the previous section, a strict lower-

bound should yield similar attributes to the lower-bounds successfully used with the ML-

criterion. When a strict lower-bound can be found to the given objective function, an EM-

like algorithm can be applied iteratively to estimate the parameters as in maximum-likelihood

estimation. Maximising such a lower-bounded auxiliary function is guaranteed not to decrease

the value of objective function. However, due to the denominator term in the objective

function, finding a lower-bound has been problematic for discriminative criteria. To obtain an

overall lower-bound to the discriminative objective function, a lower bound on the numerator

term is required, whereas the denominator term needs to be upper-bounded, as shown in figure

6.2. This can be expressed by splitting the discriminative objective function into numerator

and denominator parts and then expressing the bounds for them as

F(Ŵ) = Fnum(Ŵ) −Fden(Ŵ)

≥ Qnum
LB (Ŵ;W) −Qden

UB (Ŵ;W) (6.43)

where Qnum
LB (Ŵ;W) is a lower-bound to the numerator component Fnum(Ŵ), and Qden

UB (Ŵ;W)

is an upper-bound to the denominator component Fden(Ŵ) of the objective function.

The lower-bound to the numerator term can be easily derived by applying Jensen’s in-

equality, as in the maximum-likelihood case. The upper-bound for the denominator term can

be obtained by so-called reverse-Jensen inequality [81, 82].

A review of the reverse-Jensen has been provided in appendix B. A reverse-Jensen in-

equality finds an upper bound to the log-summation of likelihoods by exploiting the convexity

figure/weaksenseopt.eps
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Qnum(Ŵ;W))

Qden(Ŵ;W)
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Figure 6.2: The required bounds for numerator and denominator terms of a discriminative
objective function for an overall lower-bound

of the cumulant function of the Gaussian component [81]. However, obtaining an upper-

bound directly on the complete denominator term of the discriminative objective function

is highly complicated, due to mixture of multinomials and GMM distributions involved in

HMMs. Therefore, further assumptions are made to simplify the derivation of the bounds.

In standard MPE training, after computing the occupation probabilities for components and

grouping them into numerator and denominator, the discriminative training can be assumed

as training a bunch of Gaussians. The reverse Jensen inequality is applied to denomina-

tor mixtures as in [81] and [1] to obtain its upper bound. With these bounds in place, the

auxiliary function can be expressed in the same form as the weak-sense auxiliary function

in equation (6.35) including the smoothing term [1]. The upper-bound to the denominator

mixtures requires computing the appropriate values of smoothing factors, as described in

appendix B. The value of the smoothing factor is given by

Dm =
∑

t

γdenm (t)

+
∑

t

max

[

γdenm (t)
(

oTt (µ̂mµ̂
T
m + Σ̂m)−1ot − 1

)

, 0

]

+ 4
∑

t

f
(

γdenm (t)/2
)(

ot − µ̂m
)T

Σ̂
−1
m (ot − µ̂m)

+ 4
∑

t

f
(

γdenm (t)/2
)

(

(

ot − µ̂m
)T

Σ̂
−1
m (ot − µ̂m) − 1

)2
(6.44)

where f(γ) is a function controlling the tightness of the bound and is given by

f(γ) =

{

γ + 1
4 log(6) + 25/36

log(6)2
− 1/6 γ ≥ 1/6

1
4 log(1/γ) + (γ−1)2

log(1/γ)2
γ ≤ 1/6

(6.45)

Therefore, the reverse-Jensen inequality based optimisation of discriminative MAP objec-

tive function can be done simply by using the values of the smoothing factor given in equation

figure/boundinglu.mod.eps
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(6.44). However, as it will be seen in the experiments, the values of smoothing factors given

by the reverse-Jensen inequality is usually very high. Therefore, the update to the parameters

using a reverse-Jensen inequality based auxiliary function is very slow, as also noted in [1] for

updating model parameters.

6.3.1.3 Hessian and Gradient Based Optimisations

As it will be shown in the experimental results in section 9.3.1, the weak-sense auxiliary

function tend to give unstable updates. On the other hand, the reverse-Jensen based auxiliary

function gives extremely large values of smoothing factors, thus not giving sufficiently large

updates to the transform parameters. Therefore, alternative optimisation schemes for the

discriminative MAP objective function in equation (6.29) are explored. It should be noted a

Newton’s method can be also used for optimising the MAP objective function, by using the

Hessian and gradient of the objective function. In the gradient based approaches, the rows

of the transform are assumed independent, and are updated separately.

In Newton’s method, the new estimate of the transform for the dth row can be given as

ŵd = wd + η[∇2F(wd)]
−1∇F(wd) (6.46)

where ∇2F(wd) and ∇F(wd) are the Hessian and gradient of the objective function respec-

tively at the current estimate of the dth row of the transform, wd. The gradient and Hessian

of the log-likelihood is given in equation (C.3) and (C.7) in appendix C. In the equation, η > 0

is a learning parameter. The direct computation of the curvature of the objective function

requires second order statistics as described in appendix C, and is computationally very costly

for a large speech recognition system. For this reason, the second-order Newton’s method

may not be practical for the optimisation of the discriminative objective function. Therefore,

a gradient ascent method may be preferred method of optimisation which only requires the

gradient of the discriminative objective function. The gradient of the discriminative objective

function can be easily computed using functions similar to equation (C.3). The new estimate

for dth row of the transform ŵd by the gradient ascent algorithm is given as

ŵd = wd + η∇F(wd) (6.47)

where the gradient is computed at the current estimate of the transform. Similarly, other

optimisation schemes such as conjugate gradient, BFGS (Broyden-Fletcher-Goldfarb-Shanno)

or other quasi-Newton’s method [30] can be also used.

The updates to the transform parameters through Newton’s and gradient ascent methods

are shown in figure 6.3. As it can be seen, a higher value of the learning parameter η gives a
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large update to the transform parameters and may decrease the objective function leading to

unstable updates. On the other hand, a very small value of the learning parameter may not

give sufficient update to the transforms. This problem is similar to the one associated with a

weak-sense auxiliary function. Thus the main issue with these methods also lies in selecting

appropriate learning parameters so as to give stable updates of the transform parameters.

F(Ŵ)

W
Ŵ

∇F

Figure 6.3: The updates to transform parameters through Newton’s and gradient ascent
method. The learning parameter should be selected appropriately to obtain a consistent
increase in the objective function.

6.3.2 Bayesian Adaptive Inference with Discriminative Map ping
Transforms

In this section, an alternative approach to discriminative MAP adaptation is proposed. In-

stead of directly estimating the discriminative MAP transforms as above, a discriminative

mapping transform (DMT) is used in the Bayesian framework, as described below.

As discussed in section 4.1.2, instead of directly estimating discriminative transforms,

a DMT maps speaker-specific ML transforms into discriminative ones. The mapping itself

is speaker-independent. Therefore, the overall adaptation process in a DMT-based system

has two stages: MLLR-adaptation as in equation (4.25) and DMT-adaptation as in equa-

tion (4.24). The MLLR adaptation can be integrated into a Bayesian framework for inference

by using a prior p(W|φml)
1 as described in section 5.2, and leads to the marginalisation of

likelihood over the ML transform prior. The DMT adaptation process, on the other hand, is

1The subscripts ml and d have been used for distinction, as both ML and discriminative transform com-
ponents are involved in this section. In this case, the subscript d represents discriminative component of the
transform, i.e. DMT. Similarly, φml represents the hyperparameters for the ML transform prior in this case
(not the hyperparameters of the I-smoothing prior).

figure/hessianauxv2.eps
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discriminative in nature, and it is the posterior that is marginalised for any variations in the

discriminative transform, as described in section 6.2.3. Thus the marginal posterior required

for the inference in equation (6.22) can be re-expressed considering the prior over the DMT

transform Wd as

P (H|O) =

∫

P (H|O,Wd)p(Wd|φd)dWd

=

∫

p(O|H,Wd)P (H)
∑

H̆ p(O|H̆,Wd)P (H̆)
p(Wd|φd)dWd (6.48)

where

p(O|H,Wd) =

∫

p(O|H,Wml,Wd)p(Wml|φml)dWml (6.49)

is the marginal likelihood for given Wd. However, the DMT essentially remains constant

independent of segments or speakers and a point estimate is used for it such that the posterior

distribution for the DMT given the training data, to be used as prior in equation (6.48), is

approximated by a Dirac-delta distribution. Therefore, for the point estimates of DMT Ŵd,

this can be expressed as

p(Wd|φd) ≈ δ(Wd − Ŵd) (6.50)

Substituting this in equation (6.48) yields

P (H|O) =
p(O|H,Ŵd)P (H)

∑

H̆ p(O|H̆,Ŵd)P (H̆)
(6.51)

where p(O|H,Ŵd) for each hypothesis H is defined in equation (6.49). Therefore, the infer-

ence equation for searching the best hypothesis can be re-expressed using equations (6.51)

and (6.49) as

Ĥ =arg max
H

{

P (H|O)
}

=arg max
H

{

∫

p(O|H,Wml,Ŵd)p(Wml|φml)dWml P (H)
∑

H̆

∫

p(O|H̆,Wml,Ŵd)p(Wml|φml)dWml P (H̆)

}

(6.52)

In the above equation, the denominator term remains constant for all possible hypotheses

H, and does not play a role in the rank ordering of the hypotheses. Therefore, the best

hypothesis is selected as

Ĥ = arg max
H

{
∫

p(O|H,Wml,Wd)p(Wml|φml)dWml P (H)

}

(6.53)

The marginal likelihood used in the above equation can be lower-bounded as described in

section 5.2.3. Variational Bayes as well as the MAP approximation can be used for doing
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inference using equation (6.53). Using the MAP approximation, the best hypothesis is selected

as

Ĥ = arg max
H

{

p(O|H,Ŵmap,Ŵd) p(Ŵmap|φml) P (H)
}

(6.54)

where the MAP estimates of the ML transforms in this case are obtained as

Ŵmap = arg max
W

{

P (O|H,W,Wd)p(W|φml)
}

(6.55)

Similarly, other approximations such as expectation propagation as described in section 5.3

can be also used for doing inference through equation (6.53) by approximating the marginal

likelihood used in it. It should be noted that compared to other cases of discriminative

transforms in the Bayesian framework, in this case the discriminative (component of the)

transform has been assumed speaker-independent, thus allowing a point-estimate for the

transform from the use of a large training data set. Therefore, the problems associated with

the discriminative MAP estimation have been avoided, with the Dirac-delta distribution for

the DMT.

It should be noted that the inference using equation (6.54) is done using an N-best list

based rescoring framework in this work, as described in algorithm 2 for MAPLR. In this

framework, N-best hypotheses are used as supervision for generating transforms. A MAP

estimate of ML transform is obtained for each hypothesis, which is then used to compute

the inference evidence for the hypothesis. The hypothesis with the best inference evidence

is selected as output. Thus equation (6.54) can be re-expressed for inference on the N-best

rescoring framework as

Ĥ = arg max
H

{

p(O|H,Ŵ(H)
map ,Ŵd) p(Ŵ

(H)
map |φml) P (H)

}

(6.56)

where Ŵ
(H)
map is the MAP estimate of ML transform obtained using hypothesis H as supervi-

sion. This N-best based rescoring approach is used in this work for doing inference. As N-best

hypotheses are used as supervision, it can reduce the hypothesis bias problem associated with

transform estimation.

6.4 Summary

This chapter presented a Bayesian framework for discriminative adaptive training and infer-

ence. The discriminative adaptive training framework was described from a Bayesian perspec-

tive where both the model and the transform parameters are regarded as random variables.

The Bayesian inference schemes for discriminative adaptive systems are then detailed to find
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the best hypothesis for a given observation. The sampling and the MAP approximation ap-

proaches were described for doing Bayesian inference in a discriminative adaptive system.

Several methods were presented to obtain the MAP estimates of discriminative transforms by

optimising a discriminative MAP objective function. They include the weak-sense auxiliary

function and reverse-Jensen inequality based approaches. A discriminative mapping trans-

form based Bayesian inference scheme has been also described, which avoids the optimisation

problem involved with a discriminative MAP objective function. A variational Bayes or MAP

approximation can be used for doing inference with the DMT-based Bayesian approach.



