
POLICY OPTIMISATION OF POMDP-BASED DIALOGUE SYSTEMS WITHOUT STATE
SPACE COMPRESSION

M. Gašić, M. Henderson, B. Thomson, P. Tsiakoulis and S. Young

Cambridge University Engineering Department
Trumpington St, Cambridge, CB2 1PZ, UK

ABSTRACT

The partially observable Markov decision process (POMDP) has
been proposed as a dialogue model that enables automatic improve-
ment of the dialogue policy and robustness to speech understanding
errors. It requires, however, a large number of dialogues to train the
dialogue policy. Gaussian processes (GP) have recently been applied
to POMDP dialogue management optimisation showing an ability
to substantially increase the speed of learning. Here, we investigate
this further using the Bayesian Update of Dialogue State dialogue
manager. We show that it is possible to apply Gaussian processes
directly to the belief state, removing the need for a parametric policy
representation. In addition, the resulting policy learns significantly
faster while maintaining operational performance.

Index Terms— Gaussian process, POMDP, statistical dialogue
modelling

1. INTRODUCTION

The partially observable Markov decision process (POMDP) has
been proposed as a dialogue model which intrinsically deals with
the uncertainty from the speech recogniser. It thus has the potential
to provide a more robust operation of the system [1, 2, 3, 4]. It
assumes that the dialogue state st is only partially observable and
depends on a noisy observation ot which is defined by the observa-
tion probability P (ot|st). Since the dialogue state is unobservable,
at every dialogue step t a distribution over all states is maintained
which is called the belief state bt. It takes values b ∈ B, where B
is a continuous space of dimensionality |S|, namely [0, 1]|S|. The
dialogue policy then maps the belief state b into an appropriate
action a, π(b) = a. Exact updating of the belief state requires
a summation over all states which rapidly becomes intractable for
very large state spaces:

b(st+1 = s′) ∝ P (ot+1 = o′|st+1 = s′)∑
s∈S P (st+1 = s′|at = a, st = s)b(st = s).

(1)
However, there exist real-world dialogue systems based on the
POMDP model which maintain an approximate belief state in real-
time throughout the dialogue [5, 4].

Exact policy optimisation for POMDPs is also intractable for ev-
erything but very simple cases [6]. Moreover, approximate POMDP
solutions, as in the point-based value iteration algorithm [7, 8], are
only suitable for relatively small action/state problems. However, a
POMDP with discrete state and observation spaces can be viewed as
an MDP with a continuous state space [6]. This allows MDP rein-
forcement learning algorithms to be used for the policy optimisation
and with further approximations achieves tractability.

To achieve tractability two approximations are typically used.
The first involves compressing the belief state space into a summary
space where the policy can be tractably optimised and then heuris-
tically mapped back into the original space [9, 10, 4, 5]. The sec-
ond approximation assumes a parametric representation of the pol-
icy [11, 4, 12].

Compressing the belief state into a summary space is non-trivial
and often requires knowledge about the dialogue domain. If the
summary space is too large the performance of the optimised pol-
icy can degrade [13] or the learning process may significantly slow
down [12]. Methods for automatic selection of summary space fea-
tures do exist, but they have not been applied directly to the POMDP
belief space [14, 15]. An alternative method described in [16] au-
tomatically summarises information from the spoken language un-
derstanding component and then builds a POMDP using that sum-
marised space to ensure tractability in learning. However, this still
requires heuristics and it does not facilitate the incorporation of prior
knowledge regarding the task domain and user behaviour.

Stated more generally, any parametric representation of the pol-
icy limits the solution to be optimal only within the chosen basis.
Furthermore, the basis needs to be predefined by the designer, often
requiring knowledge about the domain. Avoiding the need for sum-
mary space mapping or parametric policy representation is therefore
extremely desirable.

This paper explores ways of overcoming the above issues
through the use of Gaussian processes (GPs), which are non-
parametric models for Bayesian inference. We show using the
example of the Bayesian Update of Dialogue State (BUDS) system
that it is possible to directly apply GP policy optimisation to the
belief space. This achieves similar policy performance to standard
methods and reduces the required training data by an order of mag-
nitude whilst avoiding the need for hand-crafting a summary space
mapping.

In the next section, we provide an overview of Gaussian pro-
cess POMDP policy optimisation. Section 3 gives a description of
the BUDS dialogue manager. Then, in Section 4, the domain is de-
scribed and the training and evaluation results are presented. Sec-
tion 5 concludes the paper with directions for future research.

