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1 Introduction

Spoken dialogue systems (SDS) allow users to interact with a wide variety of information
systems using speech as the primary, and often the only, communication medium. The
principal elements of an SDS are a speech understanding component which converts
each spoken input into an abstract semantic representation called a user dialogue act,
a dialogue manager which responds to the user’s input and generates a system act at
in response, and a message generator which converts each system act back into speech.
At each turn t, the system updates its state st and based on a policy π, it determines
the next system act at = π(st). The state consists of the variables needed to track the
progress of the dialogue and the attribute values (often called slots) that determine the
user’s requirements. In conventional systems, the policy is usually defined by a flow
chart with nodes representing states and actions, and arcs representing user inputs.

Despite steady progress over the last few decades in speech recognition technology,
the process of converting conversational speech into words still incurs word error rates
in the range 15% to 30% in realistic operating environments. Systems which inter-
pret and respond to spoken commands must therefore implement dialogue strategies
which account for the unreliability of the input and provide error checking and recovery
mechanisms. As a consequence, conventional deterministic flowchart-based systems are
typically expensive to build and fragile in operation.

During the last few years, a new approach to dialogue management has emerged
based on the mathematical framework of partially observable Markov decision processes
(POMDPs) [1, 2, 3]. This approach assumes that dialogue evolves as a Markov process
i.e. starting in some initial state s0, each subsequent state is modelled by a transition
probability: p(st|st−1, at−1). The state st is not directly observable reflecting the un-
certainty in the interpretation of user utterances; instead, at each turn, the system can
observe only the noisy interpretation of the user input ot with probability p(ot|st). The
transition and observation probability functions are represented by a suitable stochastic
model, called here the dialogue model M.
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The decision as to which action to take at each turn is determined by a second
stochastic model, called here the policy model P. As the dialogue progresses, a reward is
assigned at each step designed to reflect the desired characteristics of the dialogue system.
The overall goal is to maximise the expected accumulated sum of these rewards by
optimising the dialogue modelM and policy model P, either on-line through interaction
with users or off-line from a corpus of dialogues collected within the same domain. The
representation of these models can be either parametric or non-parametric.

The ultimate performance of a statistical spoken dialogue therefore depends on
how effectively the two models M and P can be optimised and the purpose of this
chapter is to present recent advances in this area developed within the Dialogue Sys-
tems Group at Cambridge. For background, section 2 outlines in a little more detail
the basic framework of POMDP-based dialogue systems and section 3 explains how a
tractable stochastic dialogue model can be parameterised and implemented using dy-
namic Bayesian Networks[4]. The remaining sections focus on optimisation techniques.
Section 4 explains how a more general form of inference called Expectation Propaga-
tion(EP), which can be viewed as a form of expectation-maximisation, can be used for
both belief tracking and parameter optimisation [5, 6]. Section 5 explains how natu-
ral actor-critic reinforcement learning can be used to optimise the policy parameters P
[7, 8], and how with a simple extension, it can also be used to optimise the dialogue
model parameters M [9]. Finally, section 6 addresses the problem of fast on-line policy
optimisation using Gaussian processes as a non-parametric policy model [10, 11, 12].
Section 7 wraps up with some general conclusions and pointers to future work.

2 POMDP-based Dialogue Management

The first key idea of POMDP-based dialogue management is that instead of computing
the most likely state at each turn, the system tracks the probability of all states. The
posterior distribution over states is called the belief state bt and it is updated each turn
using the current input observation ot from the user. This update is referred to as belief
monitoring or belief tracking and it is computed as follows

bt = p(st|ht;M) = kp(ot|st;M)
∑
st−1

p(st|st−1, at−1;M)bt−1 (1)

where ht = {a0, o1, a1, o2, . . . , at−1, ot} is the dialogue history, M is the chosen dialogue
model and k is a normalising constant. Whilst simple in theory, the practical imple-
mentation of the Markov model underlying this belief monitoring process is complex.
The belief state bt is continuous and has very high dimension which makes direct im-
plementation impossible. One solution is to group equivalent states into partitions and
maintain only the N-best most likely partitions as is done in the HIS system [13]. While
such a representation enables a more detailed expression of the dialogue state [14], it
requires a non-parametric modelling of the transition and observation probabilities [15].
Another approach is to factorise the model into smaller components and assume the ma-
jority of components are independent. This allows the model then to be parameterised,
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M =M(τ). This is typically done with multinomial distributions, which then naturally
leads to an implementation based on dynamic Bayesian networks [4]. This approach is
explained further in the next section since it underpins expectation propagation methods
of parameter optimisation. It should be stressed, however, that the policy optimisation
techniques in sections 5 and 6 are applicable to virtually all statistical dialogue systems
since they make few assumptions about the underlying dialogue models.