CHAPTER 7
Experiments on

Discriminative Adaptive
Training

This chapter presents results from the experimental evaluation of speaker adaptive train-

ing using discriminative mapping transforms as described in section 4.3. The exper-

iments were conducted on an LVCSR English conversational telephone speech (CTS) task.

The experimental setup for training and evaluation of speech recognition systems is described

in section 7.1. This is followed by the evaluation of adaptive training using discriminative

mapping transforms in section 7.2, contrasting the performance with other commonly used

adaptive training schemes.

7.1 Experimental Setup

The experiments were conducted for large vocabulary continuous speech recognition on a

conversational telephone speech (CTS) task. The baseline experimental setup and training

data set are identical to those used in [199].
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The training data set comprised of about 296 hours of data from three speech corpora

distributed by Linguistic Data Consortium (LDC): Call Home English, Switchboard I and

Switchboard Cellular. These training corpora were recorded in slightly different acoustic

conditions, and consist of 5446 conversational sides or “speakers” (2699 male, 2747 female)

in total. Two test sets were used to evaluate the performances of the systems:

1. dev01sub: The dev01sub testset is a three hour subset of data from the 2001 develop-

ment data set dev01 distributed by NIST. It is taken from Switchboard I, Switchboard

II and Switchboard Cellular corpora, and consists of 2663 utterances (30k words) from

59 sides (29 male, 30 female).

2. eval03: The eval03 testset consists of six hours of data taken from Switchboard Cel-

lular and Fisher corpora, with 7074 utterances (76k words) from 144 sides (67 male, 77

female).

The speech data had sampling rate of 8 kHz and was encoded with 8-bit µ-law encoding.

Speech features were extracted with the MF-PLP front-end [195]. The speech data was

parameterised using 12 PLP cepstral coefficients plus the 0th order (C0) coefficient. The

first, second and third derivatives of the cepstra were also appended. A heteroscedastic linear

discriminant analysis (HLDA) transform was used to project this 52-dimensional feature-

vector down to 39 dimensions. Speaker-level cepstral mean and variance normalisation as

well as a vocal tract length normalisation (VTLN) was applied to the features.

All HMM systems were based on state-clustered triphones with 6189 distinct states. Each

speech state had an average of 16 Gaussian components (32 Gaussian components for the

silence models). Starting from the ML-SI system, further four iterations were used to build

an MPE-SI system using the MPE criterion with a dynamic ML prior for I-smoothing. An

MLLR-based ML-SAT system was also built starting from the ML-SI system with four itera-

tions of interleaved transform and model updates. Thereafter, an MLLR-based DSAT system

(also called MPE-SAT system in this work) was built starting from the ML-SAT system with

further four iterations of MPE model training while keeping the MLLR transforms fixed1.

The procedure used for building the MLLR-based ML-SAT and DSAT systems is shown

in figure 7.1. The MLLR transforms used were speaker-specific transformation of component

means. The transform had two base classes: one for speech and another for silence.

A trigram language model trained on 1044M words and a multiple pronunciation dictio-

nary with a vocabulary size of 58k words were used for performing a single-pass decoding.

1An alternative version of the MLLR-based DSAT system updating the MLLR transforms at each iteration
of the DSAT procedure was also investigated. However, the performance was slightly degraded (by 0.1%
absolute on eval03 testset) than keeping the MLLR transforms fixed during the DSAT procedure.
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ML-SI MLLR

ML-SAT (1) MLLR

ML-SAT (2) MLLR

ML-SAT (3) MLLR

ML-SAT (4) MLLR

ML-SAT (4) MLLR 

MPE-SAT (1)

MPE-SAT (2)

MPE-SAT (3)

MPE-SAT (4) MLLR

Figure 7.1: The standard MLLR-based ML-SAT and DSAT scheme used in the experiments.
The numbers in the bracket represent SAT iterations.

An extended version of HTK [196] was used for the experiments, and the evaluation was done

with the NIST speech recognition scoring toolkit sctk-1.2 [34]. Where significant differences

in the performance are mentioned, this was assessed using the NIST matched pairs sentence-

segment word error (MAPSSWE) test using the same toolkit at a significance level of 5%

(95% confidence) [34, 59].

The WER performance of the systems is given in table 7.1 for the dev01sub and eval03

testsets. Comparing the overall performance of the systems, the MPE training is giving a gain

of about 3% absolute compared to the ML training. This demonstrates the effectiveness of

discriminative training. Besides, the overall performance of the SAT systems are found to be

significantly better than the corresponding multistyle-trained SI systems using the same form

of adaptation. For example, the MPE-SAT system is giving a gain of 1.1% absolute on the

dev01sub testset compared to the MPE-SI system, when both are using MLLR adaptation.

This signifies the importance of adaptive training.

System
Adaptation dev01sub eval03

Training Testing ML MPE ML MPE

SI (hyp)
-

- 33.4 30.4 32.6 29.2

SI
MLLR 31.1 28.5 30.2 27.0
DLT 31.0 28.3 29.9 26.8

SAT MLLR
MLLR 30.4 27.4 29.3 26.4
DLT 30.2 27.2 29.4 26.3

Table 7.1: The performance of MLLR and DLT based speaker level adaptation under the
standard SI and SAT framework on the dev01sub and eval03 testsets

The table 7.1 further contrasts the performance of speaker-level adaptation by maximum

likelihood and discriminative transforms. It should be noted that for MLLR adaptation in

figure/mlsatsetup.eps
figure/mllrdsatsetup.eps
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both ML and MPE systems, the hypotheses generated from the corresponding SI systems

are used as supervision. The WER for the supervision hypothesis is given in the table as

‘SI (hyp)’. On the other hand, the lattices for DLT estimation for each model are obtained

from the corresponding MLLR-adapted models. A bigram LM is used for generating the

denominator lattices. Similarly, the output transcripts obtained by using the MLLR-adapted

models and the trigram LM (with WERs shown for MLLR adaptation in table 7.1) are used for

generating the numerator lattices using the bigram LM. The smoothing scale factor of E = 0.8

and the I-smoothing scale factor of αI = 0.01 were used for the DLT generation. It can be

seen from the table that the MLLR adaptation is giving an average gain of 2.2% absolute

for the SI systems. In contrast, though discriminative transforms have generally improved

the performance on both the SI and SAT systems compared to the MLLR adaptation, the

improvement is very small. This is due to the fact that discriminative transforms are more

sensitive to the incorrect 1-best hypotheses used as supervision in unsupervised adaptation.

The next section describes the experimental results of discriminative adaptive training

using DMT which is expected to deal with this sensitivity to the supervision hypothesis

errors.

7.2 Discriminative Adaptive Training

The performance of adaptive training using discriminative mapping transforms was investi-

gated on the CTS task and compared to that of other commonly used approaches. For this

purpose, the DMT-based DSAT models were built using four iterations of MPE training based

on the ML-SAT models as described in section 4.3. A DLT-based DSAT system was also built

for the sake for comparison, in addition to the standard MLLR-based DSAT models. Both

MLLR and DLT had the same number of transforms: one for speech and one for silence.

The smoothing factors for DLTs and DMTs for adaptive training were the same as used for

the DLT adaptation with other systems in this work. The training procedure for DLT and

DMT based DSAT schemes are shown in figure 7.2. In the DMT-based DSAT scheme, as

the exact estimation of MLLR transforms as given in equation (4.70) was not used due to

computational reasons. Rather, the variant of the DMT-based DSAT scheme that uses the

standard MLLR estimation as described in section 4.3 was implemented. Another variant

with the fixed MLLR transforms for the DMT-based DSAT procedure was also investigated.

In the later variant, the MLLR transforms are kept fixed and only the canonical models and

DMTs are re-estimated during the DSAT procedure, as described in 4.3. The MLLR-style

mean-based linear transforms were used in all experiments. For the DMT, 1000 regression
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base classes were used. The next sections investigate the training criteria with different DSAT

schemes and evaluate the speech recognition performance for each of them.

ML-SAT (4) MLLR

DSAT (1)

DLT

DLT

DSAT (4) DLT

ML-SAT (4) MLLR DMT

DSAT (1) MLLR DMT

DSAT (4) MLLR DMT

Figure 7.2: The DLT and DMT-based DSAT schemes used in the experiments

7.2.1 Training Criteria

The training criteria for the DSAT schemes are given in table 7.2 for different iterations. The

criterion shown is the normalised expected phone correctness (related to the MPE criteria)

given by

F̄mpe(M) =
1

Nphone

∑

H

P (H|O,M)A(H,Hr) (7.1)

where F̄mpe(M) represents the normalised expected phone correctness, Nphone is the number

of phones in the reference hypothesis, and A(H,Hr) is raw phone accuracy of hypothesis H

compared to the reference hypothesis Hr as given in equation (2.64). At each iteration, the

criterion value was obtained during the update of the model parameters. Thus the zeroth

iteration shows the criterion after applying MLLR, MLLR+DMT, or DLT to the final ML-

SAT acoustic models. The training criteria has been plotted in figure 7.3 as well. As it can

be seen from the figure, all schemes show an increase in the correctness as the number of

iterations increases. The lowest correctness value was obtained with the MLLR-based DSAT

scheme. Using MLLR+DMT during adaptive training shows consistent gains in correctness.

However, the largest correctness values were obtained with the DLTs. This indicates that the

DLTs perform slightly better on the training data than the other schemes. However, this may

not give the best performance on the test data set. It should be noted that both variants of

the DMT-based DSAT implemented give similar training criteria, with the updated MLLR

version giving slightly higher criteria gain than the fixed-MLLR version.

figure/dltdsatsetup.eps
figure/dmtdsatsetup.eps
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#Iteration DSAT Transform
MLLR MLLR(updated)+DMT MLLR(fixed)+DMT DLT

0 0.783 0.803 0.803 0.821
1 0.817 0.840 0.840 0.863
2 0.836 0.861 0.860 0.887
3 0.848 0.874 0.873 0.902

Table 7.2: Normalised expected phone correctness given in equation (7.1) for different DSAT
schemes during training1
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Figure 7.3: A plot of normalised expected phone correctness in equation (7.1) for different
DSAT schemes during training

7.2.2 WER Performance

The speech recognition performance on the eval03 testset for the various DSAT schemes

is shown in table 7.3. The results from the MPE-SI system have been also provided for

comparison. As the CTS task is an unsupervised adaptation task, an initial hypothesis is

required. This was obtained from the MPE-SI model and had a word error rate (WER) of

29.2%. The results using this hypothesis as supervision are labelled as hyp in the table. In

order to investigate the performance degradation resulting from errors in this supervision

hypothesis, the reference transcription itself was also used as the supervision. The results for

using the reference transcript as supervision are labelled as ref in the table.

Using MLLR adaptation on the SI system with the hypothesis shows large gains in perfor-

mance, a reduction in WER of 2.2% absolute. MLLR-based DSAT scheme gave an additional

1The same phone-marked lattices were used in all these experiments.

figure/mpecrit-dsat.4.eps
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0.6% absolute reduction in WER using the hypothesis. If the reference was used to estimate

the transform instead, additional consistent gains are observed with both systems compared

to using the hypothesis. The most striking result is the difference in performance of the

DLT-based system, between using the reference or the hypothesis for the supervision. Us-

ing the reference, the DLT-based system yielded the best performance, whereas it had the

worst performance among all DSAT schemes when using the hypothesis. This illustrates the

sensitivity of DLTs to errors in the hypothesis. On the other hand, the DMT-based DSAT

scheme gave the best performance when using the hypothesis as supervision. Both variants of

the DMT-based DSAT schemes were found to give similar WER performance. A statistically

significant gain of 1.1% absolute was obtained compared to the standard MLLR-based DSAT

approach.

