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Abstract 

This paper describes an investigation into the repair of the 

prosodic limitations of tracheoesophageal (TE) speech. The 

proposed repair algorithm modifies TE phone durations based 

on the predictions of regression trees built from non-

pathological data. Acoustic and language modelling 

refinements for improved TE phone recognition, studies of 

feature relevance for duration prediction and a robust duration 

modification method are also presented. Objective and 

subjective evaluation of results show that the duration pattern 

of the repaired sentences is closer to normal and perceptually 

preferred to the original in terms of overall rhythmic 

naturalness. 

1. Introduction 

Tracheoesophageal (TE) speech is the most frequently used 

voice restoration technique after total laryngectomy. It 

involves the insertion of a voice prosthesis, which enables the 

use of pulmonary air for voice production as in laryngeal 

speech. Despite often being cited as the alaryngeal speech 

alternative most comparable to normal, its quality and 

intelligibility are still significantly lower than those of 

laryngeal speech [1].  

Because of the inability to properly control the 

pharingoesophageal segment acting as the new voice source 

after the removal of the vocal cords, excitation related 

features have been thought to be the main cause of 

degradation and previous TE speech repair attempts [2] have 

mainly focused on this limitation. 

However, prosodic deviations also contribute to the 

reduction in quality. Despite being able to use pulmonary air 

for speech production, the need to control the voice prosthesis 

in order to switch between speaking and breathing affects the 

duration pattern of the resulting TE speech. In general, TE 

speakers tend to stop more often, produce vowels with longer 

duration, speak with slower rates than normal subjects and 

sometimes rush the last phones before phrase breaks. 

As far as we know, there have been no previous attempts 

to repair the TE speech duration pattern. In this paper, we 

present a novel algorithm capable of automatically repairing 

the duration deviations of TE speech and producing utterances 

which have been found to be preferred in terms of rhythmic 

naturalness.  

The structure of the paper is as follows. Section 2 

describes the speech corpus and preliminary experiments 

which motivated the duration repair approach. An 

investigation into TE phone recognition, the adopted duration 

modelling technique and a method to cope with recognition 

errors are presented in Sections 3, 4 and 5 respectively. The 

duration repair algorithm is then evaluated in Section 6 and 

finally, conclusions are presented in Section 7. 

2. Data and preliminary experiments 

2.1. TE speech corpus 

A parallel corpus of 11 normal and 13 TE speakers reading the 

Rainbow Passage and a small set of descriptive sentences was 

used throughout the experiments presented in this paper. The 

28 sentences available per speaker were divided into training 

(23 utterances) and test (5 utterances) sets of normal and TE 

speech, which were used to build, adapt and test the various 

duration models and speech recognition systems. 

2.2. Preliminary experiments 

Measures of TE speech duration have shown that the main 

differences compared to normal are shorter maximum 

phonation times, longer vowel durations and slower rates [3]. 

In addition, they generally pause longer and more often and 

sometimes rush the last phones before breaks. 

Possible approaches to repair such deviations are (a) to 

derive a set of rules to modify the duration features found to 

be abnormal (i.e. reduce vowel durations and pauses, increase 

speech rate and durations of phones before breaks) or (b) to 

substitute TE phone durations with their corresponding 

normal values.  

The difficulty within the rule-based method lies in 

obtaining adequate reduction/increase rules and ratios, which 

generally differ per speaker and per sentence. Experiments 

with this approach resulted in unnatural duration contours 

which despite normalising the deviant duration features, 

nevertheless ruined sentence rhythm. 

Transplantation of average normal phone duration 

contours obtained from the parallel corpus achieved better 

results. Informal listening of transplanted utterances showed 

an overall improvement, which increased the naturalness of 

the original TE samples. This method not only coped with the 

observed TE durational problems but also preserved the 

rhythmic structure of the sentences. 

The proposed TE speech duration repair algorithm is an 

attempt to automate the preliminary transplantation 

experiment. However, this method presumes that TE phone 

segmentations and normal phone durations are known.  

Hence, to use the method in a real-time repair application 

where the transcription of the input speech is unknown, the 

TE phones need to be recognised and their normal durations 

need to be predicted. In addition, methods are needed to 

provide robustness to recognition and prediction errors. The 

adopted recognition, duration prediction and robust 

modification techniques are described in the next sections. 



