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Abstract—Statistical dialogue models have required a large applied to POMDP dialogue policy optimisation in order to
number of dialogues to optimise the dialogue policy, relying on exploit the correlations between different belief statesl a
the use of a simulated user. This results in a mismatch between thus speed up the learing process [12]. GP also provides

training and live conditions, and significant development costs for timate of th taintv of th imati hich
the simulator thereby mitigating many of the claimed benefits of an estimate o € uncertainty o € approximation whic

such models. Recent work on Gaussian process reinforcementcan be used to obtain more efficient learning §trategies [13]
learning, has shown that learning can be substantially acceler- Furthermore, recent innovations in crowd-sourcing andajlo

ated. This paper reports on an experiment to learn a policy for telephone call routing via VoIP now allow large numbers of

a regl-world task directly from human interacti_on using rewards_ users to be recruited at low cost for large-scale training an
provided by users. It shows that a usable policy can be learnt in . .
testing of dialogue systems [14].

just a few hundred dialogues without needing a user simulator . . .
and, using a learning strategy that reduces the risk of taking bad ~ This paper reports on an experiment to Iearnl a dlalqgue
actions. The paper also investigates adaptation behaviour when policy for a real-world task directly from human interactio

the system continues learning for several thousand dialogues and ysing a binary reward signal provided by users at the end of
highlights the need for robustness to noisy rewards. each dialogue. The domain is the Cambridge tourist informa-
tion for restaurants, pubs and bars, which contains aboit 40
venues each of which has up to ten attributes that the user may
The statistical approach to dialogue modelling has beeuoery, and the dialogue system is the POMDP-based Hidden
proposed as a means of building domain independent dialognformation State system. Using GP-Sarsa, it is shown that a
systems, trainable from data and robust to speech unddfstamsable policy can be learnt from scratch in just a few hundred
ing errors [1], [2]. If the dialogue state satisfies the Markodialogues without needing a user simulator for bootstragppi
property, the dialogue can be modelled as a Markov decisiand, using a learning strategy that reduces the risk of gakin
process (MDP) [1] and reinforcement learning (RL) algarith bad actions. In the second part of the paper, the behaviour of
can be used for policy optimisation [3]. Since RL is typigall the system is investigated when on-line learning is allowed
slow, policy training in the past has normally required tise u to continue for several thousand dialogues. In this cagagso
of a simulated user [4], and where direct human-computieteresting phenomena are observed. In particular, the foee
interaction has been attempted, as in the NJFun system [ghustness to errors in the reward signal is highlighted.
the dialogue systems have been constrained and reliant on @he rest of the paper is organised as follows. Section I
significant amount of built-in expert knowledge. briefly reviews the Hidden Information State system and the
A recent trend has been to move to the partially obser@aussian process approach to reinforcement learning. Sec-
able Markov decision process (POMDP) in order to provid@n Ill then presents a learning strategy which reduces the
increased robustness to errors in speech understanding 8k of taking bad actions during training and is therefore
[7]. The POMDP-based approach to dialogue managemeatrticularly well-suited for learning on-line with real ars.
maintains a distribution over every possible dialogueestifite Section IV describes the experimental set-up and the gesult
belief stateand based on that distribution, the system choosekthe initial on-line learning using a few hundred dialogue
the action that gives the highest expected reward. Varioasd the longer-term adaptation using a few thousand diakagu
approximations allow this method to be used for buildind re&inally, conclusions are given in Section V.
world dialogue systems [8], [9]. However, POMDP systems
are more complex than MDP systems and they typically }
require O(10°) dialogues [10] to train using conventionalA- Hidden Information State system
RL algorithms. This makes it prohibitive to train in direct The Hidden Information State (HIS) [8] system is a scalable
interaction with human users and the use of a simulatB®®MDP-based dialogue system able to sustain real time
user appears essential despite the disadvantages ofoadtliticollaborative dialogues with real users [8], [15]. It ackie
development costs and potential discrepancies betweén it operational efficiency by merging similar dialogue sgat
and simulated user behaviour. together. To achieve tractable policy learning, both thieebe
Gaussian process (GP) based RL [11] has been recemstigte and the action space are mapped into smaller scale