Training Transform Supervision
Scheme Training Testing ref hyp

SI (hyp) — — — 29.2

MLLR 24.3 27.0
SI — DLT 21.7 26.8

MLLR+DMT 23.4 26.2

MLLR MLLR 23.6 26.4
DSAT DLT DLT 18.4 28.1

MLLR+DMT MLLR+DMT 22.5 25.3

Table 7.3: Comparison of WER% of different DSAT schemes on eval03 testset

The sensitivity of the DSAT systems to the supervision hypothesis errors is further illus-

trated in figure 7.4. The figure shows the gain obtained with the DSAT schemes compared to

the MLLR-adapted SI system, at the different supervision WER. This is obtained by group-

ing the speakers in eval03 testset according to their SI WER, and averaging the gain for

each group. It should be noted that most of the speakers fall in the left half region of the

plot, and the characteristics in this region should be emphasised. As it can be seen from the

figure, as the supervision WER increases, the performance of the DLT-based DSAT scheme

degrades, whereas the MLLR-based DSAT system is less affected. The DMT-based DSAT

scheme, on the other hand, consistently shows a better performance than both. The trend

of higher performance gain with the increasing supervision WER in the DMT-based DSAT

scheme is due to the fact that there is more room for the improvement at the higher WER.

It is not necessary to use the same transform for adaptive training as used during recog-

nition. From table 7.3, using MLLR+DMT appears to be a good candidate for testset

adaptation due to its robustness to the supervision hypothesis errors. Therefore, the use

of MLLR+DMT as a testing transform with other DSAT models was investigated, rather
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Figure 7.4: Improvement (absolute) obtained with the DSAT schemes compared to the MLLR
adapted MPE-SI system at different supervision WERs

than using the same transform as used for their training. Table 7.4 shows the performance

of the various DSAT schemes using MLLR+DMT for test-set adaptation. As previously ob-

served in [202], using DMTs in addition to MLLR yields a gain of about 0.8% absolute for

both the MPE-SI model and the MLLR-based DSAT model compared to MLLR. However,

the performance of both systems is still significantly worse than the proposed DMT-based

DSAT system. Using MLLR+DMT with the DLT-based DSAT system shows large gains

over using the DLT as the test-set transform. Despite the DLT-based DSAT system having

the best criterion on the training data, it is still significantly worse than the DMT-based

DSAT system even with the robust MLLR+DMT test-set transform. This may have been

caused by the inconsistency between the training transforms, DLT, and the test-set trans-

forms, MLLR+DMT.

Training Transform Supervision
Scheme Training Testing hyp

SI — MLLR+DMT 26.2

MLLR 25.6
DSAT DLT MLLR+DMT 25.6

MLLR+DMT 25.3

Table 7.4: Comparison of eval03 WER% of different DSAT models with MLLR+DMT as
testing transforms

figure/werhist-main.2.eps
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7.3 Summary

This chapter has presented experimental results for speaker adaptive training based on dis-

criminative mapping transforms (DMTs) and compared it with other commonly used adap-

tive training schemes. Adaptively trained systems are generally expected to perform better

than the corresponding SI systems, both for maximum-likelihood and discriminative systems.

This trend was observed in our experiments proving the superiority of the adaptively trained

systems, except for the DLT-based DSAT scheme. The DLT-based DSAT system with un-

supervised adaptation was inferior to the adapted SI system. The DLT-based DSAT system

was affected by the sensitivity of discriminative transforms to supervision hypothesis errors.

The use of the speaker-independent DMTs reduces this sensitivity, and the proposed DMT-

based DSAT scheme was found to significantly outperform the standard approaches to speaker

adaptive training.



CHAPTER 8
Experiments on

Discriminative Adaptive
Inference

This chapter presents the experimental results for discriminative adaptive inference as

described in section 6.2. The experiments were conducted on the same conversational

telephone speech (CTS) task as described in chapter 7. The experimental setup for training

and evaluation is described in section 8.1. Subsequently, section 8.2 presents the results from

the investigation of discriminative adaptive inference.

8.1 Experimental Setup and Baseline

The experiment for discriminative adaptive inference was conducted on the same LVCSR

conversational telephone speech (CTS) task with a similar experimental setup as described

in chapter 7. However, a different adaptation and decoding strategy is used based on an N-best

rescoring framework as described in the next paragraph. The training data (about 296 hours),

frontend processing and the trained models were identical to that used in the experiments

of chapter 7. However, only the MPE-SI model was used in this experiments, as the standard

133



CHAPTER 8. EXPERIMENTS ON DISCRIMINATIVE ADAPTIVE INFEREN CE 134

MPE-SAT models use ML transforms and is not consistent with a complete discriminative

framework. In this case also, all transformations perform mean-based adaptation. All speaker-

specific transforms used two base classes: one for speech and another for silence. A trigram

language model trained on 1044M words and a multiple pronunciation dictionary with a

vocabulary size of 58k words were used for decoding in this case also. The eval03 testset

containing about 6 hours of data with 7074 utterances (76K words) from 144 speakers was

used for evaluation.

Low Confidence 
Utterance

N-best list

IT IS FOUND ELSE  

NO WHERE

NOW HERE

KNOW WHO WERE

NOW ON HIRE

ON THE EARTH

Figure 8.1: The speaker-level incremental N-best framework for adaptive inference

An experimental framework was designed to investigate discriminative adaptive inference

as described in section 6.2.3 by ranking hypotheses in an N-best list. An optimal N-best

list of suitable depth and small oracle error rate can be obtained only at the utterance level.

However, adaptation and inference at the utterance level would be problematic as there is only

a small amount of adaptation data for robust estimate of the transforms at the utterance level.

On the other hand, if the transform is estimated at the speaker level, there is an exponential

growth of hypotheses in the N-best list with the increased number of utterances for a speaker.

Therefore, an experimental framework was designed in which only one segment per speaker

is expanded into an N-best list at one time as shown in figure 8.1. This limits the possible

supervision hypothesis to N for each speaker at a time, which are then used to estimate

adaptation transforms. The transforms are still estimated at the speaker level and thus the

problem associated with a small amount of adaptation data is isolated. The segment for

the N-best expansion is selected by looking at the confidence scores. The segments with low

confidence score are selected, one by one, for reranking as they are the ones that need to be

redecoded. This is in contrast to the standard adaptation process using 1-best list where using

low-confidence segments in supervision has an adverse effect. However, in this case, N-best

lists are used as supervision and reranking, and this is not the problem. In this case, selecting

low-confidence segments for rescoring is desirable as they are expected to have relatively

figure/incrnbestsetup-cn.eps
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higher word error rates and thus more room for improvement. After expanding a segment to

an N-best list for each speaker, a transform is estimated using each hypothesis in the context

of others for each speaker. The best hypothesis in the N-best list is searched by looking at the

discriminative inference evidence for each of them. In this case, equation (6.32) is used for

doing discriminative adaptive inference. This N-best expansion and adaptive inference is done

for segments one by one incrementally on low-confidence segments and the best hypotheses

are selected for each of them, obtaining the final set of best hypotheses.

The experimental framework described uses an N-best list for inference. Therefore, base-

line results were obtained for the N-best list and compared to the decoding using full search

space. The performance of the standard MLLR and DLT adaptation on the MPE-SI model is

given in table 8.1 both for N-best list and full search space. In the experiment, the MPE cri-

terion with an I-smoothing prior to ML statistics was used for DLT estimation. A weak-sense

auxiliary function was used to optimise the discriminative objective function and estimate

transforms. The N-best list used in the experiment are regenerated after adapting the MPE-

SI model with MLLR transforms. When all hypotheses were reranked with the same MPE-SI

model, the result was slightly different (due to slight difference in the criteria used for gen-

erating the N-best list). All the lattices were regenerated and phone-marked with a bigram

language model for discriminative transform estimation.

Transforms Search Space WER%

— Full 29.2

MLLR Full 27.0
150-best 26.9

DLT Full 26.8
150-best 26.9

Table 8.1: The eval03 baseline performance for MLLR and DLT adapted MPE-SI models
with 1-best supervision

The results in table 8.1 show that MLLR 1-best adaptation gives a performance gain of

2.3%, whereas DLT 1-best adaptation gives no additional gain on the N-best list scoring.

As discussed earlier, this is due to the hypothesis bias and sensitivity issue of discriminative

transforms to the erroneous 1-best supervision. This is reflected from the fact that, for

supervised adaptation when there is no errors in the supervision hypothesis, 1-best DLT

adaptation has been found to give significant performance gain compared to corresponding

MLLR adaptation, as seen in the last chapter. This further motivates the investigation of

the N-best list based discriminative adaptive inference. The results are described in the next

section.
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8.2 Discriminative Adaptive Inference

This section presents the results for discriminative adaptive inference in the N-best rescoring

framework described in the previous section. The N-best framework is expected to reduce

the hypothesis bias problem of discriminative adaptation. The next sections show the nature

of selected segments for expansion and results from reranking the expanded hypotheses.

8.2.1 Segments Selection

For the N-best list based adaptive inference, a segment with low confidence score was selected

per speaker and expanded into a 150-best list for each speaker. This yielded 150 supervision

hypotheses for estimating each speaker-level transform. The current best hypotheses are used

for the rest of the segments not expanded. The segments for each speaker was selected for

expansion by looking at the confidence score for the segment. The segment confidence scores

were obtained by averaging the word confidences from the confusion network obtained from

the denominator lattice for the segment. A segment with the lowest confidence score was

selected for the first pass of the N-best list expansion in this work. Figure 8.2 shows WERs

of the selected segments compared to the average WER for their corresponding speaker. In

the figure, a point below the diagonal line represents a segment with a higher WER than the

average WER for its speaker. It can be seen that a majority of the selected segments had

a higher WER rate than their corresponding speaker’s WER. However, there are segments

which have a WER lower than their average speaker WER. This occurs specially in the low

WER region.
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Figure 8.2: The WER% of selected segments compared to average WER% of the correspond-
ing speaker.
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8.2.2 WER Performance

In the experiments for the N-best based adaptive inference, the transforms were estimated

for each speaker corresponding to each supervision hypothesis that differed at the expanded

segment. The discriminative transforms were based on the MPE criterion with I-smoothing

prior to ML statistics and without any transform prior. The transform prior is not used as

the transforms are being estimated at the speaker level. A weak-sense auxiliary function was

used for optimisation with an I-smoothing constant αI = 0.01 and a scaling to smoothing

factor E = 0.8. The equations (6.33) and (6.32) were used for generative and discriminative

adaptive inference, respectively, for ranking the hypotheses in an N-best list.

The result for the 150-best list based adaptive inference with speaker-level adaptation is

shown in table 8.2. The standard MLLR 1-best adaptation gives a baseline, that is being

compared to the N-best adaptation using MLLR and DLTs. In N-best based MLLR adap-

tation, hypotheses are ranking using the standard inference procedure as in (6.33). On the

other hand, in the N-best based DLTs adaptation, discriminative inference evidence given

in (6.32) is used.

Adaptation Ranking WER%
Transforms Supervision

– – – 29.2
MLLR 1-best – 26.9

MLLR
N-best

gen. 26.9
DLT dis. 26.9

Table 8.2: The performance of adaptive inference on the MPE-SI model for the eval03 testset

In the table, no improvement is observed from the N-best adaptation with MLLR. Unfortu-

nately, the same is true for using the discriminative adaptive inference for ranking the N-best

hypotheses with the DLT adaptation. This may be due to several reasons including the ap-

proximations involved in arriving at the discriminative inference evidence of equation (6.32).

It should be noted that the inference evidence in equation (6.32) is only an approximation to

the marginal posterior, used in the real discriminative adaptive inference in equation (6.21).