2. GAUSSIAN PROCESSES IN POMDP POLICY
OPTIMISATION

The role of a dialogue policy π is to map each belief state b into
an action a so as to maximise the expected cumulative reward. The
expected cumulative reward is defined by the Q-function as:

Q(b, a) = Eπ

(
T∑

τ=t+1

γτ−t−1rτ |bt = b, at = a

)
, (2)

where rτ is the reward obtained at time τ , T is the dialogue length
and γ is the discount factor, 0 < γ ≤ 1. Therefore, optimising the
Q-function is equivalent to optimising the policy π.

A Gaussian process (GP) is a non-parametric Bayesian prob-
abilistic model that can be used for function regression [17]. It
is fully defined by a mean and a kernel function. The kernel
function defines prior function correlations and is crucial for ob-
taining good posterior estimates with just a few observations.
The Q-function can thus be modelled as a Gaussian process,
Q(b, a) ∼ GP (0, k((b, a), (b, a))) where the kernel k(·, ·) is
factored into separate kernels over the belief state and action
spaces [18]:

k(b, a,b′, a′) = kB(b,b′)kA(a, a′). (3)

In addition, if we assume additive noise in theQ-function, ∆Q(b, a) ∼
N (0, σ2), the following recursive stochastic relationship between a
reward and the Q-function can be established:

rt+1(b(st) = b, at = a) = Q(b, a)− γQ(b′, a′)
+∆Q(b, a)− γ∆Q(b′, a′),

(4)

where b(st+1) = b′ is the next belief state and a′ = π(b′) is the
next action, at+1 = a′.

This relationship, together with the assumed Gaussian process
prior and for a sequence of observed rewards, allow for the Q-
function posterior to be calculated [19]. More specifically, for a
sequence of belief state-action pairs Bt = [(b0, a0), . . . , (bt, at)]
visited in a dialogue and the corresponding observed immediate
rewards rt = [r1, . . . , rt]T, the posterior of the Q-function for any
belief state-action pair (b, a) is a Gaussian distribution:

Q(b, a)|rt,Bt ∼ N (Q(b, a), cov((b, a), (b, a))), (5)

where the posterior mean and covariance are given by:

Q(b, a) = kt(b, a)THT
t (HtKtH

T
t + σ2HtH

T
t)−1rt,

cov((b, a), (b, a)) = k((b, a), (b, a))
−kt(b, a)THT

t (HtKtH
T
t + σ2HtH

T
t)−1Htkt(b, a)

(6)
such that matrix Ht defines the linear relationship expressed in
Eq. 4:

Ht =


1 −γ · · · 0 0
0 1 · · · 0 0
...

. . .
. . .

...
...

0 · · · 0 1 −γ

 , (7)

and Kt is the Gram matrix over visited belief state-action pairs:

Kt = [kt((b
0, a0)), . . . ,kt((b

t, at))],
kt(b, a) = [k((b0, a0), (b, a)), . . . , k((bt, at), (b, a))]T,

(8)
It can be shown [20] that the marginal likelihood of the observed

rewards is modelled by

rt|Bt ∼ N (0,Ht(Kt + σ2I)HT
t). (9)

Due to the matrix inversion in Eq. 6, the computational complex-
ity of calculating the posterior isO(t3), where t is the number of data
points. In the case of a dialogue system, the number of points used
for estimation will be equal to the total number of turns, summed
over all dialogues. This poses a serious computational problem. We
therefore use the kernel span sparsification method described in [19]
to reduce the computational complexity.

The kernel span sparsification method approximates the kernel
function using a subset of visited belief state-action pairs called the
dictionary D = {(b̃0, ã0), . . . , (b̃m, ãm)}. It requires placing a
threshold ν on the precision to which the kernel function is calcu-
lated and thus it allows the dictionary size to be kept small:

min
gt

(
k((bt, at), (bt, at))− k̃t−1(bt, at)Tgt

)
≤ ν, (10)

where k̃t−1(bt, at) = [k((bt, at), (b̃0, ã0)), . . . , k((bt, at), (b̃m, ãm))]T

and gt is a vector of coefficients. Every time the threshold ν is ex-
ceded a new point is added to dictionary. In this way, the Gram ma-
trix is approximated as Kt ≈ GtK̃tG

T
t , where Gt = [g1, . . . ,gt]

and K̃t is the Gram matrix over the dictionary points. This reduces
the computational complexity toO(tm2), wherem is the number of
dictionary points. In practice, the threshold ν represents the trade-
off between the accuracy of the assumed prior correlations and the
computational complexity.