I. INTRODUCTION

Il. BACKGROUND



summary spaces. The summary state is a four dimensioh@hest expected)-value is taken; these actions respectively
space consisting of two elements that are continuous (tbenstituteexplorationand exploitation Such a learning strat-
probability of the top two dialogue states) and two discre&gy, however, is not well-suited for learning with real sser
elements (one relating the proportion of database entni&ts tespecially customers, since it allows any action to be taken
match the top dialogue state and the other relating to the ldsiring exploration, even ones which are known to lead to poor
user action type). The summary action space consists aéreleperformance. This can be mitigated to some extent by using
basic actions. hand-crafted rules to define the set of permissible actions f

, i , i .. every summary state [18]. Alternatively, using GP-Sarga th
B' Gaussian processes in POMDP dialogue policy OPUMISgtimate of the variance for each summary state-action pair
tion can be used to focus on actions which appear to be useful

The role of a dialogue policyr is to map each summary but whose benefit is currently uncertain. This has the added

stateb into a summary action so as to maximise the expectedenefit that learning rates are also improved [12], [13].r&he
cumulative reward defined by th@-function as: is the drawback, however, that these methods require manual

setting of one or more tuning parameters.
) (1) In this paper we propose an alternative stochastic ap-

proach that automatically balances exploration and etgploi
tion without the need for hand-crafting or additional pa-
rameters. Since the Gaussian process for ghéunction
%ﬁines a Gaussian distribution for every summary state-

ction pair (Eq. 2), when a new summary poimtis en-

countered, for each action; € A, there is a Gaussian

T
Q(b,a) = max E, ( Z by =bar = a
T T=t+1

wherer, is the reward obtained at time T is the dialogue
length andy is the discount factor) < v < 1.

A Gaussian process (GP) is a generative model of Bayes
inference that can be used for function regression [16]s It
fully defined by a mean and a kernel function which defmecfistribution Qb,a;) ~ N(@Q(b,ar), con((b, az), (b,a:))).

prior function correlations and is crucial for obtainingogb . ; RO :
posterior estimates with just a few observations. GP—Sar§ mpling from these Gaussian distributions gives a s€-of

is an on-line RL algorithm that models th@-function as a values for each actiofQ’ (b, a;)} from which the action with
zero mean Gaussian process [17] which defines correlaﬂ\onéne highest sample@-value can be selected:

different parts of the summary state and action spacesdhrou
a kernel function,Q(b,a) ~ GP (0, k((b,a), (b,a))) where

the kernelk(-,-) is factored into separate kernels over they i< this method maps the GP approximation of the

summary state and action spadesb, b)kA(az a). function into a stochastic policy which does not require oan
Foor & seduence TOf ‘summary state-action pd¥s = y5ancing of exploration and exploitation.

[(b & )., (b'a )1 V'S't.ed na dlaloguei and tth$ COITE " The effectiveness of this learning strategy can be evaluate

spondl_ng observed |mmed|ate rewards= [, ..., '] N the by comparing it with ane-greedy policy using the variance

posterior of the-function for any summary state-action pa'rexploration method as in [12]. A second order polynomial

(b, a) is defined by the following:

kernel is used over belief space [19], since this has beamrsho

a = arg max Q'(b, a;). 4)

Q(b,a)|r;, By ~ N(Q(b,a), cov((b,a), (b,a))), previously to give good performance on this task [20], and
Q(b,a) = ki(b,a)TH] (H,K,H] + ¢’H,H]) 'r,, the action space kernel is a simpl€unction. 1000 training
cov((b,a), (b,a)) = k((b,a), (b,a)) sessions with different random seeds were conducted with a
—k(b,a)TH] (H,K,H] + 02H,H]) 'H,k,(b, a) simulated user. A reward &0 was given in the final state of