3. Tracheoesophageal phone recognition 

Previous work on automatic TE speech recognition by 

Haderlein et al. [4] involved adapting a speech recogniser 

trained on normal speech to single TE speakers by 

unsupervised HMM interpolation. They obtained poor results 

in terms of word accuracy, with an average value of 36.4 %. 

Our preliminary word level recognition tests on TE speech 

also showed that extracting usable orthographic transcriptions 

was not feasible. Hence, the focus here is on obtaining the best 

possible TE phone recognition. 

We have explored various systems and techniques in 

order to achieve best results. Our baseline recogniser is a 

monophone system trained on the WSJCAM0 corpus [5] of 

normal non-pathological speech. In addition, normalization 

and adaptation techniques and several acoustic and language 

models have been tested. In order to measure and compare 

performance of the different systems, two new metrics which 

not only measure recognition and segmentation accuracy but 

also take duration prediction errors into account have been 

used. 

  

SYSTEM FEATURES 

BL Baseline monophone HMM 

R1 BL+CMN+CMLLR 

R2 R1+bigram LM 

R3 R1+trigram LM 

R4 triphone HMMs+CMLLR+word 

trigram LM 

Table 1: The recognisers tested and their 

corresponding features 

3.1.  Measuring performance 

Performance of speech recognisers is generally measured by 

comparing the output string with a manually transcribed 

reference and counting the percentage of correctly recognised, 

substituted, inserted and deleted labels. These measures only 

take recognition of the correct labels into account, ignoring 

segmentation accuracy or the implications of errors in a 

duration modification task.  

Automatically derived transcriptions can also be regarded 

as consisting of a set of correctly recognised and segmented 

sections with error segments in between, in which phones 

have been wrongly segmented and/or misrecognised. 

Differences between the durations predicted within these error 

segments and their correct counterparts are the cause of the 

perceptual artifacts produced when inaccurate phone label 

transcriptions are used instead of force-aligned segmentations 

based on accurate reference transcription.  

For our speech repair application, the recogniser not only 

needs to recognise the correct phones, but also accurately 

detect their boundaries. In addition, it should try to minimise 

the duration prediction differences within the error segments. 

We have used the following two measures which take these 

requirements into account to evaluate and compare the 

different recognisers: 

● Segmentation and Prediction Correctness (SPC): 

measures the percentage number of phones which have been 

correctly recognised, with segmentation boundaries lying 

within a threshold distance of the reference values. An ideal 

recogniser would correctly recognise and segment all phones, 

and thus have an SPC=1. 
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where r  and s  are boolean variables equal to one if a 

particular phone has been correctly recognised or segmented 

respectively, and NP  is the total number of phones in a 

sentence. 

● Segmentation and Prediction Error (SPE): sums the 

differences in duration prediction of the error segments with 

respect to the reference values throughout the utterance and 

normalises its value by the total number of phones in the 

sentence. 
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where ES  is the number of error segments in the sentence, 

ESP  is the number of recognised phones in a particular error 

segment, D  is the duration predicted by the reference 

transcription in a segment and d  is the duration prediction of 

a recognised phone.  

The best recogniser will be the one which achieves 

maximum SPC and minimum SPE values. 

3.2. System comparison 

In order to improve recognition of the baseline monophone 

system, the following techniques were explored. Firstly, 

cepstral mean normalisation (CMN) was used to normalise the 

recording conditions of the training and test data. Also, as in 

[4], adaptation techniques were applied to compensate for the 

acoustic differences between normal and TE speech. The TE 

training data was used to adapt the baseline models to each of 

the TE speakers. Due to the limited amount of data (just 23 

sentences per speaker) available for adaptation, constrained 

maximum likelihood linear regression (CMLLR) was used. 

Linear transformations were obtained after 3 iterations, each 

using two regression classes for phones and silences/short-

pauses. These give the R1 system listed in Table 1. 

Secondly, phone level bigram and trigram language 

models (LM) trained on the WSJCAM0 corpus were 

introduced to give R2 and R3 in Table 1, respectively.  

Finally, a system based on triphone HMMs and the word 

trigram LM described in [6] was tested. These triphone models 

were trained on a very large corpus and then adapted to each 

TE speaker using CMLLR. As well as being better trained 

than in the other systems, the use of a word level LM has the 

potential to provide better phonotactic constraints than a phone 

level LM. This final system is R4 in Table 1. 