Given a set of belief state-action pairs Bt and associated re-
wards rt, the above approximation of the posterior Q-function
defines a Gaussian distribution for every belief state-action pair
(Eq. 5). Thus, when a new belief point b is encountered, for
each action a ∈ A, there is a Gaussian distribution Q(b, a) ∼
N (Q(b, a), cov((b, a), (b, a)))). Sampling from these Gaussian
distributions gives a set of Q-values for each action {Q(b, a) : a ∈
A} from which the action with the highest sampled Q-value can be
selected:

π(b) = arg max
a
{Q(b, a) : a ∈ A} . (11)

Thus, the GP approximation of the Q-function is effectively trans-
formed into a stochastic policy model, which can be optimised to
maximise the reward. Here we use it in combination with ε-greedy
learning where ε was fixed at 0.1 to prevent the policy reaching a lo-
cal optimum too early during the training. GP-Sarsa has been shown
to be effective for on-line optimisation [18]. Furthermore, it can be
amended for episodic reinforcement learning and hence applied to
dialogue optimisation [20].

3. BAYESIAN UPDATE OF DIALOGUE STATE DIALOGUE
MANAGER

The Bayesian Update of Dialogue State dialogue manager is a
POMDP-based dialogue manager. Its belief state consists of the
marginal posterior probability distribution for each of the hidden
nodes of a dynamic Bayesian network representing the dialogue
state [21].

In order to find the optimal policy the following approach is nor-
mally taken. The belief space B is mapped into a discrete summary
space C. This summary space, also referred to as the grid space,
is then mapped into a feature space F . Likewise, the action space
is mapped into a smaller scale summary action space. The feature
space is used to produce a parametric representation of the policy
and theQ-function. A weighted set of these basis functions can then
be cast into a probability via a soft-max function as in

π(a|c; θ) =
eθ·fa(c)∑
a e

θ·fa(c)
. (12)

where c ∈ C, fa(c) are the features for action a, and θ are the policy
parameters. The policy is then optimised using gradient methods
and the natural actor critic (NAC) algorithm has been found to be
effective for this purpose [22, 21]. Once a summary action has been

selected, it is heuristically mapped back into a system action using
information from the belief space.

Mappings B → C and C → F require a significant amount
of hand-crafting. Also, due to the parametric policy representation,
the solution is only optimal within the chosen basis. Finally, gradient
methods are known to be inherently slow, which effectively prohibits
direct on-line optimisation with real users.

The experiments which follow show that by using GP-Sarsa it
is possible to optimise a policy in the summary space C much more
efficiently than by using NAC. Even more importantly, it is also pos-
sible to define and optimise a policy using the full belief space B
thereby avoiding the need for hand-crafted summary space mappings
altogether.

4. EXPERIMENTAL EVALUATION

This section presents experimental results for a spoken dialogue sys-
tem working in the restaurant domain. The GP-Sarsa algorithm is
compared to the NAC algorithm both in terms of the speed of learn-
ing and the performance of the resulting policy, evaluated using both
a simulated user and a real user trial.

4.1. The Application Domain

The application domain consists of all restaurants in Cambridge, UK
that are listed in the TopTable web service [23]. There are about 150
such restaurants each described by 8 attributes such as food-type,
price-range, location, etc. This data is compiled into a Bayesian
network representation of the belief space using an ontology which
defines relationship between the dialogue concepts. The network
comprises of 25 hidden nodes and each represents a distribution over
3 to 150 values. The summary space is formed from 200 hand-
crafted binary features and the action space consists of 16 summary
actions. More details of this application are given in [24].

For training and simulation testing, an agenda-based user simu-
lator was used [25]. The reward function was set to give a reward
of 20 for successful dialogues, zero otherwise, minus the number of
dialogue turns. The dialogue length is limited to 30 turns.