1 =y - 0 0 the dialogue if the dialogue was successtubtherwise, less

0o 1 --- 0 0 the number of turns taken to fulfil the user goal.
H, = { .. ) ) After every batch of 200 training dialogues, the partially

S e trained policies were evaluated an00 simulated dialogues.

o0 - 0 1 — In the case of the-greedy policy the exploration was switched
Ki(b,a) = [k((b% a%)),... . ki((b*,a"))], off during the evaluation. Results are given in Fig. 1, where
k;(b,a) = [k((b°,a), (b,a)),...,k((b*,a’), (b,a))]"

5 it can be seen that the stochastic policy learns with a retuce
h 2 is the additi . . in th i ( t) \friability in the reward, thus reducing the risk of takingdb
where o= is the additive noise variance in the estimate of . during learning.

the reward such that the marginal likelihood of the observe& . . .
. The primary performance metric for a spoken dialogue
rewards is modelled by

system applied to an information seeking application is the
r¢|B; ~ N(0,H,(K; + oc’T)H] ). (3) average success rate, where success is defined as conveying
to the user the information that they require. For a single
deployed dialogue system which is learning sequentiatiynfr
On-line reinforcement learning algorithms are often basedsuccession of users, it is not possible to compute an aerag
on e-greedy learning [3] whereby at each turn a randosuccess rate after each dialogue, so here a moving average
action is taken with probability otherwise the action with the is used. Fig. 2 shows the moving average success rate of

Ill. GP STOCHASTIC POLICY FOR LOW RISK LEARNING
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Fig. 1.  Average reward vs training epoch with a simulated dsera Fig. 3. Moving average success rate for different trainiogditions: training
stochastic policy compared to argreedy policy with variance exploration. with no input or reward errors (upper curve); training wit¥t @0 50% input
The upper and lower bounds in each case denote 95% confideileceals.  errors (middle curve); training with 30% reward errors (loweerve).

dialogue system in which human users were assigned specific
tasks in the Cambridge Restaurant domain using the Amazon
Mechanical Turk service [21] in a similar set-up as in [14].
Dialogue tasks were randomly generated and each user could
perform up to 40 tasks. At the end of each call, users were
asked to presd if they were satisfied (i.e. believed that
they had been successful in fulfilling the assigned task) and

80

7sF

Moving average success

o1 0 otherwise. This rating was used to compute the reward
o5l function described above. The system was initialised with t
ol ‘ ‘ ‘ ‘ ‘ random policy and then optimised after each dialogue.

e O anng dalogues The experiment laste2it days during whicl2960 dialogues

with user feedbacks were collected a2&l users took part.
Fig. 2. Moving average success rate of four training sessiéthe stochastic TO give a flavour of the dialogues and the learning process,
policy using the user simulator. The average is computed deepteceding g typical task is shown in Table I, Table Il then shows
400 dialogues. an unsuccessful dialogue conducted early in the trial, and
Table Il shows a successful example 7 days later.

the stochastic policy during training with the user simoifat TABLE |
using a window formed from the previouf)0 dialogues. EXAMPLE DIALOGUE TASK
This is repeated four times using different random seeds of
the simulator to show the variability. There is no statatic
difference in the performance, yet as can be seen, there are
considerable fluctuations in the trajectories.

Figs 1 and 2 were computed assuming that there are no
errors in understanding the user input, or computing theréw B. Initial policy optimisation
function. Fig. 3 compares results when an error is inserted-l-he performance achieved during on-line learning on the

. . . o
into the user |_nput with random error ra_te b_etween 0 an_d 50|ﬁ‘?tial 680 dialogues was compared to the performance of a
and when an inaccurate reward signal is given to the dialog

% of the fi A b h ducti Hhdom policy and a policy trained to convergence on the
manager30% of the time. As can be seen, the reduction 'egser simulator [10]. For the on-line learning case, the mgvi

perfcl)lrmance cguseg by derrqrs in the ;Eer. input is relativ erage success rate was calculated over a moving window
small compared to the reduction caused by inaccurate rewargf 400 dialogues, using the user feedback as the indicator