 

 BL R1 R2 R3 R4 

SPC [%] 0.1634 0.3129 0.3249 0.3340 0.5148 

SPE [ms] 39.444 29.713 27.329 26.682 14.257 

Table 2: Evaluation of recogniser performance 

The overall recognition performance of the different 

systems on the TE test set was compared. As shown in Table 

2, normalization and adaptation almost doubled the baseline 

performance.  The addition of bigram and trigram LMs further 

improved the SPC and SPE results. However, R4 achieved the 



biggest improvement and best overall performance. These 

results show the value of using refined acoustic and language 

models to compensate for the small amount of TE data 

available for adaptation. 

4. Duration Prediction 

Modelling and predicting duration is a difficult task, since 

phone segmental durations are extremely dependent on many 

factors such as context, positional features and stress. Duration 

models have mainly been applied to predict timing in text-to-

speech (TTS) systems. Early TTS implementations mostly 

employed rule-based duration models. Despite their reasonable 

performance, such models often over-generalize and cannot 

handle exceptions without becoming too complicated. For 

these reasons, computational progress and availability of large 

speech corpora has favoured the development and increased 

use of data driven approaches in state-of-the-art applications. 

Among these, we have chosen to use classification and 

regression trees (CART) [7] to predict phone durations in our 

repair system for two main reasons: because standard tools for 

their generation exist and because the derived trees can be 

interpreted and used to determine the most relevant features. 

TTS CART duration models consider features which can 

be extracted from text. Unfortunately, as noted earlier, the 

high word error rates of the TE word level transcriptions 

prohibit their use in a practical duration repair system. As a 

result, only recognizable phone level information such as 

phone identity, identities of the previous and next phones and 

position of the phones in the sentence is available. In addition 

to these contextual and positional factors, the use of pitch and 

rms energy features has also been explored, in an attempt to 

incorporate some kind of stress information. 

Different combinations of the available features were used 

to build five regression trees (T1, T2, T3, T4 and T5) and 

investigate phone level feature relevance for duration 

prediction. The trees were built using the Matlab 

implementation of CART [8]. Short pauses (SP) were not 

regarded as phones and were modelled independently in a 

parallel tree TSP. Table 3 provides a more detailed 

description of the different tree features. The normal 

speakers’ training set was used as training data. Phone 

segmentation was achieved by force-aligning each sentence 

with the baseline recogniser BL. Speaker adapted versions of 

this model were used for the segmentation of TE speech. 

 

TREE FEATURES 

T1 F1 phone identity 

T2 F2 F1 + prev and next phone identities 

(converted to broad classes) 

T3 F3 F2+ position of phone in sentence (first 5 

phones / last 5 phones / rest)  

T4 F4 F3+pitch (positive slope / no slope / 

negative slope) 

T5 F5 F4+energy (positive slope / no slope / 

negative slope) 

TSP FS num of phones since prev sp, num of 

phones until next sp 

Table 3: Description of trees and corresponding 

features 

Tree performance was evaluated against the TE test set, 

computing the average mean squared error (MSE) between 

the mean normal durations used for transplantation and the 

predicted values. Results showed that T3, followed by T2 and 

T1, predicted phone durations closest to the transplanted 

values, revealing that phone context and positional 

information improve duration prediction (see Table 4). 

However, differences between them were not large and phone 

identity appeared to be the most relevant feature in the three 

cases. On the other hand, the addition of pitch and energy 

features decreased performance, showing that linear 

regression of phone pitch and intensity contours does not 

appropriately model lexical stress as we were hoping. 

 

 T1 T2 T3 T4 T5 

MSE [ms] 0.788 0.695 0.570 2.174 1.535 

Table 4: Evaluation of tree duration prediction 

TE sentences whose force-aligned phone durations were 

substituted by those predicted by T3 and TSP were informally 

found to be perceptually indistinguishable from their 

corresponding transplanted versions, demonstrating the 

validity of the adopted duration prediction approach. 

However, even when the best recognised segmentations from 

R4 were used instead of the force-aligned labels, phone 

recognition errors caused durational artifacts, emphasizing the 

need for a robust modification method capable of taking 

recognition errors into account. 

5. Robust duration modification 

One way to reduce the duration artifacts is to incorporate 

phone recognition confidence information in the repair 

process, and to modify durations accordingly. Such a method 

can be described by the following equation 

 OPN ddd ⋅−+⋅= )1( αα
 (3) 

where dN is the new duration, dP is the predicted duration, dO 

is the original duration and α is a confidence measure. 