4.2. The GP kernel function

The kernel function in the case of the summary state system is a
product of kernels over the summary state space and the discrete
action space, as defined in Eq. 3. For the summary state space a
simple linear inner product was used in the form

kC(c, c
′) = 〈c, c′〉+ 1 (13)

and for discrete actions a simple δ-kernel

kA(a, a′) = 1− δa(a′) (14)

where δa(a′) = 1 iff a = a′.
For the full-space systems, the kernel function is a product of

kernels over the belief state and the discrete action space (Eq. 3). The
kernel function over the belief state was constructed from the sum of
individual kernels over the distribution bk for each hidden node k
in the Bayesian network belief state b. The kernel function of two
corresponding hidden nodes was based on the expected likelihood
kernel [26], which is also a simple linear inner product:

kB(b,b′) =
∑
k

〈bk,b′k〉, (15)

where bk is the probability distribution encoded in the kth hidden
node.

The hidden nodes in the BUDS system are divided into the his-
tory nodes and the goal nodes for each concept in the dialogue, eg.
area, food-type, address.

The history nodes define possible dialogue histories for a par-
ticular concept, eg. system-informed, user-informed. For this class
of nodes, the kernel of two history nodes is a simple inner product
between the corresponding node distributions.

The goal nodes define possible values for a particular concept,
eg. Chinese, Indian. While it is possible to calculate the kernel func-
tion for the goal nodes in the same way as for the history nodes, in
this case, the choice of system action, such as confirm or inform,
does not depend on the actual values. It rather depends on the shape
of the distribution and, in particular, it depends on the probability
of the most likely value compared to the rest. Therefore, to exploit
the correlations further, the kernel over two goal nodes is calculated
as the dot product of vectors, where each vector represent the cor-
responding distribution sorted into order of probability. The only
exceptions are the goal for the method node and the discourse act
node. The former defines whether the user is searching for a venue
by name or by constraints and the latter defines which discourse act
the user used, eg. acknowledgement, thank you. Their kernels are
calculated in the same way as for the history nodes.

The kernel over actions for the full-space system is the same as
for the summary space system (Eq. 14).

As noted in the introduction, the sparsification threshold ν ap-
proximates the kernel function with a fixed number of dictionary
points. Based on intermediate experimentation to achieve a com-
pact set of dictionary points whilst maintaining good performance,
the sparsification threshold was fixed at 0.1 for the summary space
kernel and 0.001 for the full belief space kernel.

The choice of the noise σ depends on the reward function. A
good rule of thumb is that σ should be the square root of half the
range of reward function values. The reward interval as defined in
the previous section is [−30, 20] so σ was fixed at 5 for all systems.

4.3. Policy Learning Rate

One of the main motivations for using Gaussian Processes in policy
optimisation is to speed up the learning process. Therefore, we first
examine the learning rates of different policy models.

The baseline policy (NAC-F) (Eq. 12) was trained using the nat-
ural actor-critic algorithm in feature space F and compared to the
GP stochastic policy (Eq. 11) both in the summary space C (GP-C)
and in the full belief space B (GP-B). All three training procedures
used exactly the same number of dialogues with the user simulator
that produces noisy output in a form of a 10-best list. The noise error
rate is measured as the percentage of the time the correct hypothesis
is not within the list of alternatives generated by the simulator er-
ror model. All training procedures had the error rate fixed at 15%.
Note, however, that the 1-best error rate is actually higher. On the
other hand, zero error rate means that no noise is inserted, so the true
hypothesis is the only hypothesis given to the dialogue manager.

To measure the rate at which each algorithm learns, the follow-
ing procedure was adopted. After every 5000 dialogues the partially
optimised policy was evaluated on 1000 dialogues at zero error rate.

The averaged reward and average number of turns per dialogue
are shown in Figs. 1 and 2 respectively, (success rates follow a sim-
ilar trend to the reward rates). The GP based policies reach compa-
rable performance to the fully trained NAC policy in approximately
10, 000 dialogues, reducing the required training corpus size by an

0 20000 40000 60000 80000 100000
TrainingBatch

5

0

5

10

15

Re
w

ar
d

GP-B
GP-C
NAC-F

Fig. 1. Learning rates for NAC and GP in summary space, and GP
in full space: reward vs training iteration.