The second key idea of POMDP-based dialogue management is that rather than
mapping states into actions as in a conventional system, the policy of a POMDP maps
whole belief states into actions. Thus the decision as to what to do next is not simply
dependent on a single assumed state, instead it takes account of the full distribution
across all states. This mapping can be modelled deterministically as in at = π(bt) but
since bt is a high dimension continuous vector, the same tractability issues encountered
with the implementation of the dialogue model apply. An alternative approach is to
represent the mapping by a stochastic model P

at ∼ π(a|bt;P). (2)

This stochastic model can then be parameterised P = P(θ), which allows a wide range
of function approximation techniques to be applied. For example, the features of belief
space which directly impact each possible system act ai can be encoded in a basis function
φai(bt). A weighted set of these basis functions can then be cast into a probability via a
softmax function as in

π(at|bt; θ) =
eθ·φat (bt)∑
a e

θ·φa(bt)
(3)

where · denotes a scalar product. Section 5, explains how the parameters θ of this model
can be efficiently optimised using a natural actor-critic framework.

However, whereas for slot-based dialogue systems it is often easy make assumptions
about the shape of the dialogue model distributions, designing an accurate parameterised
model for a policy may be hard. An alternative approach therefore is to use a non-
parametric model for the policy. Section 6 explains how Gaussian processes can be used
for this purpose.

Unlike conventional classification tasks, the objective of a dialogue system is to
achieve some long-term goal through a sequence of planned actions. This is an example
of planning under uncertainty and optimisation can be performed using reinforcement
learning. Each dialogue turn is assigned a reward rt based on the current state and
action at

rt = r(bt, at) =
∑
st

bt(st)r(st, at). (4)

The goal of reinforcement learning is then to maximise the expected discounted value of
the total accumulated reward

R = E

{
T∑
t=1

γt−1rt

}
, (5)
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Figure 1: General framework for parameter optimisation in a POMDP-based spoken
dialogue system. The input/output interaction may be with a real user or a simulated
user.

where T is the length of the dialogue and γ ≤ 1 is a discount factor included to allow
the present value of future rewards to be discounted. In practical limited domain spoken
dialogue systems such as information inquiry, the reward function will typically have the
form

rt =


−1 if t < T ,
+20 if t = T and dialogue successful,
0 if t = T and dialogue unsuccessful.

(6)

In this case, it would be normal to set γ = 1.
The above sets out the basic framework of a POMDP-based spoken dialogue system

and the main elements are summarised in Fig. 1. A dialogue model M maintains a
distribution bt over all possible dialogue states, updating it each turn in response to
each new observation ot. A dialogue policy P then determines the best system action at
to take given the current belief state bt via a mapping at = π(bt). At each turn, a reward
rt is generated and accumulated. The overall objective is to maximise the expected value
of this accumulated reward.

Before addressing the issue of how to optimise the dialogue modelM and the policy
model P, it will be helpful to give a little more detail on how these models are typically
implemented.

3 A Dynamic Bayesian Network Dialogue Model

One strategy that can be used to simplify the dialogue model is to factorise the state into
a collection of sub-components. For example, many POMDP dialogue models factorise
the state at a particular point in time, st, into the user’s goal, gt, the true user action,
ut, and a dialogue history, ht, as suggested by [16]. In come cases, these sub-components
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Figure 2: Concepts in the CamInfo restaurant system.

can be further factorised according to a collection of concepts c ∈ C, so that the goal is
made up of sub-goals gc,t, and similarly ht = {hc,t}c∈C (see Figure 2).

The CamInfo restaurant system, which will be used for experiments later in the
chapter, provides a good example of how this approach can be used in practice. The
task of this system is to provide information about restaurants in Cambridge with users
speaking to the system over the phone. Figure 2 enumerates the different concepts in
the system.

As mentioned in Section 2, the näıve approach of simply implementing equation 1 to
update the system’s beliefs soon becomes intractable. The factorisation described above,
along with some conditional independence assumptions, enables the use of standard
machine learning algorithms to update the beliefs. This is done as follows.