As discussed in section 6.2.3, this approximation is derived from a lower-bound to the marginal

posterior, and is a poor approximation, not even a tight bound to the marginal posterior. In

addition, the size of the N-best list is also an important issue. A sufficiently large N-best list

is required for computing the normalisation constant in equation (6.32) to obtain reasonable

estimates of the posteriors of hypotheses. Besides, it may be the case that the significant

change in the performance was not observed because no sufficient segments were redecoded.
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8.3 Summary

This chapter has presented results from the experimental investigation of discriminative adap-

tive inference using an N-best based rescoring framework. An adaptation transform is esti-

mated for each of the possible hypotheses in the N-best list and the hypotheses are ranked

based on discriminative inference criteria to obtain the best hypothesis. Though the method

was expected to reduce the hypothesis bias problem of the conventional 1-best based discrim-

inative adaptation, the experimental result shows no significant change in the performance

compared to the standard decoding procedure. This may be due to several approximations in-

volved in determining the discriminative inference evidence given in equation (6.32), including

the size of the N-best list for computing the normalisation constant for the posterior. It may

be also possible that the number of segments decoded in the experiment may not be sufficient

to yield a remarkable change in the WER. However, redecoding each segment using discrim-

inative inference evidence requires O(N2) calculations of likelihoods of hypotheses using the

forward-backward algorithm, and is thus computationally expensive. This implies that for

an N-best list of size 150, for rescoring one segment using discriminative adaptive inference

evidence requires the computation of the likelihood using the forward-backward algorithm

22500 times. For this reason, the method was not further investigated.



CHAPTER 9
Experiments on Bayesian
Adaptation and Inference

This chapter presents experimental results for expectation propagation based Bayesian

inference as described in section 5.3, as well as the results for discriminative Bayesian

adaptation as described in section 6.3. The LVCSR experiments were conducted for the

conversational speech task (CTS) with a similar setup as described in the previous chapters,

except that the adaptation is done at the utterance-level and an N-best rescoring framework

is used for inference. The utterance-level adaptation simulates the scenario of online or

instantaneous adaptation where there is only a small amount of adaptation data available.

The effectiveness of Bayesian adaptive inference is investigated in such a scenario. An N-best

list based rescoring framework is used instead of normal Viterbi decoding due to the nature

of the Bayesian adaptive inference. The experimental setup and baseline is briefly described

in section 9.1. Section 9.2 describes experimental investigation for Bayesian inference based

on expectation propagation. This is followed by experimental investigation of MAP estimation

of discriminative transforms and the use of discriminative mapping transforms for Bayesian

adaptation in section 9.3.
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9.1 Experimental Setup and Baseline

The experiments for Bayesian adaptation and inference were conducted on an LVCSR con-

versational telephone speech (CTS) task, with the experimental setup similar to as described

in chapter 7. However, an utterance-level adaptation and N-best rescoring framework is used.

The training data set and trained models were identical to that used in the experiments

of chapter 7. The PLP-based front-end parametrisation of speech was also identical yielding

the final feature dimension of 39. Cepstral mean and variance normalisation as well as vocal

tract length normalisation was also applied to the features. However, it should be noted

that though the adaptation and inference being considered is at the utterance level, speaker

level CMN and CVN were used, which are more robust. This implies that any improvement

obtained with adaptation will be less than the actual improvement that can be obtained.

Both SI and SAT model sets were trained using ML and MPE criteria. MPE-SAT model

in this case uses MLLR-transforms estimated using the ML-SAT system, and only model

parameters are updated during training. An affine transformation of component means was

used in all experiments for adaptation in this case also. The number of baseclasses in speaker-

specific transforms and DMTs were same as before. A single Gaussian prior for the MLLR

transform was estimated using equation (5.16), from the training set transforms for both ML

and MPE systems. The prior for speech and silence transforms were independently estimated

and had the forms as given in equation (3.30). The transform priors were estimated both

for SI and SAT systems. The supervision hypothesis for adaptation was obtained from the

corresponding SI model for both ML and MPE systems. All adaptation is done at the

utterance level reflecting the scenario of the instantaneous adaptation. The average length

of utterances was 3.13s, in contrast to the average length of 153.75s per speaker-side for the

eval03 testset. The N-best list size was 150 for the rescoring experiments. A trigram language

model trained on 1044M words and a multiple pronunciation dictionary with a vocabulary

size of 58k words were used for decoding in this case also. As noted before, the eval03 testset

used for evaluation consists of 7074 utterances from 144 speakers.

The baseline performance of the utterance-level MLLR-based adaptation is shown in ta-

ble 9.1 for different Bayesian approximations and is identical to the results in [199]. The

performance was evaluated with a size of N-best list as 150, which was found to be satisfac-

tory as noted in [199], as increasing the size of the N-best list to 300 for unadapted ML-SI

system was found to give no further gain (or loss). It should be noted that there is a slight dif-

ference in performance compared to the results in table 7.1, for example 32.8% for unadapted

ML-SI system instead of 32.6%. This difference is caused by using N-best based rescoring

using forward-backward likelihoods, rather than using the Viterbi decoding as used for results
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Bayesian ML Train MPE Train
Approx SI SAT SI SAT

— 32.8 — 29.2 —

ML 35.5 35.2 32.4 32.3
MAP 32.2 31.8 29.0 28.8
VB 31.8 31.5 28.8 28.6

Table 9.1: The performance of the utterance-level Bayesian adaptive inference with 150-best
rescoring using MLLR based adaptation on the eval03 testset

in table 7.1. In the above table, for the variational Bayes (VB) lower-bound approximation,

a single iteration was used for transform distribution update.

It can be observed in the above table that doing MLLR adaptation at the utterance level

degrades the performance severely, even compared to the SI performance. This is because the

transforms have been generated using only a small amount of data for each utterances. This

can be contrasted to the significant gain obtained with the speaker-level MLLR adaptation in

table 7.1. With the utterance level adaptation in table 9.1, both MAP and variational Bayes

(VB) have been found to improve the performance of the system significantly in case of the

ML trained systems, however the same level of improvement is not obtained with the MPE

systems. This is possibly due to the use of maximum likelihood based transforms with the

MPE systems, and not using the transform prior consistently with the complete discrimina-

tive Bayesian framework described in section 6.1. This motivates the use of discriminative

transforms to estimate priors and consistently use those prior in a discriminative fashion for

discriminative Bayesian inference. Moreover, the lower-bound approximations used assume

that the rank ordering of the hypotheses using the lower-bound to likelihood is same as given

by the exact likelihood. However, this may not be true if a bound is not very tight and may

lead to performance degradation, as described in chapter 5. This can be improved by using

a method that can closely approximate the marginal likelihood. The next section describes

the experimental investigation of the use of expectation propagation for Bayesian inference

that attempts to find more accurate estimates of the marginal likelihood. It is then followed

by the experimental investigation of the Bayesian approach to discriminative adaption.

9.2 Expectation Propagation Based Bayesian
Inference

This section describes the experimental results for Bayesian adaptive inference using ex-

pectation propagation based approximation to the intractable marginal likelihood given in
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equation (6.15). The next section first compares the EP approximated marginal likelihood

with other methods, on a toy problem. Thereafter, the performance of the EP approximation

is evaluated on the speech recognition task in terms of word error rate.

9.2.1 Marginal Likelihood Approximations

It is important to compare the marginal likelihood given by different methods to assess the

quality of approximations. The approximated marginal likelihood should be as close as pos-

sible to the true marginal likelihood. However, it is difficult to compute the exact marginal

likelihood for a speech utterance on a complex system. The large number of dimensions in

transforms, the number of mixture components used for state output distributions, and ex-

ponentially growing number of possible component sequences make it intractable to obtain

the exact value of marginal likelihood on an LVCSR task. Therefore, to initially investigate

the quality of different approximations, the Old Faithful Geyser data set [9] was used. The

data set has a dimensionality of two. A simple left-to-right HMM with three emitting states

and Gaussian output probability distributions was used as a model. An artificial Gaussian

prior was used for the transform distribution. The marginal likelihood was computed on this

system for a given observation sequence using different approaches. The likelihood estimates

for a test sequence of 100 frames are plotted in figure 9.1.

-250

-248

-246

-244

-242

-240

-238

 1  2  3  4

L
og

-L
ik

el
ih

oo
d

#Iteration

EP
Exact

Unadapted
VB

Figure 9.1: The likelihood estimates by EP and VB compared to the exact and the unadapted
likelihoods on the Old Faithful Geyser data set

In figure 9.1, the exact likelihood was estimated by enumerating all possible state se-

quences in the HMM for given observation, and then doing exact marginalisation for the

figure/vbklepiter4.eps
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given transform distribution. The estimation of VB lower-bound and EP approximations are

described in sections 5.2.3.2 and 5.3, respectively. As it can be seen, the variational Bayes

gives a lower-bound to the exact marginal likelihood. Though the VB lower-bound estimates

increases as more iterations are completed, they are still far-off than the exact marginal like-

lihood. On other hand, expectation propagation gives a near exact marginal likelihood just

after performing one forward and backward pass. The EP approximated likelihood converges

to the exact likelihood only in few iterations. Thus the use of EP approximated marginal like-

lihood for inference in speech recognition systems is likely to produce the same rank-ordering

as the exact marginal likelihood giving a performance improvement.

The implementation of EP for computing marginal likelihoods on the speech recognition

task described in section 9.1, however, requires a large amount of memory. This is because

in the EP-based forward-backward algorithm described in 5.3, each forward and backward

probabilities are not discrete distributions as in the standard HMM, but a probability function

of transforms Wt. The dimensionality of the transform is large, D × (D + 1). Therefore, a

large amount of space is required for each node in the forward-backward trellis. Unlike the

standard forward/backward algorithm for computing likelihood, these forward and backward

distributions are required to be stored for the whole utterances, as they are used in the next

pass of the message computation and refinement as described in algorithm 6. Moreover, an

EP iteration involves converting the distributions from the canonical form to the moment

form and vice-versa for approximating each message. This involves matrix inversion and is

computationally very expensive and slow. This may also give rise to ill-conditioned matrices

with high condition numbers, and may lead to inaccurate results. These issues make it

infeasible to use the EP-based forward-backward algorithm even for utterances with few

seconds of data.

To deal with the memory and computational requirement of the algorithm, the messages

in the EP-based algorithm were constrained to be diagonal for further experiments on the

speech recognition task. EP in this form is then used for approximating marginal likelihoods

of hypotheses in the N-best rescoring framework. This approximation may be very inaccu-

rate. This is because even the observation message, in equation A.34, which represents the

likelihood of data at a particular frame for a given component is not properly accounted for,

as they are diagonalised1. Table 9.2 investigates the effect of the this diagonal message ap-

proximation by comparing the EP approximated likelihood with full and diagonal messages.

It should be noted that ‘full’ here refers to the form of messages as defined in equation (5.43)

1Note that Λd = ξξT

σ2

d

in equation (A.34) will be forced to be diagonal in the observation message. By doing

so, one can observe the difference it will make to the value of the observation likelihood on the left-hand side
of the equation.
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and (5.44) with full covariance matrices (actually block-diagonal covariance matrices, as rows

of transforms are assumed independent), whereas ‘diagonal’ refers to all messages, including

the observation message, constrained to be completely diagonal. As it can be seen from the

table, the diagonal message approximation is indeed very crude in nature and gives a quan-

tity far from the real marginal likelihood. However, as the absolute values of the marginal

likelihood may not be important themselves for ranking of hypotheses, this assumption is

still used for doing inference in speech recognition task. Besides, the approximated likelihood

with diagonal message assumption shows difficulty in refining with more iterations. This

may be because of the lack of proper interaction between forward and backward messages in

successive iterations without the full messages. However, due to the relative computational

efficiency, EP-based on this diagonal message assumption is used for ranking hypotheses on

the speech recognition task. The results are presented in the next section.

#iter Exact
EP Approximation
Full Diagonal

1

-2.3967e+02

-2.4056e+02 2.1827e+03
2 -2.3967e+02 2.1827e+03
3 -2.3967e+02 2.9433e+03
4 -2.3967e+02 2.1827e+03

Table 9.2: The comparison of EP approximations with full and diagonal messages on the Old
Faithful Geyser data set

9.2.2 Performance on the CTS Task

The EP approximation based on the diagonal message assumption as described above was

used to compute the marginal likelihood or acoustic score of the hypotheses in the N-best list

for doing inference in a speech recognition system. The performance of the EP-based approach

was evaluated using the ML-SAT models on the CTS task described before. Adaptation was

done at the utterance level to reflect the scenario of online adaptation and N-best list based

rescoring was used to do the inference through equation (6.20). However, in this case the size

of N-best lists was truncated to 5 as computing the likelihood through EP approximation was

still quite time-consuming for all 7074 utterances in the testset. The effect of this truncating

of N-best list is shown in table 9.3 for the VB lower-bound inference approach. At the first

iteration of VB when the approximated likelihood tends to be much different from the exact

likelihood thus making the system more prone to errors, the performance is improved after

truncating the list from 150 to 5. This is because by limiting the search-space to only 5-best

hypotheses, the possibility of selecting more errorful hypotheses in the 150-best list has been
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reduced. Variational Bayes, at the third iteration, gives an improvement of 1.0% absolute

compared to SI system with the 5-best list, which is slightly less than that obtained with the

150-best list. The reduction is due to restriction in finding the best hypothesis within the

limited 5-best list.