0 20000 40000 60000 80000 100000
TrainingBatch

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Tu
rn

s

GP-B
GP-C
NAC-F

Fig. 2. Learning rates for NAC and GP in summary space, and GP
in full space: turns vs training iteration.

order of magnitude. In addition, they produce significantly shorter
dialogues. Further, the GP-B policy outperforms the NAC-F pol-
icy, whilst the GP-C policy outperforms both. This suggests that
parametric policy modelling limits the optimality of the solution and
that it is possible to optimise the policy directly on the full belief
space. Note that increasing the dimensionality of the input space
from summary to full belief space did not significantly reduce the
learning rate. The GP-Sarsa algorithm is able to deal with large in-
put spaces by making use of the correlations defined by the kernel
function, which in practice makes it effectively independent of the
dimensionality of the input space. On the other hand, the summary
space C relies on the incorporation of global dialogue features such
as whether the system previously informed the user about a partic-
ular entity or that there is no matching venue in the database. This

can contribute to its better performance but has all the drawbacks of
hand-crafting.

4.4. Qualitative Policy Comparison

To gain some insights into the characteristics of the different meth-
ods of optimisation, four policies were compared using a user
simulator: the three fully trained policies described above (trained
on 100, 000 dialogues), NAC-F, GP-C and GP-B plus GP-B-PART
which is similar to GP-B but trained on only 10, 000 dialogues.
The systems were tested at zero error rates by performing 1000
dialogues.

To examine the differences between the policies, the summary
actions were divided into four broad groups:

• actions where the system informs the user, either about a par-
ticular slot or about an entity.

• actions where the system asks the user to select between two
values, e.g. Are you looking for cheap or moderate price
range?

• actions which ask for confirmations.

• actions which request more information from the user, e.g.
What kind of food would you like?

The percentage of times each policy uses these actions are given in
Table 1. It can be seen that the NAC policy confirms and requests
more often than the GP policies. Conversely, the GP policies have
learned to use the select action more often, presumably because it is
often more useful to explicitly ask the user to choose between two
values when the user asks for something and then later changes their
mind rather than continuing to confirm the original value which the
user no longer wants. In terms of the differences between the policies
operating on the full belief space to the policies operating on the
summary space, it can be seen that the summary space-based policies
request more often and inform less often. Sometimes a degree of
guessing about what the user is looking for can be more effective
than explicitly requesting all necessary information before accessing
the database, especially if the system is not aware that the user has
already been informed about a particular entity. Whilst this shows
the ability of the full belief space model to exploit the behaviour
patterns of the simulated user, it also signals the potential dangers
of over-training on the simulated user to the extent that the policy
attempts to exploit traits in the behaviour of the user simulator which
are not actually present in the real user population.

Table 1. Analysis of actions the policies take in interaction with the
user simulator by frequency of use in the four major categories of
system action: inform, select, confirm and request.

GP-B GP-B-PART GP-C NAC-F
Inform 71.2% 75.2% 58.7% 59.1%
Select 2.9% 1.6% 4.0% 0.9%
Confirm 0.3% 0.0% 0.2% 2.3%
Request 25.7% 23.2% 37.1% 37.7%

4.5. Real User Trial

In order to examine the differences between the GP-Sarsa policies
and the NAC policy with real users, we conducted an evaluation
using the Amazon Mechanical Turk service in a similar set-up to

that described in [27]. The trial subjects were assigned specific
tasks in the TopTable restaurant domain for Cambridge in which they
were asked to find restaurants that had particular features. To elicit
more complex dialogues, subjects were sometimes given constraints
which might not be satisfied in which case they were given alterna-
tive constraints to try. For example, if tasked to find a Vietnamese
restaurant in the east side of the city and there were no such restau-
rants, then the subject might be asked to find a Chinese restaurant
instead. Due to the negotiative-style of the dialogues, it is difficult
to measure the objective success accurately. Therefore, after each
dialogue, subjects were asked to fill in a feedback form indicating
whether they thought the dialogue was successful or not (subjective
success).

Table 2. Results of the user trial: number of dialogues per policy
(#N), subjective success [with confidence interval], average number
of user turns per dialogue (with standard error) and average word
error rate (WER).

#N Success Ave User Turns WER
NAC-F 252 94.4 [90.9, 96.9] 7.4 (0.2) 22.0
GP-C 249 95.2 [91.7, 97.5] 6.7 (0.2) 19.9
GP-B-
PART

249 91.6 [87.4, 94.7] 7.0 (0.3) 22.4

GP-B 265 93.6 [89.9, 96.2] 7.0 (0.2) 21.7

The number of dialogues collected for each policy, the average
success rate based on the user rating with confidence intervals, the
average dialogue length together with the standard error and the av-
erage word error rate are given in Table 2.