First, the variables of interest are represented in a Bayesian network [17]. Each
node of the network denotes a random variable of interest and edges in the network
encode conditional independence assumptions. The assumption made is that the joint
distribution of all nodes factorises into the product of the distribution of each node given
its parents in the graph. A Bayesian network representation of part of the CamInfo
system is given in Figure 3. In the CamInfo system, the sub-histories are assumed to
be dependent on only their previous value, the true user action and the system’s action.
The observation is dependent on only the user act. The user act depends on all the
sub-goals and the last system action while the sub-goals depend on their previous value,
the system action and optionally other goals in the network. The dependencies between
the goals are shown by the arrows in Figure 2.

The probability functions are grouped into two types. The first type is called the
mostly constant factor type and it is used for the probabilities of goal nodes and history
nodes. Suppose a node is labelled Xt and a collection of “special” values are defined,
x1, x2, . . . , xk, along with a collection of “parent classes”. Example “special values” are
dontcare and N/A which are used to represent goals where the user doesn’t care about
the value and where the concept is not applicable. In the CamInfo system, the parent
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Figure 3: Bayesian network for three concepts in the CamInfo system.

class allows one to define different probability structures for different situations (based
on the system action and the node’s other parents), but to still allow for significant
amounts of parameter tying. An example of such parent classes arises in the case when
the system has informed that no venue has a particular concept value. Let the parents
of Xt, excluding the node’s previous value, be denoted by par′(Xt) and let ρ(par′(Xt))
denote the associated parent class. The probabilities are then defined in such a way that
the “special values” have distinct probabilities but all remaining values are considered
equivalent in order to tie the parameters. Formally, the mostly constant probability
functions are defined as follows, with i, j ∈ {1, 2, . . . , k} and x, y 6∈ {x1, x2, . . . , xk} and
x 6= y

p(Xt = xj |Xt−1 = xi, ρ(par′(Xt)) = ρ′) = τρ′,i,j

p(Xt = x|Xt−1 = xi, ρ(par′(Xt)) = ρ′) = τρ′,i,k+1

p(Xt = xj |Xt−1 = x, ρ(par′(Xt)) = ρ′) = τρ′,k+1,j

p(Xt = x|Xt−1 = x, ρ(par′(Xt)) = ρ′) = τρ′,i,k+1,k+1

p(Xt = y|Xt−1 = x, ρ(par′(Xt)) = ρ′) = τρ′,i,k+1,k+2.

This structure of probability factor allows parameters that are expected to be similar
to be tied together. For example, in modelling the changes in the user’s goal for food,
the different types of food will not be included in the list of “special values”. As a result,
the probability of the user’s food goal changing in one turn to the next from, say, Indian
to Italian is always equal to the probability of changing between any other pair of food
types such as Chinese to French. Similarly, the probability of the user’s goal staying
Indian will be no different to the probability of the goal staying the same for any other
food type.
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The second form of probability factor is used to define the probability of the user
action given the parent goals and system action. Only two probabilities are differentiated,
depending on whether the goals are acceptable pre-conditions for the user action given
the system’s prompt [18]. For example, if the user has said “I want Chinese food” then
goals which include food=Chinese are acceptable but goals which have food=x for other
values of x would not be acceptable. Formally, the probability is defined as

p(u|g, a) =
{
τ1 If g is acceptable as a set of pre-conditions
τ2 otherwise

(7)

With the probability network now defined, one can use standard algorithms such as
loopy belief propagation to update the beliefs in these variables after every turn[17]. An
extension of loopy belief propagation, called expectation propagation, can even provide
estimates of the parameters of the model from data [5], and the use of this algorithm for
updating and parameter learning will be explained in the next section.

4 Expectation Propagation

Expectation propagation works by approximating the joint distribution as a simpler
factorised distribution. Any marginals that are required can then be easily computed by
summing out the appropriate variables. The starting point of EP is therefore the joint
distribution.

The joint distribution of all variables, X, in the network can be written as a product
of probability factors, p(X) =

∏
f pf (X), with f indexing the factors. Each factor gives

the probability of a variable given its parents in the Bayesian network. The collection
of variables linked to factor f is denoted Xf . The joint can therefore be written p(X) =∏
f pf (Xf ). When a collection of variables is observed, the joint posterior distribution

is again proportional to
∏
f pf (Xf ), with observed variables replaced by their observed

value. Expectation propagation attempts to find an approximation to this posterior,
q(X) =

∏
qf (Xf ) ≈ p(X). In this case, a factorized approximation is used, where each

factor is further factorized: qf (Xf ) =
∏
j qf (xj), with j indexing all variables and qf (xj)

constant for variables not appearing in the factor.
EP solves for this approximation one factor at a time. A particular factor, f̃ , is

chosen and all other factors are fixed. One must then find qf̃ (Xf̃ ) =
∏
j qf̃ (xj) to

minimize KL(p||q\f̃qf ), where

q\f̃ (Xf̃ ) ∝
∏
f 6=f̃

qf (Xf ).