#iter SI
SAT/VB

150-best 5-best

1
32.8

34.1 32.9
2 31.5 31.9
3 31.6 31.8

Table 9.3: The performance of VB based inference for utterance-level adaptation for 5-best
and 150-best rescoring on the ML-SAT system

The EP-based approach was also evaluated using the above truncated 5-best list. The EP

approximation used full transforms with two-base classes, however the covariance matrices (for

each row) of transforms and messages were assumed diagonal. This makes the computation

much faster, as described before, by eliminating large number of matrices inversion. A total

of three iterations (each forward or backward sweep regarded as one iteration in EP) were

used to estimate the marginal likelihood. The estimated likelihoods were then used to rank

the hypotheses in the N-best list as in equation (6.20). The results from the ranking are given

in table 9.4 for eval03 testset on ML-SAT system using 5-best rescoring, and is compared

to the performance of VB. As it can be seen from the table 9.4, the WER performance of

#iter SI
SAT (5-best)
VB EP

1
32.8

32.9 35.6
2 31.9 35.7
3 31.8 35.6

Table 9.4: The performance of VB and EP based adaptive inference for utterance-level adap-
tation with 5-best rescoring

the EP-based approach using the diagonal message assumption is much worse than the VB

lower-bound. Though the VB lower-bound performance is also poorer than that of even

the SI system initially, with further iterations, it improves significantly. However, the EP-

based approach was not found to improve the performance even with further iterations. This

can be seen as a consequence of using the diagonal message assumption in the EP-based

approach. As already seen in table 9.2, in the diagonal message based EP approximation,

the estimate for the marginal likelihood is far from the the exact likelihood (or the actual

EP approximated likelihood), and it was not guaranteed to improve with further iterations.
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Therefore, it may be worthwhile to investigate the EP approximation with full messages for

ranking hypotheses on the LVCSR task, as the initial results on the Old Faithful Geyser data

set for approximating the marginal likelihood have been encouraging. However, due to the

computational cost and memory requirement involved with the EP approximation with full

messages, it was not further investigated on the LVCSR task for ranking hypotheses.

9.3 Discriminative Bayesian Adaptation and
Inference

This section describes experimental evaluation of discriminative Bayesian adaption. The

MAP estimation of discriminative transforms as described in section 6.3.1 is first investigated.

This is then followed by the evaluation of the use of discriminative mapping transforms in a

Bayesian framework as described in section 6.3.2.

9.3.1 MAP Estimation of Discriminative Transforms

The MAP estimation of discriminative transforms was investigated at the utterance-level,

where there is only a small amount of adaptation data that may not give robust estimates of

the transforms if estimated directly. It involves optimising a discriminative MAP objective

function, and is examined below.

A weak-sense auxiliary function is commonly used for optimising discriminative objective

functions both for training of HMMs and estimating discriminative transforms. The same ap-

proach was investigated to optimise the discriminative MAP objective function, as described

in section 6.3.1.1. Its suitability for the optimisation was investigated by examining its char-

acteristics. The relationship between the auxiliary function and the discriminative objective

function was examined first for the case of estimating the standard discriminative transforms

using equation (4.2), without a transform prior. Table 9.5 lists the values of objective function

as well as auxiliary function at different iterations of DLT estimation. As it can be seen in the

table, the weak-sense auxiliary function was found to increase the objective function with an

increase in the auxiliary function, however the auxiliary function was not a lower-bound to

the objective function, i.e. ∆F(W) ≥ ∆Q(Ŵ;W) is not true. This is despite the fact that

the auxiliary function uses a smoothing constant of E = 2 as a more stable configuration,

than the normal value of E = 0.8 used for estimating discriminative transforms in this work.

Similar trends were observed even after further increasing the values of smoothing constants.

However, as described before, higher values of the smoothing constant lead to small changes

in the objective function.
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#Iteration F(W) ∆Q(Ŵ;W) ∆F(W)

1 29.361012 278.540059 6.301773
2 35.662785 79.976290 5.061386
3 40.724171 41.410955 0.428100
4 41.152271 15.840854 -

Table 9.5: The values of the MPE objective function and corresponding auxiliary function at
different iterations of DLT estimation with a weak-sense auxiliary function

The weak-sense auxiliary function described in section 6.3.1.1 was used to estimate the

discriminative MAP transforms for the utterance level adaptation. With the normally used

values of smoothing factors for estimating discriminative transforms, the discriminative MAP

objective function was found to generally oscillate with the iterations leading to very unre-

liable estimates of the transforms. The change in auxiliary function and the discriminative

MAP criteria given in equation (6.34) is given in table 9.6 for a typical MAP estimation of

discriminative transforms. In the table, the objective function has decreased at some iter-

ations despite the increase in the auxiliary function. This is possible due to the fact that

the weak-sense auxiliary function is not a lower-bound to the objective function, as described

before.

#Iteration F(W) ∆Q(Ŵ;W) ∆F(W)

1 4540.199288 67.266195 -28.280020
2 4511.919268 22.369408 19.304500
3 4531.223768 6.520218 -7.416561
4 4523.807207 4.755905 –

Table 9.6: The values of the MAP-MPE objective function as given in equation (6.34) along
with the values of the weak-sense auxiliary function at different iteration of MAP-DLT esti-
mation

It is worthwhile noting that an ML I-smoothing “prior” and a scale to the transform

prior term were also used in the experiments. Though the weak-sense auxiliary function

with the I-smoothing “prior” has been found to generally work for discriminative transforms

estimation, the addition of a discriminative transform prior makes the scenario different. The

I-smoothing term represents the likelihood of certain observation points, and its nature and

dynamic range are similar to the numerator term in the discriminative objective function.

On the other hand, the transform prior term represents the likelihood of a transform given

the prior distribution, and its nature and dynamic range are different from those of the I-

smoothing prior and other terms. This is specially true when the transform prior is very

informative with small variances.
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An alternative approach to the optimisation of the discriminative MAP objective function

is based on a reverse-Jensen inequality as described in section 6.3.1.2. This was also investi-

gated for estimating the discriminative MAP transforms for the utterance level adaptation.

As noted earlier, this form of optimisation can be achieved by computing the smoothing fac-

tors using equation (6.44). The values of smoothing factors obtained using reverse-Jensen

inequality is compared to that used in a a weak-sense auxiliary function in figure 9.2 for a

typical utterance. The smoothing factor of the weak-sense auxiliary function is set as in

equation (6.41), with E = 0.8.
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Figure 9.2: A histogram of smoothing factors Dm obtained with a reverse-Jensen inequality
(left) and that used in a weak-sense auxiliary function (right).

It can be seen in the figure that a majority of the values of smoothing factors obtained by

using reverse-Jensen inequality are very high compared to that used in a weak-sense auxiliary

function. The majority of them turned out to be larger by a factor of 106 or more than the

normally used values of smoothing factors in the weak-sense auxiliary function. This leads to

minimal changes in the transform parameters, thus giving minimal or no change in the value

of the discriminative MAP objective function, as shown in table 9.7. Consequently, the rank

ordering of the hypotheses is not altered.

#Iteration F(W) ∆Q(Ŵ;W) ∆F(W)

1 4540.199288 0.00000 0.00000
2 4540.199288 0.00000 0.00000
3 4540.199288 0.00000 0.00000
4 4540.199288 0.00000 –

Table 9.7: The values of the MAP-MPE objective function at different iterations obtained
with a reverse-Jensen inequality based auxiliary function.

The high values of smoothing parameters with the reverse-Jensen inequality may be due

to a very loose lower-bound obtained with it. It is known that the bounds obtained with

reverse-Jensen’s inequality are very loose [81]. It should be also noted that the reverse-Jensen
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inequality was not directly applied to the HMMs in this work, which may have further ef-

fects. Moreover, the transform estimation requires objective function maximisation involving

computation of statistics summed over several components. In this case, the cumulative ef-

fect of the loose lower bounds may be even more severe than for acoustic model updates. It

should be noted that in [1] further approximations were used so that the Jensen’s reverse

inequality based approach gave similar results to a weak-sense auxiliary function for model

estimation. However, these approximations are not suitable for this work as a lower bound

is desired. A strict lower-bound of the discriminative objective function obtained by tightly

upper-bounding the whole denominator term can possibly improve the optimisation.

Instead of using above approaches, the standard gradient based optimisation schemes as

described in section 6.3.1.3 can be used for discriminative MAP estimation. Computing the

Hessian of the likelihood function for Newton’s method is computationally expensive for large

vocabulary speech recognition systems, and therefore is not examined here. Only the gradi-

ent based optimisation was investigated for estimating discriminative MAP transforms. The

gradient of likelihood can be computed using equation (C.3), which can be applied to both

numerator and denominator terms thus obtaining the gradient of discriminative objective

function. The gradient based optimisation scheme was used to iteratively estimate the new

value of MAP estimates of discriminative transforms, using equation (6.47). The discrimina-

tive MAP objective function against iteration is shown in figure 9.3 for a typical utterance

from eval03 testset. A learning rate of η = 10−6 was selected manually for the utterance.

As it can be seen, the MAP-MPE criteria increases smoothly and converges for the chosen

learning rate, as more iterates are completed.
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Figure 9.3: The change in MAP-MPE criteria using gradient ascent method with αp = 0.1
and η = 10−6 for a typical utterance

However, it should be noted that to use the gradient based optimisation, careful selection

of learning parameter η is very important. Like the weak-sense auxiliary function, they are

figure/taup1eta-6.eps
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not guaranteed to converge and fine tuning of learning parameters is required. Furthermore,

they are generally not elegant and efficient for a large speech recognition system with high

dimensionality transform matrices. Therefore, the gradient based optimisation scheme was

not used for ranking the hypotheses for the eval03 testset for adaptive inference.

As seen above, it is difficult to obtain useful MAP estimates of discriminative transforms

in an efficient manner. However, robust estimates of discriminative transforms are crucial for

instantaneous unsupervised adaptation. Discriminative mapping transforms (DMTs) can be

used for this purpose in a Bayesian framework as described in section 6.3.2 which is evaluated

next.

9.3.2 DMT-based for Bayesian Adaptive Inference

This section examines the use of discriminative mapping transforms (DMTs) in a Bayesian

framework as described in section 6.3.2. In this section, DMTs are used for utterance-level

discriminative adaptation and decoding in the N-best rescoring framework. DMTs are applied

over MAP estimates of linear transforms (MAPLR). The DMTs are estimated from training

data, and have 1000 regression baseclasses. Other speaker-specific transforms had two base-

classes as described before. The experimental setup and baseline are already described at the

beginning of this chapter.

The experimental results for the utterance-level N-best adaptive inference on eval03

testset are given in table 9.8.

System
Adaptation WER%

Training Testing ML MPE

SI – – 32.8 29.2

SI –
MLLR 35.5 32.4

MAPLR 32.2 29.0
MAPLR+DMT 30.8 28.4

SAT MLLR
MLLR 35.2 32.3

MAPLR 31.8 28.8
MAPLR+DMT 30.9 28.6

Table 9.8: WER% performance for the utterance-level N-best adaptive inference on eval03

testset

It can be seen from the table that the MAP estimates of linear transforms, MAPLR, has

reduced the WER significantly. Using DMT with the MAPLR N-best adaptive inference gives

a further improvement of 1.4% and 0.9% absolute on the ML SI and SAT systems, respectively,

compared to using MAPLR alone. Similarly, for the MPE systems, the gains obtained with

DMTs over MAPLR transforms for the utterance-level adaptation is 0.6% and 0.2% absolute
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on SI and SAT models, respectively. These gains are less than those obtained with DMTs

for speaker level adaptation, as seen in chapter 7. The reduction in gains compared to the

speaker-level adaptation is felt, in part, to be due to mismatch in applying a DMT estimated

from speaker-level ML transforms to the utterance-level MAPLR. The SAT systems are more

affected than the SI systems, as they are more sensitive to any mismatch in the training and

the testing transforms than SI systems.