The results show that while the success rates between dialogues
generated by different policies are not statistically different, the GP-
Sarsa policies produced significantly shorter dialogues than the NAC
policy. Since shorter dialogues result in higher rewards, this is con-
sistent with the simulation results which showed higher rewards for
the GP policies. It is also important to note that the performance
of the policy trained with only 10, 000 dialogues (GP-B-PART) was
comparable to the policy trained with 100, 000 dialogues (GP-B)
suggesting that it should be possible to train a GP-Sarsa policy on
the full belief space directly in interaction with real users.

Finally, as in section 4.4, an analysis was performed of the ac-
tions taken by the four policies in the user trial (see Table 3). It can
be seen that the distributions of actions are very different to the ones
taken in interaction with the simulated user (Table 1), suggesting that
real users do behave differently to the simulated user. It is interesting
to note that the differences between GP-B-PART and GP-B are more
prominent on real users. This suggests that while it may be possi-
ble to train an effective policy with only 10, 000 dialogues, it is very
important that the training conditions match the trial conditions.

5. CONCLUSION

This paper has described how Gaussian processes can be applied
to POMDP-based dialogue management. Using the GP-Sarsa algo-
rithm it has been shown that not only is GP policy optimisation faster
by an order of magnitude compared to natural gradient methods, it
can also be applied directly to the full belief space obviating the need
for hand-crafted summary space mappings whilst maintaining both
speed of learning and operational performance.

Table 3. Analysis of actions the policies take in the real user trial by
frequency of use in the four major categories: inform, select, confirm
and request.

GP-B GP-B-PART GP-C NAC-F
Inform 78.7% 69.1% 72.1% 69.6%
Select 2.6% 1.8% 8.3% 4.0%
Confirm 1.3% 4.6% 1.2% 2.0%
Request 17.4% 24.5% 18.4% 24.4%

Future work will focus on three research directions. The first
will investigate training a GP-Sarsa policy operating on the full be-
lief state space in direct interaction with real users. Policies operat-
ing on the full belief space should in principle be capable of signifi-
cantly outperforming summary space policies especially if the sum-
mary space omits features that are not present in the belief space.
However, this is hard to demonstrate when training on a user simu-
lator, due to differences in the behaviour of real users in real noise
conditions.

The second thread of research concerns defining the kernel func-
tion and in particular the noise variance σ. It has been shown on toy
dialogue problems that the kernel function can be parametrised and
its parameters can be learnt off-line directly from data [28, 20], so it
remains to apply this method to a real-world dialogue manager.

Finally, while the work presented here obviates the need to re-
duce the belief state space to a summary space, it still requires the
use of a summary action space that must be predefined by the de-
signer. For the experiments here, a simple δ-kernel was used over
the summary action space. Gaussian process reinforcement learning
will allow more elaborate kernel functions to be defined on the ac-
tion space. Therefore, in principle it should be possible to define a
kernel over the full action space and this needs further investigation.

6. ACKNOWLEDGEMENTS

This work was supported by PARLANCE (www.parlance-project.eu),
an EU Seventh Framework Programme project (grant number
287615).

7. REFERENCES

[1] N Roy, J Pineau, and S Thrun, “Spoken dialogue management
using probabilistic reasoning,” in Proceedings of ACL, 2000.

[2] B Zhang, Q Cai, J Mao, E Chang, and B Guo, “Spoken Dia-
logue Management as Planning and Acting under Uncertainty,”
in Proceedings of Eurospeech, 2001.

[3] SJ Young, “Talking to Machines (Statistically Speaking),” in
Proceedings of ICSLP, 2002.

[4] B Thomson, Statistical methods for spoken dialogue manage-
ment, Ph.D. thesis, University of Cambridge, 2009.

[5] S Young, M Gašić, S Keizer, F Mairesse, J Schatzmann,
B Thomson, and K Yu, “The Hidden Information State model:
A practical framework for POMDP-based spoken dialogue
management,” Computer Speech and Language, vol. 24, no.
2, pp. 150–174, 2010.

[6] LP Kaelbling, ML Littman, and AR Cassandra, “Planning and
Acting in Partially Observable Stochastic Domains,” Artificial
Intelligence, vol. 101, pp. 99–134, 1998.