The function q\f̃ (Xf̃ ) denotes the cavity distribution, obtained by multiplying all ap-
proximations except for f̃ . The cavity distribution as a function of a single variable xj
is similarly defined as

q\f̃ (xj) ∝
∏
f 6=f̃

qf (xj). (8)
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The function q\f̃qf̃ is called the target function.
In the case here, all the probability factors to be approximated describe the prob-

ability of a discrete output variable given a collection of discrete input variables, and
a collection of parameter vectors. For clarity, the effect of the parent category, ρ, and
the index of the slot, i, will be omitted, and the simplest case of a goal dependent on
only its previous value is presented. Note that this exposition uses the general form of
probability function instead of the mostly constant probability functions presented in
the previous section.

The chosen probability factor, f̃ , has the form

p(gt = j|gt−1 = k) = τj,k

and hence approximating functions qf̃ (gt), qf̃ (gt−1), and qf̃ (τj) must be found. All
qf (τj) approximations are constrained to the Dirichlet distribution, with the parameters
denoted by αf,j . The approximations for the other factors are fixed and the cavity dis-
tributions for the variables are defined as per (8). In the case of the discrete variables gt
and gt−1, the cavity distributions are computed by multiplying all factor approximations
except for f̃ . The cavity distribution for the parameters τj is a product of continuous dis-
tributions. For Nf different factors, the cavity distribution is the Dirichlet distribution
with parameters

α
\f̃
j =

∑
f 6=f̃

αf,j − (Nf − 1)1. (9)

Note that when the parameters τj do not appear in a factor, the approximation is
constant and the vector of approximation parameters, αf,j , equals the vector of ones, 1.

Given the cavity distributions, one can show that the discrete approximating func-
tions that minimize KL(p||q\f̃qf̃ ) are [19]

qf̃ (gt) ∝
∑
gt−1

q\f̃ (gt−1)E(τgt−1,gt |q\f̃ (τgt−1)), (10)

qf̃ (gt−1) ∝
∑
gt

q\f̃ (gt)E(τgt−1,gt |q\f̃ (τgt−1)), (11)

where the expectations are taken over q\f̃ .
It can be shown that to minimize the KL divergence, the set of parameters for the

target function, denoted α∗j , must satisfy the following equation for every k [19],

Ψ(α∗jk)−Ψ(
Nα∑
l=1

α∗jl) = cjk, (12)

where Nα denotes the number of values,

cjk = Ψ(α\f̃jk )−Ψ(
Nα∑
l=1

α
\f̃
jl ) +

wjk

α
\f̃
jk

− 1− wj0∑Nα
l=1 α

\f̃
jl

, (13)
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Ψ(z) is the digamma function,

Ψ(z) =
d

dz
log Γ(z), (14)

and the wjk are weights (
∑

k wjk = 1)

wj0 ∝
∑
j′ 6=j

q\f̃ (gt−1 = j′), (15)

wjk ∝q\f̃ (gt−1 = j)q\f̃ (gt = k)
α
\f̃
jk∑Nα

l=1 α
\f̃
jl

. (16)

Various methods are possible for solving equation 12. The approach used here is
taken from Section 3.3.3. of [20]. Let ∆ = Ψ(

∑Nα
k=1 α

∗
ik), and make α∗ij the subject of

the formula in equation 12,
α∗jk = Ψ−1(cjk + ∆). (17)

Summing over k and taking both sides as arguments for the Ψ function gives,

∆ = Ψ(
Nα∑
l=1

α∗jl) = Ψ

(
Nα∑
l=1

Ψ−1(cjl + ∆)

)
. (18)

One can now solve for ∆ using Newton’s method and use (17) to obtain the α∗j param-
eters. The desired approximating function parameters are then calculated as

αf̃ ,j = α∗j −α
\f̃
j . (19)

The special forms of probability factor described in Section 3 use essentially the same
update, though the computation can be simplified because of their special structure.
Details can be found in [19]. The full algorithm operates by repeatedly choosing a factor
to update, computing the cavity distributions in terms of the current approximations (8)
and (9) and then updating the current approximating functions as per (10),(11) and (19).
Similar to belief propagation, the process is repeated until changes in the approximating
functions fall below a threshold.