The system is therefo_re_: relatively rqbust to understangli%g dialogue success. For the random policy and the policy
errors but is very sensitive to errors in the reward funCt'O'ﬂained on the user simulator, the average success rate was
calculated from the user feedback during separate trialg of
IV. ON-LINE LEARNING WITH HUMANS and466 dialogues, respectively. The results are given in Fig. 4,
where the shaded area represents9tité confidence interval.
It can be seen that the on-line learning not only signifigant!
The stochastic learning strategy presented in the previcustperforms the random policy, but, in onfig0 dialogues
section was implemented in a live telephone-based spolahieves a performance which is statistically insignifitan

You want to find a pub and it should allow childre
and have TV. Make sure you get the address,
phone number, and postcode.

>

A. Experimental set-up



TABLE Il

UNSUCCESSFUL DIALOGUE RECORDED OR9TH MAY

de?

S | How may | help you?
U | Silence
S | How may | help you?
U | I'm looking for a pub that has TV.
S | The Avery has a television and it's a great pub.
U | Does it allow children?
S | The phone number of The Avery is 01223323405.
U | Does it allow children?
S | Are you looking for something with children?
U | Yes.
S | Can | help you with anything else?
U | Silence
S | Can | help you with anything else?
U | No, thank you good bye.
S | Let me confirm. You are looking for a French restaurgnt.
U | Thank you, good bye.
TABLE IlI
SUCCESSFUL DIALOGUE RECORDED OMTH JUNE
S | How may | help you?
U | I want to find a pub.
S | The Baron of Beef is an outstanding pub.
U | Does it allow children and has TV?
S | The Avery, which allows children, is
a great pub with a television.
U | May | have the address, phone number and post-cg
S | The Avery, which is in the area with
the postcode CB2 1AB, is on 69-73 Regent Street.
Its phone number is 01223323405.
U | Thank you, good bye.

different to that of the policy trained with the simulatedeys
but of course, without the substantial development cost @Iﬁildren), but does not necessarily provide all the reguire
building a user simulator. Furthermore, when the word errggditional information (e.g. phone, post code, address, et
rates of the speech recogniser are compared, see Table IVfije second objective measure is full completion in which a
can be seen that speech recognition was a little worse durtagk is deemed to be successful only if the system provides
the on-line learning suggesting that both of the trainedcies | of the information specified in the assigned task.

are comparable in performance.

TABLE IV

COMPARISON BETWEEN WORD ERROR RATES FOR DIFFERENT CORPORA

Word error rate

Simulator trained policy|
Online learning
Random policy

20.85
22.93
25.22

C. Longer term adaptation
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Fig. 5. Subjective and objective performance of during aatagt over 2960
dialogues.

It is important to note that neither subjective nor objeztiv
task completion rates are 100% accurate since they both
depend on the user following the task instructions and gskin
for all required information. The subjective measure igHer
confounded by users forgetting or confusing what the task
required and therefore incorrectly assessing whether totheo
dialogue was successful. As expected, the full completde r
is lower than the partial completion rate and these measuees
strongly correlated (see Fig. 5). However, subjective essc
based on the user feedback is correlated with the objective

In a second phase to the on-line learning experiment, tAEasures only in the initial stage of learning. Around djal®
trial was continued until 2960 dialogues had been processédV0 the subjective and the objective measures diverge.
with the policy continuing to be adapted after every diakegu There are two aspects that need to be considered when
Surprisingly, a long-term cyclic fluctuation was observeithw analysing these results: first is the word error rate, se¢®nd
a period of around 1500 dialogues. This is shown in Fig. t8e accuracy of the user rating.
which also shows two objective measures of success. Thd-ig. 6 gives the moving average word error rate computed
first is the partial completion rate in which a task is deemeaaler a window of400 dialogues. It can be seen that the
successful if the system provides the name of the venue thaird error rate in the later stages of learning is higher than
matches the assigned task (e.g. a pub that has a TV and allawshe initial learning stage. To see if this increase in the



sor task was not fully completed.