The main difficulty with this technique lies in obtaining 

appropriate values of α. TE phone duration probability 

distributions and confidence scores can be used to compute 

the confidence measure. In addition, information on phone 

confusions can also be incorporated from phone level 

confusion networks. An analysis of the correlation between 

recognition errors and these features revealed that high 

confidence scores and duration probabilities corresponded to 

correctly segmented and labelled phones, while low duration 

probabilities or low confidence scores generally coincided 

with insertions, deletions and substitutions. Also, the correct 

phone was often included in the phone confusion lists. As a 

result, α was computed as the mean of the duration probability 

and confidence score for each phone and dP was calculated as 

the average of the durations predicted by the confused phones. 

The described robust modification (RM) technique was 

used to modify the durations of the phones recognised by R3 

and R4. These systems will be referred to as RM1 and RM2 

respectively for comparison purposes (see Table 5).  

 

SYSTEM FEATURES 

RM1 R3+RM 

RM2 R4+RM 

Table 5: Robust modification systems 

The application of this technique very considerably 

reduced durational artifacts. Even though converted 



utterances did not perceptually match the transplanted 

versions, informal listening showed that the main TE duration 

deviations described in Section 1 were mostly repaired 

without additional artifacts, resulting in more natural duration 

contours overall. Also, sentences modified with RM1 and 

RM2 were found to be perceptually almost indistinguishable. 

6. Evaluation 

6.1. Objective evaluation 

In order to test the performance of the different repair systems, 

the MSE between the repaired phone durations and the 

transplantation values was computed. Results in Table 6 show 

that the proposed repair technique reduces the MSE overall, 

bringing TE duration contours closer to those of the average 

normal speaker. In addition, the application of robust duration 

modification further improves results.  

 
SYSTEM MSE [ms] 

original TE speech 10.080 

R3 5.873 

R4 3.913 

RM1 3.994 

RM2 3.186 

Table 6: Evaluation of repair systems 

6.2. Subjective evaluation 

A perceptual test using a panel of 20 listeners was carried out 

in order to perceptually evaluate our repair algorithm. It 

consisted of two parts. In the first, randomly ordered triplets of 

original (O), transplanted (T) and repaired (R) versions of the 

same utterance were presented. Instances of sentences 

transformed using RM1 and RM2 were randomly selected for 

the repaired category.  The subjects ranked each sentence from 

1 to 5 in terms of the naturalness of their rhythm, 1 being very 

natural and 5 very unnatural. The aim of this part was to find 

out which duration repair approach naïve listeners preferred 

and if the application of RM1 or RM2 made a significant 

difference perceptually. Tables 7 and 8 show the results 

obtained overall. 

 

 RANKING SCORE 

T 2.65 

R 3.15 

O 3.68 

 Table 7: Ranking scores 

 > = < 
T - R 0.54 0.22 0.24 

R - O 0.52 0.31 0.17 

T - O 0.66 0.20 0.14 

Table 8: Preference test results 

As expected, T sentences were found to have the most 

natural rhythm followed by the R versions, both beating the O 

duration patterns. T utterances were preferred 66% and 54% 

of the time over the corresponding O and R ones, while R 

versions were ranked higher than the O in 52% of the choices. 

No significant differences were observed between the two 

repair methods RM1 and RM2. 

In the second part of the perceptual test, listeners had to 

choose specifically between pairs of utterances repaired with 

RM1 and RM2. Subjects found it very hard to distinguish 

between systems and respectively preferred RM1 and RM2 

48% and 52% of the time. These results and the lack of 

preference correlation found in the previous part show that, 

despite using more elaborated acoustic and language models, 

R4 achieves the same perceptual results as R3 when robust 

modification is adopted to reduce the impact of recognition 

errors.  

7. Conclusions 

In this paper a method to automatically repair TE speech 

durations has been presented. The basic idea is to substitute 

deviant TE phone durations with those predicted by a CART 

tree constructed from normal data. The real-time requirement 

of the speech repair framework brings the issue of recognition 

errors into play and prevents the use of text-based features 

employed in TTS duration models. Solutions to these 

problems have been proposed. Evaluation of the proposed 

repair algorithm has indicated a preference for the converted 

duration patterns. However, there is still room for 

improvement in the recognition step. If sufficiently accurate 

word level transcriptions could be obtained, text-based 

duration features could be included in the decision trees and 

this could yield further improvements. 
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