5 Policy Gradient Methods

In Section 2, it was noted that some form of approximation is necessary to obtain a
tractable policy model, and in the example provided, a stochastic policy was approxi-
mated by a softmax function (3) where the policy parameters θ are weights in the linear
combination of a set of basis functions φ.

One of the most successful approaches to estimating the parameters of such a model
depends on the use of policy gradient methods which repeatedly estimate a gradient
of the expected reward (5) and take a small step in the gradient direction in order to

9



increase the expected reward. The computation of the gradient is built around a Monte
Carlo algorithm which estimates the gradient from a finite number of dialogues generated
in interaction with a real user or a user simulator [21]. Under reasonable assumptions,
such an approach will converge to a local maximum of the expected reward. The core of
a policy gradient algorithm relies on the availability of analytic solutions to computing
the gradient of the reward with respect to the policy parameters.

Policy gradient methods are best explained in terms of the complete dialogue history
Ht which consists of the observed dialogue history ht together with the unobserved
dialogue states: Ht = {s0, a0, o1, s1, . . . , at−1, ot, st}. Given this definition, the objective
function in (5) can be expressed as the expected reward over all trajectories

R(θ) =
∫
p(H; θ)R(H)dH (20)

where R(H) is the expected reward accumulated along the complete history H and
p(H; θ) is the probability of the complete history H given the policy parameters θ.

Using “the log likelihood-ratio trick” [22] and Monte Carlo approximation using N
sampled dialogues, the gradient can be estimated as follows

∇R(θ) ≈ 1
N

N∑
n=1

∇ log p(Hn; θ)R(Hn). (21)

By definition, the probability p(H; θ) is the product of the probabilities of all ac-
tions, observations and state transitions along the complete history H; therefore, the
probability of the complete history is as follows

p(H; θ) = p(s0)
T∏
t=1

p(ot|st)p(st|at−1, st−1)π(at−1|bt; θ) (22)

where p(s0) is the initial state distribution. Consequently, the log-gradient can be written
in the form

∇ log p(H; θ) =
T−1∑
t=0

∇ log π(at|bt; θ) (23)

since the state observation and transition probabilities do not depend on θ. Substituting
this into (21) gives

∇R(θ) ≈ 1
N

N∑
n=1

Tn−1∑
t=0

∇ log π(ant |bnt ; θ)R(Hn). (24)

Note that the gradient now depends only on observed variables. To obtain a closed form
solution of (24), the policy π must be differentiable with respect to θ. Conveniently, the
logarithm of the softmax function (3) is differentiable with respect to θ.
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To lower the variance of the estimate of the gradient, a constant baseline, B, can be
introduced into (24) without introducing any bias [22]

∇R(θ) ≈ 1
N

N∑
n=1

Tn−1∑
t=0

∇ log π(ant |bnt ; θ)T (R(Hn)−B). (25)

The gradient defined in (25) still cannot be used directly since it includes the expected
reward R(H) which is not directly observable. However, it is possible to approximate
R(H) by a linear function parameterised by a vector w as follows

R(H) ≈ R(H;w) =
T−1∑
t=0

∇ log π(at|bt; θ)T · w + C (26)

To compute the parameters w, a least squares method can be used to solve the following
set of equations

rn =
Tn−1∑
t=0

∇ log π(ant |bnt ; θ)T · w + C ∀n ∈ {1, . . . , N} (27)

where rn is the reward observed at the end of each dialogue. Substituting (26) into (25)
gives:

∇R(θ) ≈ ∇R(θ;w) =
1
N

N∑
n=1

Tn−1∑
t=0

∇ log π(ant |bnt ; θ)∇ log π(ant |bnt ; θ)T · w (28)

Note that in (28), the baseline B was cancelled by the constant C and it can be shown
that C is an optimal constant baseline which minimizes the variance of the gradient
[22]. Once the gradient estimate (28) is computed, it can be used to update the policy
parameters by: θ′ ← θ + β∇R(θ;w), where β determines the step size.