a5t These empirical probabilities were computed for three di-

aop alogue corpora — the corpus of dialogues generated with the
random policy, the corpus of dialogues generated during the
on-line training and the corpus of dialogues generatechduri
the evaluation of the policy trained on the simulated user.
The results are given in Table V. Of particular interest is th
probability of a user rating the dialogue as successful even
though the task was not fully completed. For the random polic
corpus, this probability is small).26, whereas for the corpus

- e e s s of dialogues that used the policy trained on the simulated us

Training dialogues this probability is very high).68. This suggests that when the

overall policy behaviour is irrational it is easy for usets t

identify whether or not the dialogue was successful. Howeve

once the policy behaves more rationally, users find it haiaer

100 consistently distinguish between success and failure ey t

, tend to be biased towards success. Similarly, the prolabfi

the user rating the dialogue as successful when the dialogue

task actually was fully completed is higher for the trained

policies 0.94) than the random policy0(8). This means that

even if the system provides all the required informatiort, bu

behaves irrationally otherwise, users tend to rate theoglisd

as unsuccessful.

In order to further investigate the effect of this inconsisty,
1952 dialogues were used for off-line training during which
the system follows the same actions it took in the corpus
while re-estimating the policy. 11362 of these dialogues,
the user rating was consistent with the full completionngti
A second policy was then trained off-line on this filtered
subset of accurately rated dialogues. The performanceeof th
two policies were then compared using the simulated user,
Fig. 7. Subjective success rates during dialogues 1-146%lmtogues1469- performing 2000 dialogues over a range of sgmaqtlc error
2938 compared with a policy trained on the simulated user. Buions rates from O to 50%. The results are shown in Fig. 8 and
marked as confint denote 95% confidence intervals clearly demonstrate that the accuracy of the reward is akuci
for successful on-line learning.
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word error rate might account for the drop in performance, TABLE V

the Corpus was Spllt |nt0 two Sequen“al batches and |(ng|st| COMPARISON BETWEEN SUBJECTIVE AND OBJECTIVE SCORES FOR
. . . . DIFFERENT CORPORA

regression used to predict the subjective success rate as a

function of the word error rate. The performance of thg Random | Online | Simulator
policies learned on-line in the two batches (TrainEpoch&9al policy | learning | trained
and TrainEpoch1469-2938, respectively) are comparedeo thUser feedback 36.3 76.9 85.7

i Full completion 17.7 53.8 63.7

policy trained on the simulated user; the results are given
Fig. 7. As can be seen, performance on the second train rﬁ;gggggt } ggmg:z (1)3 8:2(8 8:23’ 8:23
batch is significantly more robust than the first batch and it gralogues 114 5960 466
is statistically indistinguishable from the performandettoe
policy trained on the simulated user.

However, these results still do not explain the inconsisten V. CONCLUSIONS

between the subjective and the objective measures. Morerhis paper has described a method by which Gaussian
insight into this problem can be gained from the followingrocess based reinforcement learning can be used to train a
empirical probabilities: dialogue policy from scratch in just a few hundred dialogues
» p(feedbck= 1|complt= 1) — the probability of the user without needing a user simulator for bootstrapping andhgisi
rating the dialogue as successful given that the dialogadearning strategy that reduces the risk of taking bad astio
task was fully completed, and The performance of the resulting system was similar to a
« p(feedbck= 1|complt= 0) — the probability of the user system trained to convergence on a user simulator, but not
rating the dialogue as successful even though the dialogsignificantly better. Given that the user simulator has been




reward is considered to be static and does not depend on the
time when it is observed (Eq. 3). Future work is therefore
required to adapt the reward noise estimate during traitdng

make learning robust to the kinds of unexpected phenomena
encountered here.

Success
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