The effectiveness of N-best adaptive inference was also compared to the standard 1-best

adaptation. A comparison of Bayesian N-best adaptation with the 1-best adaptation is given

in table 9.9, typically for the ML-SAT system. As it can be observed, the N-best adaptive

inference is giving better performance than the 1-best adaptation. Furthermore, the N-best

MAPLR+DMT adaptation gives a gain of 0.9% absolute compared to using MAPLR alone,

and a gain of 0.7% absolute compared to the 1-best adaptation using MAPLR+DMT.

Adaptation Supervision
1-best N-best

MAPLR 32.0 31.8
MAPLR+DMT 31.6 30.9

Table 9.9: A typical performance comparison for the 1-best and the N-best utterance-level
adaptation on the ML-SAT system

9.4 Summary

This chapter has presented experimental results from investigation of Bayesian adaptation

and inference. The Bayesian inference in adaptive system requires computation of marginal

likelihoods. An approach based on expectation propagation was evaluated for approximation

to the marginal likelihood, and then it was used for ranking N-best hypotheses for evaluation

on the English CTS task. After that, discriminative Bayesian approaches were evaluated.

The estimation of discriminative MAP transforms was investigated. This was followed by

the investigation of using DMTs in a Bayesian framework. The DMTs were used with MAP

estimates of ML transforms for N-best based adaptive inference. The results from the evalu-

ation on the CTS task demonstrated a significant amount of performance gains through this

approach compared to MAPLR.



CHAPTER 10
Conclusion

This thesis has investigated the problems of adaptation and adaptive training in large

vocabulary speech recognition systems. In this chapter, the contributions of the thesis

are summarised and possible directions for future work are outlined.

10.1 Summary of Work

In this thesis, the issues related to adaptation and adaptive training of acoustic models in

state-of-the-art speech recognition systems have been addressed. As reviewed in chapters 3

and 4, state-of-the-art systems commonly use maximum-likelihood based linear transforms

for the adaptation and adaptive training purpose. However, discriminative criteria such as

minimum phone error are generally used to train the HMM parameters and have been found

to significantly improve the performance. Therefore, the use of discriminative criteria for

estimating transforms has been investigated in the past. However, they are not suitable for

unsupervised adaptation. This is because they are biased towards the supervision hypothesis

and thus highly sensitive to errors in it. Hence, they are not used in the adaptive training

framework. Instead, ML transforms are used, and only canonical models are trained dis-

criminatively. To deal with this problem, a discriminative mapping transform (DMT) based

adaptive training scheme has been proposed in section 4.3. This is one of the contributions
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of the thesis. A consistent discriminative speaker adaptive training (DSAT) framework using

DMTs both for training and testing has been investigated. The expressions for estimating

transforms and canonical model parameters are derived, and the possible variants of the

DMT-based DSAT scheme are discussed. The advantage of the DMT-based DSAT scheme

is that it can be used for unsupervised adaptation as well, as DMTs do not directly depend

upon the supervision hypothesis. The DMT-based DSAT scheme was evaluated on an English

conversational speech recognition (CTS) task in chapter 7. In the experimental setup used,

with one speaker-specific transform for speech and one for silence, the DMT-based DSAT

scheme was found to yield a superior performance compared to the standard MLLR-based

discriminative speaker adaptive training.

The adaptation of acoustic models requires some sample data from the target speaker.

In many real-life applications of speech recognition systems, there is no separate adaptation

data, and the model should be adapted online as soon as data becomes available, without

delaying the response much. In this case, the data available for unsupervised adaption is

small, and it is difficult to obtain robust estimates of transforms. This data sparsity problem

in adaptation can be dealt with a Bayesian framework where the adaptation transform is

regarded as a random variable with probability distributions. However, the Bayesian frame-

work leads to intractable integrals for the marginal likelihood required for inference. Another

contribution of this thesis is to approximate the intractable marginal likelihood in adaptive

HMMs using expectation propagation (EP). In section 5.3, an expectation propagation based

forward-backward algorithm is proposed to approximate the marginal likelihood. This can

be used for Bayesian adaptive inference. The EP-based approximation was found to yield

very accurate estimates of the marginal likelihood, compared to the lower-bound approaches.

Using the EP-based approximation to marginal likelihood can thus give better rank-ordering

of hypotheses in speech recognition. However, due to high computation cost and memory

requirement involved with the EP-based approach, it was not used in its original form for

rescoring the hypotheses on the CTS task. Rather, an a simplified approach was investigated

for the speech recognition task. All the messages in the EP-based forward-backward algo-

rithm were constrained to be diagonal. This simplified approach was found to yield poor

approximations to the marginal likelihood, and did not give any improvement in performance

over the variational Bayes lower-bound based reranking of the hypotheses.

Another contribution of the thesis is to extend the Bayesian framework for adaptive train-

ing and adaptation to discriminative criteria, as described in chapter 6. Discriminative adap-

tive training is first described from the Bayesian perspective in section 6.1. This is followed

by the formulation of Bayesian inference in discriminative adaptive systems in section (6.2).
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This Bayesian treatment leads to intractable integrals for marginal posteriors, which is re-

quired for inference. Various forms of approximations for discriminative adaptive inference

have been proposed. This gives a discriminative way to rank possible hypotheses and se-

lect the best one, depending upon the discriminative inference evidence. A discriminative

maximum-a-posterior approximation for inference has been also described in section 6.3.1.

The estimation of discriminative MAP transforms requires optimisation of discriminative cri-

teria along with the incorporated prior information. The forms of priors and their estimation

have been detailed. The optimisation of the discriminative criteria was investigated using

a weak-sense auxiliary function and other gradient based approaches in sections 6.3.1.1 and

6.3.1.3. A reverse-Jensen inequality based auxiliary function was also derived for optimising

the discriminative objective function in section 6.3.1.2. The Bayesian approach has been

further combined with discriminative mapping transforms in section 6.3.2, to obtain a frame-

work for instantaneous discriminative adaptation. In the experiments, DMTs were applied

over MAP estimates of the transforms. This was found to improve the performance of speech

recognition systems for instantaneous adaptation compared to the other commonly used tech-

niques used for online adaptation. A full Bayesian treatment is also possible for the DMT.

The experimental results of Bayesian approaches were presented in chapters 8 and 9. The

proposed methods were evaluated on a large vocabulary English conversational telephone

speech (CTS) task. An utterance level adaptation was considered to simulate the scenario

for instantaneous adaptation.

10.2 Future Work

There are a number of possible directions to further investigate and extend the work on

adaptation and adaptive training presented in this dissertation. Some of them are described

in this section.

The techniques proposed in this thesis have used model-based linear transformation of

means. This is true for the discriminative mapping transforms based adaptive training scheme

as well. However, feature-domain constrained transforms like CMLLR are efficient when

implementing adaptive training. Therefore, the use of the DMT to map CMLLR transforms

into discriminative ones would be useful to investigate. Similarly, it would be worthwhile to

investigate the use of the constrained feature-domain transforms in the Bayesian framework.

This requires finding an appropriate form of the prior for the constrained linear transforms.

Also, as seen in section 6.1, the appropriate forms of the priors and their estimation is a

major issue in formulating the Bayesian framework for discriminative criteria. It would be



CHAPTER 10. CONCLUSION 155

interesting to investigate the forms of priors for model parameters and transforms and their

estimation for discriminative criteria.

As described in sections 5.2 and 6.1, approximations to intractable marginals are required

for Bayesian adaptive inference. They are important for both maximum-likelihood and dis-

criminative Bayesian adaptation frameworks. Though the proposed EP-based approach was

found to give very accurate approximations to the marginal likelihood on a toy example, the

computational and memory requirement makes it difficult to use for a large vocabulary speech

recognition task. Therefore, it would be useful to investigate the techniques for making the

approximation faster and efficient. Similarly, the approximation to the marginal posteriors

would be worthwhile to investigate, as they are required for discriminative Bayesian inference.

As described in the thesis, state-of-the-art speech recognition systems generally use a

weak-sense auxiliary function to optimise discriminative criteria. This is not necessarily a

lower-bound to the discriminative objective function, as described in section 6.3.1.1. However,

if a strict lower bound to the discriminative objective function can be obtained, it will give

similar attributes as the ML auxiliary function. In section 6.3.1.2, the use of reverse-Jensen

inequalities has been investigated, but this was not found to give a significant update to the

estimates of the parameters. Therefore, other approaches of lower-bounding the discriminative

objective function, which can give sufficient update with satisfactory convergence properties

in the Bayesian framework, will be worthwhile to investigate. They can be used for the MAP

estimation of discriminative transforms as well.



APPENDIX A
Expectation Propagation

for Adaptive Inference

The inference in speech recognition with an adaptive system requires computation of the

marginal likelihood given in equation (5.18), which is used as the acoustic score. In this

section, the expectation propagation algorithm [67, 68, 119, 135] is applied to an adaptive

HMM to approximate the intractable marginal likelihood.

A.1 EP-based Bayesian Adaptive Inference

A DBN for an adaptive HMM for one homogeneous block of T frames is shown in figure A.1.

It should be noted that the transform is constrained to be constant for the homogeneous

block by enforcing Wt = Wt−1. The goal is to approximate the marginal likelihood p(O|H)

in equation (5.18) which is required for doing inference. In the DBN, the state sequence,

the transform sequence and the observation sequence for T frames are represented by ψ =

{ψ1, . . . , ψT }, W = {W1, . . . ,WT } and O = {o1, . . . ,oT }, respectively. The joint distribution

of all variables in the DBN, using conditional independence relationships, is given by

p(ψ,W,O) = P (ψ1)p(W1)p(o1|ψ1,W1)
T
∏

t=2

P (ψt|ψt−1)p(Wt|Wt−1)p(ot|ψt,Wt) (A.1)
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Figure A.1: A dynamic Bayesian network (DBN) for an adaptive HMM for one homogeneous
block

By writing the prior P (ψ1) as P (ψ1|ψ0) and p(W1) as p(W1|W0), this can be expressed as

p(ψ,W,O) =
T
∏

t=1

P (ψt|ψt−1)p(Wt|Wt−1)p(ot|ψt,Wt) (A.2)

Using Bayes’ theorem leads to

p(ψ,W|O) =
1

p(O)

T
∏

t=1

P (ψt|ψt−1)p(Wt|Wt−1)p(ot|ψt,Wt) (A.3)

Thus the likelihood p(O) is the normalisation constant for the joint posteriors of state and

transform sequences. The strategy adopted in this work is to compute the joint state and

transform posteriors first, and then use their normalisation constants to obtain the marginal

likelihood p(O). In this way, both the posteriors and the likelihood can be obtained. In further

derivations, a proportional sign, ∝, is used whenever a normalisation constant is dropped. In

other words, the state and transform sequence joint posterior in the above equation is simply

expressed as

p(ψ,W|O) ∝
T
∏

t=1

P (ψt|ψt−1)p(Wt|Wt−1)p(ot|ψt,Wt) (A.4)

Defining a potential function ϕt as

ϕt(ψt−1, ψt,Wt−1,Wt) = P (ψt|ψt−1)p(Wt|Wt−1)p(ot|ψt,Wt) (A.5)

the above joint posterior can be written as the product of potential functions

p(ψ,W|O) ∝
T
∏

t=1

ϕt(ψt−1, ψt,Wt−1,Wt) (A.6)

These potential functions are shown in figure A.2 as in a standard graphical model. The

potential function ϕt acts as a local function nodes between states {ψt−1,Wt−1} and {ψt,Wt}

figure/adaptivedbn1b.eps
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as shown in figure A.3. A state in the adaptive system at time t constitutes of both the speech

state ψt and continuous transform state Wt, and is also referred as ‘supernode’ {ψt,Wt} in

this work.