5.1 Natural Actor Critic algorithm

Although (28) can be used to optimise the policy parameters, the use of the “plain”
gradient yields rather poor convergence properties since methods using this gradient
often suffer from extremely flat plateaus in the expected reward function. In contrast,
the natural gradient defined as

∇̃R(θ) = F−1(θ)∇R(θ), (29)

where F (θ) is the Fisher Information Matrix does not suffer from such behaviour [25].
Based on this idea, a family of Natural Actor Critic (NAC) algorithms which estimates
a natural gradient of the expected reward function has been developed [7]. An appealing
feature of these algorithms is that in practice the Fisher Information Matrix does not
need to be explicitly computed. Inspecting (28), it can be observed that the expression

1
N

N∑
n=1

Tn−1∑
t=0

∇ log π(ant |bnt ; θ)∇ log π(ant |bnt ; θ)T (30)
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is in fact an estimate of the Fisher Information matrix. Thus, (28) can be written as
∇R(θ) ≈ F (θ)w and the natural gradient of the expected reward is simply

∇̃R(θ) = F−1(θ)∇R(θ) ≈ F−1(θ)F (θ)w = w. (31)

Hence, the weights which minimise the mean square error in the linear function ap-
proximation of R(H) are in fact the components of the natural gradient. A fortunate
consequence of this is that use of the natural gradient not only improves performance,
but it is also leads to a less computationally intensive algorithm.

Once the parameters w of the approximation of the reward function, R(H;w), have
been computed, the policy parameters θ can be iteratively improved by θ′ ← θ + βw.

5.2 Natural Actor and Belief Critic algorithm

In Section 4 it was shown that the Expectation-Propagation algorithm can be used to
infer not only the distribution over the unobserved dialogue states but also the dialogue
model parameters. The main advantage of the EP algorithm is that since it is unsuper-
vised it does not need annotated data. However, EP does not guarantee a maximization
of the expected reward whereas ideally both the dialogue model and the policy parame-
ters should be designed to maximise the expected reward (5). The rest of this section will
describe the Natural Actor and Belief Critic (NABC) algorithm which offers a solution
to this problem [9].

The NABC algorithm extends policy gradient methods so that the dialogue model
parameters are optimised jointly with the policy parameters. Note that this algorithm
does not need annotated data; although, information about the rewards received in the
sampled dialogues is still necessary.

The stochastic policy given in (3) can be written in more detail to show the de-
pendency of the belief state bt on the dialogue history ht and the model parameters
τ

π(at|b(·|ht; τ); θ) ≈ eθ
T ·φat (b(·|ht;τ))∑
ã e

θT ·φã(b(·|ht;τ))
. (32)

The policy π is now clearly seen to depend on the parameters τ . The difficulty with
using policy gradient methods for learning the parameters of the dialogue model M(τ)
is that since the function φ, which extracts features from the belief state, is usually a
hand-crafted function of non-continuous features, the policy is not usually differentiable
with respect to τ . However, this problem can be alleviated by assuming that the model
parameters τ come from a prior distribution p(τ ;α) that is differentiable with respect to
the parameters α. Then, this prior can be sampled to give the model parameters during
the estimation of the gradient of the expected reward.

The goal of NABC is therefore to learn the parameters α of the prior distribu-
tion for the model parameters τ together with the policy parameters θ while max-
imising the expected reward (5). Let the model parameters τ be sampled from the
prior at the beginning of each dialogue, then τ becomes part of the observed history
ht = {τ, a0, o1, . . . , at−1, ot}. Similarly the complete history Ht is extended for τ to give
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Ht = {τ, s0, a0, o1, s1, . . . , at−1, ot, st}. Given the formulation above, the expected reward
(5) can be written as

R(α, θ) =
∫
p(H;α, θ)R(H)dH (33)

which depends on both θ and α and its gradient can be estimated by

∇R(α, θ) ≈ 1
N

N∑
n=1

∇ log p(Hn;α, θ)(R(Hn)−B) (34)

where the probability of the trajectory H is defined as

p(H;α, θ) = p(s0)p(τ ;α)
T∏
t=1

p(ot|st)p(st|at−1, st−1)π(at−1|b(·|ht−1; τ); θ). (35)

Consequently, the log-gradient p(H;α, θ) has the following form

∇ log p(H;α, θ) =

[
∇α log p(τ ;α)T ,

T−1∑
t=0

∇θ log π(at|b(·|ht; τ); θ)T
]T
. (36)

Similar to the derivation of the policy gradient algorithms, this leads to solving the
following set of equations using the least squares method

rn =

[
∇α log p(τn;α)T ,

Tn−1∑
t=0

∇θ log π(ant |b(·|hnt ; τ); θ)T
]
· [wTα , wTθ ]T + C (37)

∀n ∈ {1, . . . , N}

where rn is the reward observed at the end of each dialogue and the solution [wTα , w
T
θ ]T

is the natural gradient of the expected reward.
Similar to the Natural Actor Critic algorithm, the [wTα , w

T
θ ]T vector can be used to

iteratively improve the policy parameters and the prior of the dialogue model param-
eters: θ′ ← θ + βθwθ, α′ ← α + βαwα. Finally when the estimate of the parameters
converges, the dialogue model parameters τ are computed as the expectation of the prior
distribution p(τ ;α).