[7] J Pineau, G Gordon, and S Thrun, “Point-based value iteration:
An anytime algorithm for POMDPs,” in Proceedings of IJCAI,
2003, pp. 1025–1032.

[8] JD Williams and SJ Young, “Scaling POMDPs for Spoken
Dialog Management,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 15, no. 7, pp. 2116–2129, 2007.

[9] JD Williams and SJ Young, “Scaling POMDPs for dialog man-
agement with composite summary point-based value iteration
(CSPBVI),” in AAAI Workshop on Statistical and Empirical
Approaches for Spoken Dialogue Systems, 2006.

[10] JD Williams and SJ Young, “Partially Observable Markov
Decision Processes for Spoken Dialog Systems,” Computer
Speech and Language, vol. 21, no. 2, pp. 393–422, 2007.

[11] J Henderson, O Lemon, and K Georgila, “Hybrid Reinforce-
ment/Supervised Learning for Dialogue Policies from fixed
data sets,” Computational Linguistics, vol. 34, no. 4, pp. 487–
511, 2008.

[12] L Daubigney, M Geist, and O Pietquin, “Off-policy Learning
in Large-scale POMDP-based Dialogue Systems,” in Proceed-
ings of ICASSP, 2012.

[13] M Gašić, F Lefèvre, F Jurčı́ček, S Keizer, F Mairesse, B Thom-
son, K Yu, and S Young, “Back-off Action Selection in Sum-
mary Space-Based POMDP Dialogue Systems,” in Proceed-
ings of ASRU, 2009.

[14] F Lefèvre, M Gašić, S Keizer, F Mairesse, B Thomson, K Yu,
and S Young, “k-nearest neighhbor Monte-Carlo control algo-
rithm form POMDP-based dialogue systems,” in Proceedings
of SIGDIAL, 2009.

[15] L Li, JD Williams, and S Balakrishnan, “Reinforcement Learn-
ing for Dialog Management using Least-Squares Policy Iter-
ation and Fast Feature Selection,” in Proceedings of Inter-
speech, 2009.

[16] F Pinault and F Lefèvre, “Semantic graph clustering for
POMDP-based spoken dialogue systems,” in Proceedings of
Interspeech, 2011.

[17] CE Rasmussen and CKI Williams, Gaussian Processes for Ma-
chine Learning, MIT Press, Cambridge, Massachusetts, 2005.

[18] Y Engel, S Mannor, and R Meir, “Reinforcement learning with
Gaussian processes,” in Proceedings of ICML, 2005.

[19] Y Engel, Algorithms and Representations for Reinforcement
Learning, PhD thesis, Hebrew University, 2005.

[20] M Gašić, Statistical Dialogue Modelling, PhD thesis, Univer-
sity of Cambridge, 2011.

[21] B Thomson and S Young, “Bayesian update of dialogue state:
A POMDP framework for spoken dialogue systems,” Com-
puter Speech and Language, vol. 24, no. 4, pp. 562–588, 2010.

[22] J Peters and S Schaal, “Natural Actor-Critic,” Neurocomput-
ing, vol. 71, pp. 1180–1190, 2008.

[23] TopTable, “TopTable,” 2012, https://www.toptable.com.

[24] P Tsiakoulis, M Gašić, M Henderson, J Planells-Lerma,
J Prombonas, B Thomson, K Yu, S Young, and E Tzirkel, “Sta-
tistical Methods for Building Robust Spoken Dialogue Sys-
tems in an Automobile,” in Proceedings of the 4th Applied
Human Factors and Ergonomics, 2012.

[25] J Schatzmann, Statistical User and Error Modelling for Spo-
ken Dialogue Systems, Ph.D. thesis, University of Cambridge,
2008.

[26] T Jebara, R Kondor, and A Howard, “Probability product ker-
nels,” J. Mach. Learn. Res., vol. 5, pp. 819–844, Dec. 2004.

[27] F Jurčı́ček, S Keizer, M Gašić, F Mairesse, B Thomson, K Yu,
and S Young, “Real user evaluation of spoken dialogue sys-
tems using Amazon Mechanical Turk,” in Proceedings of In-
terspeech, 2011.

[28] M Gašić, F Jurčı́ček, S Keizer, F Mairesse, J Schatzmann,
B Thomson, K Yu, and S Young, “Gaussian Processes for Fast
Policy Optimisation of POMDP-based Dialogue Managers,” in
Proceedings of SIGDIAL, 2010.