ψ
t

ψ
t-1

ψ
t+1

ψ
t-1

Wt Wt Wt+1Wt-1Wt-1

o ot-1 t o t+1

ϕ ϕt t+1

ψ
t

Figure A.2: The grouping of potential functions in the DBN for the adaptive HMM

{ψ 1,W1}

βt-1

αtαt-1

βt

αt

βtβt-1

αt-1

’Super-nodes’

ϕ1 ϕt-1 ϕt ϕt+1 ϕT

{ψ t,Wt}{ψ t-1,Wt-1} {ψ t+1,Wt+1} {ψ T,WT}

Potentials

Figure A.3: The messages passing between ‘supernodes’ and potentials

The message passing between potential function and supernodes is also shown in the fig-

ure A.3. The dark box represents a potential node and circle represents a supernode. The

message from potential ϕt forward to {ψt,Wt} is called the forward message, αt(ψt,Wt), and

the message from ϕt back to {ψt−1,Wt−1} the backward message, βt−1(ψt−1,Wt−1). Both of

these messages are chosen to have a form within the exponential family distribution. These

forward and backward messages can be compared to the forward and backward probabilities

in the standard forward-backward algorithm, which is also a form of a message-passing al-

gorithm. However, the forward and backward messages in this case are a function of Wt as

well, and are no more discrete forward and backward probabilities as in the standard HMM

described in section 2.3.

In figure A.3, the potential function can be also defined as the product of outgoing mes-

sages at the potential node, by using the concept from graphical models, as

ϕt(ψt−1, ψt,Wt−1,Wt) = αt(ψt,Wt)βt−1(ψt−1,Wt−1) (A.7)

figure/adaptivepot.eps
figure/messages.eps
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such that equation A.6 can be written in terms of forward and backward messages as

p(ψ,W|O) ∝
T
∏

t=1

αt(ψt,Wt)βt−1(ψt−1,Wt−1) (A.8)

This full-posterior p(ψ,W|O) is approximated with an uncoupled distribution of exponential

form

p(ψ,W|O) ≈
T
∏

t=1

pt(ψt,Wt) (A.9)

where pt(ψt,Wt) is the state-belief given as the product of all incoming message to the super-

node given by

pt(ψt,Wt) ∝ αt(ψt,Wt)βt(ψt,Wt). (A.10)

This allows factoring of the state and transform posterior sequence into the individual state

and transform posteriors pt(ψt,Wt) at time t, as in equation (A.9). The equation (A.9) can

be thus re-expressed using (A.10) in (A.9) as

p(ψ,W|O) ≈ p̂(ψ,W|O) ∝
T
∏

t=1

αt(ψt,Wt)βt(ψt,Wt) (A.11)

where p̂(ψ,W|O) is used for the approximate p(ψ,W|O), arising from the above approxima-

tion. This equation can be rearranged as

p̂(ψ,W|O)

∝
“

Y

τ<t−1

qτ (ψτ ,Wτ )
”

αt−1(ψt−1,Wt−1)βt−1(ψt−1,Wt−1)αt(ψt,Wt)βt(ψt,Wt)
“

Y

τ>t

qτ (ψτ ,Wτ )
”

(A.12)

Substituting the result from equation (A.7), it gives

p̂(ψ,W|O)

∝

„

Y

τ<t−1

qτ (ψτ ,Wτ )

«

αt−1(ψt−1,Wt−1)ϕt(ψt, ψt−1,Wt,Wt−1)βt(ψt,Wt)

„

Y

τ>t

qτ (ψτ ,Wτ )

«

(A.13)

Thus the current estimate of the two-slice marginal is given as

p̂t−1,t(ψt−1, ψt,Wt−1,Wt)

=
1

kt
αt−1(ψt−1,Wt−1)ϕt(ψt, ψt−1,Wt,Wt−1)βt(ψt,Wt)

=
1

kt
αt−1(ψt−1,Wt−1) P (ψt|ψt−1)P (Wt|Wt−1)p(ot|ψt,Wt) βt(ψt,Wt) (A.14)

where kt is a normalisation constant, and the value of the potential function from equation

(A.5) has been substituted in the above equation. The normalisation constants can be used

to compute the likelihood as

p(O) =
T
∏

t=1

kt (A.15)
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This two-slice marginal in equation (A.14) is used for computing the state posteriors, and

likelihood as above. It allows forward and backward messages to interact. The two-slice

marginals are first computed with initialised values of forward and backward messages, and

are then iteratively refined by using new estimates of the forward and backward messages.

This gives iterative refinement of the posteriors as well as likelihood estimates.

To obtain the forward messages, the two-slice marginal p̂t−1,t(ψt−1, ψt,Wt−1,Wt) in equa-

tion (A.14) is marginalised with respect to ψt−1 and Wt−1 to obtain the current estimate of

state-belief p̂t(ψt,Wt) as

p̂t(ψt,Wt) =

∫

dWt−1

∑

ψt−1

p̂(ψt−1, ψt,Wt−1,Wt). (A.16)

This will be a mixture of all components from all ψt−1 as they sum over. This leads to

the exponential growth of components in the overall posterior. Therefore, the state-belief is

projected to (or approximated by) an exponential family distribution to check the growth in

components. This is done by minimising the KL-divergence through moment matching (same

expectation). The projected approximate belief p̄t(ψt,Wt) is given as

p̄t(ψt,Wt) = arg min
g(ψt,Wt)

KL

(

p̂(ψt,Wt)||g(ψt,Wt)

)

(A.17)

where g(ψt,Wt) is kept within an exponential family. Equation (A.10) tells that the state-

belief is a product of the forward and backward messages at time t. Therefore, once the

state-belief is projected, the new forward message is computed by dividing with the backward

message as

αt(ψt,Wt) =
p̄t(ψt,Wt)

βt(ψt,Wt)
(A.18)

In this way, the forward messages are computed successively for each time frame, keeping

the backward messages βt(ψt,Wt) constant during the forward pass. The current estimate

of backward messages βt(ψt,Wt) are used while computing the new values of the forward

messages.

Similarly, the backward messages are estimated by running a backward pass, using the

the current estimates of forward messages. The current estimate of the state-belief at t − 1

is first obtained by marginalising the two-slice belief p̂t−1,t(ψt−1, ψt,Wt−1,Wt) in equa-

tion (A.14) with respect to ψt and Wt. The current estimate of the state-belief at time

t− 1, p̂t−1(ψt−1,Wt−1), is given as

p̂(ψt−1,Wt−1) =

∫

dWt

∑

ψt

p̂(ψt−1, ψt,Wt−1,Wt). (A.19)
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This is then projected/approximated by minimising the KL-divergence to give a projected

state-belief p̄t−1(ψt−1,Wt−1) as

p̄t−1(ψt−1,Wt−1) = argmin
g(ψt−1,Wt−1)

KL

(

p̂(ψt−1,Wt−1)||g(ψt−1,Wt−1)

)

(A.20)

where g(ψt−1,Wt−1) is again kept within an exponential family. Once the projected belief is

obtained, the new backward message is computed by removing the forward message as

βt−1(ψt−1,Wt−1) =
p̄t−1(ψt−1,Wt−1)

αt−1(ψt−1,Wt−1)
. (A.21)

The forward and backward passes are repeated until the messages are converged. Once

converged, the value of the state-posteriors/state-beliefs can be obtained and the likelihood

can be also estimated as given in equation (A.15). The EP-based forward-backward iterations

can be summarised as given in algorithm 7.

Step 1: Initialise αt(ψt,Wt) and βt(ψt,Wt), ∀t .

Step 2: Update αt(ψt,Wt), for t = 2 to T .

– marginalise the two-slice marginal p̂t−1,t(ψt−1, ψt,Wt−1,Wt) with respect
to ψt−1 and Wt−1 to obtain the state-belief

– project/approximate the state-belief distribution by moment matching

– divide the projected-belief with βt(ψt,Wt) to obtain αt(ψt,Wt)

Step 3: Update βt−1(ψt−1,Wt−1), for t = T to 2.

– marginalise the two-slice marginal p̂t−1,t(ψt−1, ψt,Wt−1,Wt) with respect
to ψt and Wt to obtain the state-belief

– project/approximate the state-belief distribution by moment matching

– divide the projected-belief with αt−1(ψt−1,Wt−1) to obtain
βt−1(ψt−1,Wt−1)

Step 4: Repeat steps (2) and (3), until the messages are converged.

Step 5: Compute the state posteriors and the likelihood.

Algorithm 7: The EP-based forward-backward algorithm overview
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A.2 Combining Messages of Exponential Families

A.2.1 Product and Division of Messages

The messages in the expectation propagation algorithm are conveniently conditioned (mul-

tiplied/divided) by converting them to canonical forms. The Gaussian distribution of a pa-

rameter w in a normal moment form is represented as

p(w) = N (w;µ,Σ) (A.22)

where µ and Σ are the mean and covariance matrix for the parameter. This Gaussian

distribution can be converted to a canonical form as

p(w) = exp

(

a+ ηTw −
1

2
wTΛw

)

(A.23)

where {η,Λ} are the natural parameters, and a is a normalisation constant given by

a = −
1

2

(

D log(2π) − log |Λ| + ηTΛ−1η
)

The parameters in one representation can be converted into another as

Λ = Σ−1 (A.24)

η = Σ−1µ (A.25)

Σ = Λ−1 (A.26)

µ = Λ−1η (A.27)

The product or division of exponential family distributions is still in the exponential family,

though the resulting distribution will require normalisation. The product of N Gaussian

distributions N (w;µ1,Σ1), . . . , N (w;µN ,ΣN ) can be obtained by first converting them to

canonical representations and then simply adding the natural parameters as

η = η1 + · · · + ηN (A.28)

Λ = Λ1 + · · · + ΛN (A.29)

Similarly, the parameters of distribution obtained by dividing N (w;µ1,Σ1) with N (w;µ2,Σ2)

can be given in the canonical form as

η = η1 − η2 (A.30)

Λ = Λ1 − Λ2 (A.31)

These messages after multiplication or division in the canonical form are converted back to

the moment form using equations (A.26) and (A.27).
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A.2.2 Combining Observation Message

The forward, backward and observation messages are combined together to find the two-slice

marginal p̂(ψt−1, ψt,Wt−1,Wt) in equation (A.14). The forward and backward messages

are in the form as in equations (5.43) and (5.44). They can be converted to the canonical

representations as described above. The observation message should be also converted to

an appropriate form in canonical representation to combine it with other messages. The

observation message is given by

N (ot;Wtξ,Σ) =
1

√

(2π)D|Σ|
exp

(

−
1

2
(ot − Wtξ)

TΣ−1(ot − Wtξ)

)

(A.32)

where ξ is the extended mean vector ξ = [µT 1]T, and Σ is the covariance matrix 1. The co-

variance matrix Σ is assumed diagonal, and the rows of transforms as independent. Therefore,

the above expression can be written in terms of each row of transform wtd as

N (ot;Wtξ,Σ) =
∏

d

p(otd;w
T
tdξ, σ

2
d) (A.33)

where otd is the dth element of observation vector ot, and σ2
d is the dth diagonal element of

the covariance matrix Σ. The above expression can be further expressed as

N (ot;Wtξ,Σ) =
∏

d

1
√

2πσ2
d

exp

{

−
1

2σ2
d

(otd − wT
tdξ)

2

}

=
∏

d

1
√

2πσ2
d

exp

(

−
o2td
2σ2

d

+
otd
σ2
d

ξTwtd −
1

2
wT
td

ξξT

σ2
d

wtd

)

=
∏

d

1
√

2πσ2
d

exp

(

−
o2td
2σ2

d

)

exp

(

ηTiwtd −
1

2
wT
tdΛdwtd

)

=
∏

d

kd exp

(

ηTdwtd −
1

2
wT
tdΛdwtd

)

(A.34)

where kd is constant which does not necessarily normalise the resulting distribution in wtd,

and {ηd,Λd} are the natural parameter for the distribution. They are given as

kd =
1

√

2πσ2
d

exp

(

−
o2td
2σ2

d

)

(A.35)

ηd =
otd
σ2
d

ξ (A.36)

Λd =
ξξT

σ2
d

(A.37)

The parameter of the observation message in this form is combined with other messages to

obtain the two-slice marginal in equation (A.14).