A specific form of the NABC algorithm which updates only the model parameters
can also be derived. This method called Natural Belief Critic algorithm can be used
not only with stochastic policies but also handcrafted policies [9, 26]. This is especially
useful in commercial applications where the behaviour of dialogue systems is constrained
by specific and very often handcrafted requirements.

5.3 The dialogue model parameters prior

In order to use NABC in practice, a prior for the model parameters τ is needed. Since
the parameters of the Bayesian Network described in Section 3 are parameters of multi-
ple multinomial distributions, a product of Dirichlet distributions provides a convenient

13



prior. Formally, for every node j ∈ {1, . . . , J} in the Bayesian Network, there are pa-
rameters τj describing a probability p(j|par(j); τj) where the function par(j) defines the
parents of the node j. Let |par(j)| be the number of distinct combinations of values of
the parents of j. Then, τj is composed of the parameters of |par(j)| multinomial distri-
butions and it is structured as follows: τj =

[
τj,1, . . . , τj,|par(j)|

]
. Consequently, a prior

for τj can be formed from a product of Dirichlet distributions:
∏|par(j)|
k=1 Dir(τj,k;αj,k),

parameterised by αj,k. Let the vector τ = [τ1, . . . , τJ ] be a vector of all parameters in
the Bayesian Network. Then, the probability p(τ ;α) from (37) can be defined as:

p(τ ;α) =
J∏
j=1

|par(j)|∏
k=1

Dir(τj,k;αj,k), (38)

for which a closed form solution of the log-gradient exists and this can be used in (37)
to compute the natural gradient of the expected reward.

5.4 Evaluation

To given an indication of performance, an experimental evaluation of the NAC and
NABC algorithms was conducted using the BUDS dialogue system as outlined in Sec-
tion 3 [4]. The BUDS dialogue manager can use both a handcrafted policy and a stochas-
tic policy of the form described in Section 2.

To compare performance of the NAC and NABC algorithms, three dialogue systems
were built for the CamInfo Restaurant domain described in Section 3

• HDC - a system using a handcrafted dialogue policy and a set of finely tuned
handcrafted dialogue model parameters,

• NAC - a system using a stochastic policy optimised using the NAC algorithm and
a set of handcrafted dialogue model parameters,

• NABC - a system using a combined set of stochastic policy and dialogue model
parameters jointly optimised using the NABC algorithm.

The systems were trained and tested using an agenda-based user simulator [27] which
incorporates a semantic concept confusion model to enable training and testing across a
range of semantic error rates. The reward function awards -1 in each dialogue turn and
at the end of a dialogue it awards 20 for a successful dialogue and 0 for an unsuccessful
one. A dialogue is considered successful if a suitable venue is offered and all further
pieces of information are given. In the case where no venue matches the constraints,
the dialogue is deemed successful if the system tells the user that no venue matches
and a suitable alternative is offered. Since a typical dialogue will require around five
or six turns to complete, this implies that around 15 represents an upper bound on the
achievable mean reward.

The systems were trained by executing 120 iterations with the simulator set to pro-
duce error rates between 0% and 50%, uniformly distributed among the dialogues. The
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total number of sampled dialogues per iteration was 32k. In total, 881 parameters were
estimated for the policy P and 577 for the modelM. Both the policy parameters and the
parameters of the prior of the dialogue model were initialised by uninformative (uniform)
parameters.

Figure 4 compares the learning curves of the NAC and the NABC systems. In
the beginning, the NAC algorithm learns faster as it does not have to learn the model
parameters; however, as more iterations of training are completed, the performance of
the fully trainable system outperforms the baseline with the handcrafted policy. After
120 iterations, both the model and the policy parameters converge.
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Figure 4: Average reward across all error rates during training of the NAC and NABC
systems. The horizontal line gives the performance of the handcrafted system (HDC).

The performance of the HDC, NAC, and NABC systems plotted as a function of the
semantic error rate is depicted in Figure 5 At each error rate, 5000 dialogues were simu-
lated and to reduce the variance of results, the training and evaluation procedures were
executed 5 times and the results averaged. The results show that the NAC algorithm is
very efficient in optimizing the policy parameters. For example, at 35% error rate, the
mean reward was increased from -1.96 to 7.35. The results also show that the additional
optimization of the dialogue model parameters, performed by joint optimization of the
policy and the dialogue model parameters using the NABC algorithm, significantly im-
proves the performance. For example, at 35% error rate, the mean reward was improved
by 23% from 7.35 to 9.03.
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Figure 5: Comparison of the HDC, NAC and NABC systems. The graph plots the mean
reward against the semantic error rate.