1The index for the state and component has been dropped from the mean vector and the covariance matrix.



APPENDIX B
The Reverse-Jensen’s

Inequality and Parameter
Estimation

A reverse-Jensen inequality based optimisation is used for the discriminative objective func-

tion in section 6.3.1.2. This section describes the form and parameters for the reverse-Jensen

inequality, and shows its use in optimising discriminative objective function as well.

B.1 Reverse-Jensen’s Inequality

A reverse-Jensen inequality reverses the usual Jensen’s inequality to yield an upper bound

to the log-summation or mixture likelihoods. One form described in [81, 82] finds this

upper-bound by exploiting the convexity of the cumulant function of the components in

log-summation, rather than using the concavity of the log function itself. This form of the

reverse-Jensen inequality for mixtures of Gaussians has been used in this work. A GMM

is represented in a canonical form as an exponential family of distributions with sufficient

statistics X of observations, natural parameters Θm of the mixture component with weights

cm and cumulant function K(Θm). The reverse Jensen inequality for the GMM is expressed
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as

log
∑

m

cm exp(A(X) +XTΘm −K(Θm)) ≤
∑

m

−γ̃m(A(Ym) + Y T
mΘm −K(Θm)) + k (B.1)

where γ̃m are positive weights, Ym corresponds to component-dependent translated obser-

vations and k is a constant. The parameters for the upper bound that makes a tangential

contact at Θ̃ are given as [81]:

k = log p(X|Θ̃) +
∑

m

γ̃m

(

A(Ym) + Y T
mΘm −K(Θ̃m)

)

(B.2)

Ym =
γm
γ̃m

(

∂K(Θm)

∂Θm

∣

∣

∣

∣

Θ̃m

−X

)

+
∂K(Θm)

∂Θm

∣

∣

∣

∣

Θ̃m

(B.3)

γ̃minm = min γ (B.4)

such that
γm
γ

(

∂K(Θm)

∂Θm

∣

∣

∣

∣

Θ̃m

−X

)

+
∂K(Θm)

∂Θm

∣

∣

∣

∣

Θ̃m

∈
∂K(Θm)

∂Θm
(B.5)

γ̃m = γ̃minm + 4f(γm/2)
(

X −K′(Θm)
)T

K′′(Θm)−1
(

X −K′(Θm)
)

(B.6)

The function f(γ) is defined in equation (6.45).

B.2 Parameter Estimation Using Reverse-Jensen
Inequality

The parameter estimation using a discriminative objective function is done by defining an

auxiliary function, and then maximising it with respect to the parameter. The reverse-Jensen

inequality has been used for conditional expectation maximisation in [81, 83]. It has been

also investigated for model parameter estimation in HMMs in [1]. In this section, an auxiliary

function based on the reverse-Jensen inequality is described assuming single-dimensional data

for the sake of simplicity in the representation.

The auxiliary function for the numerator part of the discriminative objective function

follows from the application of Jensen’s inequality as in the ML estimation in section 2.3, and

is given by

Qnum(M̂;M) = K̃num +
∑

mt

γnumm (t) logN (ot; µ̂m, σ̂
2
m) (B.7)

where γnumm (t) is the numerator occupation probability defined in equation (2.102) and com-

puted using current model parameters M, µ̂m and σ̂2
m are the new mean and variance for the

component m, ot is the observation vector at time t, and K̃num is a constant.

The auxiliary function for the denominator term is also obtained in the same form by using

the reverse-Jensen inequality. However, as the application of the reverse-Jensen inequality
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to HMMs is highly complicated, it is not applied directly. Once the occupation probabilities

for denominator components are computed using lattices as in the standard discriminative

training, the process is regarded as training of GMMs. The reverse-Jensen’s inequality is thus

applied to denominator term treating it as GMMs however with the standard denominator

occupations in equation (2.103) as component weights. After the application of the reverse-

Jensen inequality, the denominator auxiliary function is given by

Qden(M̂;M) = K̃den +
∑

mt

γ̃denm (t) logN (ytm; µ̂m, σ̂
2
m) (B.8)

where γ̃denm (t) is the modified denominator occupation probability based on the current model

parameters and observation, and is obtained using equation (B.6). It should be noted that

the component occupation as well as the observations has been modified as a result of the

application of reverse Jensen’s inequality. The observation ytm has now become dependent

upon the component m, and is obtained through equation (B.3). The quantities required for

finding γ̃denm (t) and ytm can be derived as follows. The probability of observation ot for the

component m is given by

N (ot;µm, σ
2
m) =

1
√

2πσ2
m

exp

(

−
(ot − µm)2

2σ2
m

)

. (B.9)

This can be represented into an exponential form with parameters given as:

X =

(

ot −
1

2
o2t

)T

(B.10)

A(X) = −
1

2
log(2π) (B.11)

Θm =

(

µm
σ2
m

1

σ2
m

)T

= (ϑm1 ϑm2)
T (B.12)

K(Θ) =
1

2

(

µ2
m

σ2
m

− log

(

1

σ2
m

))

(B.13)

K′(Θm) =

(

ϑm1

ϑm2
−

ϑ2
m1

2ϑ2
m2

−
1

2ϑm2

)T

(B.14)

K′′(Θm) =

(

2ϑ2
m1 + ϑm2 2ϑm1ϑm2

2ϑm1ϑm2 2ϑ2
m2

)

(B.15)

These definitions can be used in equations (B.3) to (B.6), to obtain the values of γ̃denm (t) and

ytm to obtain the denominator auxiliary function in equation (B.8).

Once both the numerator and denominator auxiliary function in equation (B.7) and (B.8)

are defined, they can be combined together and maximised to estimate the model parameters.

With some algebraic manipulations, the resulting auxiliary function can be expressed in the
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same form as the weak-sense auxiliary function, however with a smoothing factor of

Dm =
∑

t

γdenm (t) +
∑

t

γ̃denm (t) = γdenm + γ̃denm (B.16)

where γdenm (t) is the standard denominator occupancy for component m at time t given in

equation (2.103) and γ̃denm (t) can be computed using equation (B.6). Using the parameters

for single-dimensional Gaussians from equation (B.10) to (B.15) in equation (B.6), the value

of γ̃denm (t) is obtained as

γ̃denm =
∑

t

max

(

γdenm (t)

(

o2t
µ2
m + σ2

m

)

, 0

)

+ 4
∑

t

f
(

γdenm (t)/2
) (ot − µm)2

σ2
m

+ 4
∑

t

f
(

γdenm (t)/2
)

(

(ot − µm)2

σ2
m

− 1

)2

(B.17)

where µm and σ2
m are the current mean and variance for the component m. Similarly, the

value of smoothing factor Dm for the multivariate Gaussian case can be obtained as given in

equation (6.44). Therefore, the discriminative objective function can be optimised using the

reverse-Jensen inequality simply by altering the smoothing factors as in equation (B.16).



APPENDIX C
The Gradient and

Hessian of the
Log-likelihood Function

The optimisation of the discriminative MAP objective function in equation (6.34) through

Newton’s method as described in section 6.3.1.3 requires gradient and Hessian of numerator

and denominator likelihoods with respect to the transform. Therefore, the gradient and

Hessian of the likelihood function is derived in this section.

The derivative of the log-likelihood with respect to the transform is given by

∂ log p(O|M,W)

∂wd
T

=
1

p(O|M,W)

∂

∂wd
T

{

∑

θ∈Θ

T
∏

t=1

P (θt|θt−1)p(ot|θt;M,W)

}

=
1

p(O|M,W)

∑

θ∈Θ

T
∑

t=1

{

∏T
τ=1 P (θτ |θτ−1)p(oτ |θτ ;M,W)

p(ot|θt;M,W)

}

∂p(ot|θt;M,W)

∂wd
T

=
∑

θ∈Θ

T
∑

t=1

p(O,θ|M,W)

p(O|M,W)

1

p(ot|θt;M,W)

∂p(ot|θt;M,W)

∂wd
T

=
∑

θ∈Θ

T
∑

t=1

P (θ|O,M,W)
∂ log p(ot|θt;M,W)

∂wd
T

(C.1)
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This can be rearranged as

∂ log p(O|M,W)

∂wd
T

=
∑

jm

∑

t

P (θjmt |O,M,W)
∂ log p(ot|θt;M,W)

∂wd
T

(C.2)

where θjmt represents being in state j and mixture component m at time t, and is computed

through the standard forward-backward algorithm described in section 2.3. Therefore, the

gradient of the log-likelihood with respect to the dth row of the transform, wd, is

∂ log p(O|M,W)

∂wd
T

=
∑

jm

∑

t

γjm(t)

(

otd − wd
Tξjm

)

ξTjm

σ2
jm,d

(C.3)

where ξjm = [µT
jm 1]T is the extended mean vector, otd represents the dth element of obser-

vation vector ot, and σ2
jm,d is the dth diagonal element of Σjm. In the above equation, γjm(t)

is a state-component posterior given as

γjm(t) = P (θjmt |O,M,W) (C.4)

The second derivative of the log-likelihood function can be derived from equation (C.3)

and is given as

∂2 log p(O|M,W)

∂wd∂wd
T

=
∑

jm

∑

t

∂γjm(t)

∂wd

(otd − wd
Tξjm)ξTjm

σ2
jm,d

−
∑

jm

∑

t

γjm(t)
ξjmξ

T
jm

σ2
jm,d

(C.5)

It should be noted that the derivative of the state-component posterior γjm(t) is not zero,

as it based on the current (not previous) value of the transform with respect to which the

derivative is being computed. The derivative of the state-component posterior occupation is

given by

∂γjm(t)

∂wd
=

∂P (θjmt |O,M,W)

∂wd

=
∂

∂wd

(

p(θjmt ,O|M,W)

p(O|M,W)

)

=
1

p(O|M,W)

∂p(O, θjmt |M,W)

∂wd
−
p(O, θjmt |M,W)

p(O|M,W)2
∂p(O|M,W)

∂wd

Using the derivation for the gradient of the likelihood as in equation (C.1) once again for the
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first term in the above equation and rearranging gives

∂γjm(t)

∂wd
=

∑

in

∑

τ

P (θinτ , θ
jm
t |O,M,W)

∂ log p(oτ |θ
in
τ ,M,W)

∂wd
− γjm(t)

∂ log p(O|M,W)

∂wd

=
∑

in

∑

τ

P (θinτ , θ
jm
t |O,M,W)

(oτd − wd
Tξin)ξin

σ2
in,d

− γjm(t)
∑

in

∑

τ

γin(τ)
(oτd − wd

Tξin)ξin
σ2
in,d

=
∑

in

∑

τ

(

P (θinτ , θ
jm
t |O,M,W) − γjm(t)γin(τ)

)

(oτd −wd
Tξin)ξin

σ2
in,d

(C.6)

Therefore, the Hessian of the log-likelihood can be obtained by substituting equation (C.6)

in equation (C.5) as

∂2 log p(O|M,W)

∂wd∂wd
T

=
∑

jm,t

∑

in,τ

(

P (θinτ , θ
jm
t |O,M,W) − γjm(t)γin(τ)

)

(otd − wd
Tξjm)(oτd −wd

Tξin)ξinξ
T
jm

σ2
jm,dσ

2
in,d

−
∑

jm,t

γjm(t)
ξjmξ

T
jm

σ2
jm,d

(C.7)

The joint posterior P (θinτ , θ
jm
t |O,M,W) required for computing the Hessian is given by

P (θinτ , θ
jm
t |O,M,W) =

αjm(t) p
(

θkn,ot+1,...,oτ |θjm(t),M,W
)

βkn(τ)

p(O|M,W)
(C.8)

This joint posterior can be computed using a double forward-backward algorithm [99]. How-

ever, the computational cost of finding this joint posterior is quadratic in number of states,

mixture components and the observation sequence length.
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