6 Gaussian Processes for Policy Modelling

As mentioned in the introduction, the aim of a dialogue policy is to map each belief
state into an optimal action, i.e. the action that leads to the highest reward at the end
of the dialogue. However, exact solutions to policy optimisation are only tractable for
problems with very small state-action spaces. Parametric approximations, such as the
softmax stochastic policy described in section 5, offer tractable solutions but typically
require the basis functions that extract the key features of the belief state to be hand-
crafted. Furthermore, gradient-based optimisation such as NAC requires large numbers
of dialogues to form accurate estimates of the gradient and even then, they can only be
optimal subject to the approximation inherent in the selected basis functions.

Alternative methods of policy optimisation discretise the belief space into grid points.
This allows the use of standard reinforcement learning algorithms to optimise the policy.
However, in order to make real-world dialogue tasks tractable, the belief space must be
compressed into a so-called summary space which leads to similar approximation issues.
Furthermore, even when compressed to a few hundred grid points, around 105 dialogues
are still required for optimisation [28]. This number is too large to allow training with
real users so the interaction is normally performed with a simulated user. This raises
further issues relating to both the cost and complexity of building an adequate simulator,
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and the degree to which such a simulator can truly reflect real human user behaviour.
In the light of the above, this section briefly describes a rather different approach to

policy modelling and optimisation using Gaussian processes to provide non-parametric
Bayesian models for function approximation. An advantage of Bayesian approaches is
that they offer a principled way of incorporating prior knowledge about the underlying
task into the learning process, which gives them the potential to improve learning rates.
It is important that the dependencies in the different parts of the belief state space are
taken into consideration during learning. Gaussian processes are able to incorporate the
prior knowledge of these dependencies elegantly through the choice of a so-called kernel
function, the purpose of which is to describe correlations in different parts of the space.
In addition, Gaussian processes allow the variance of the posterior to be estimated,
thus modelling the uncertainty of the approximation. This is particularly useful for
dialogue management, since for every belief state-action pair the Gaussian process not
only provides a policy estimate, but it also provides a measure of the uncertainty inherent
in taking that action in that belief state.

The next section explains how Gaussian processes can be used for policy modelling.
In Section 6.2 the core idea of the method is explained on a toy dialogue problem,
where different aspects of GP learning are examined and the results are compared.
Section 6.3 then demonstrates how this methodology can be applied to a real-world
dialogue problem.

6.1 Gaussian Process Reinforcement Learning

The role of a dialogue policy π is to map each summary state b into a summary action
a so as to maximise the expected discounted cumulative reward, which is defined by the
Q-function

Q(b, a) = max
π

Eπ

(
T∑

τ=t+1

γτ−t−1rτ |bt = b, at = a

)
(39)

where rτ is the reward obtained at time τ , T is the dialogue length and γ is the discount
factor, 0 < γ ≤ 1.

The problem of obtaining the optimal policy is thus equivalent to the problem of
obtaining the optimal Q-function

π(b) = arg max
a

Q(b, a). (40)

In this case both the policy and its associated Q-function are deterministic. However,
both can be modelled as stochastic processes. Firstly, the Q-function can be modelled
as a zero mean Gaussian process by providing a kernel function which defines the corre-
lations in different parts of the belief state and action spaces

Q(b, a) ∼ GP (0, k((b, a), (b, a))) . (41)

The kernel k(·, ·) is often factored into separate kernels over the belief state and action
spaces kB(b,b)kA(a, a).
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Given this prior and some observed belief state-action pairs, the posterior of the Q-
function can be computed. For a sequence of belief state-action pairs Bt = [(b0, a0), . . . , (bt, at)]T

visited in a dialogue and the corresponding observed immediate rewards rt = [r1, . . . , rt]T,
the posterior of the Q-function for any belief state-action pair (b, a) is defined by

Q(b, a)|rt,Bt ∼ N (Q(b, a), cov((b, a), (b, a))) (42)

where
Q(b, a) = kt(b, a)THT

t (HtKtHT
t + σ2HtHT

t )−1rt,

cov((b, a), (b, a)) = k((b, a), (b, a))
−kt(b, a)THT

t (HtKtHT
t + σ2HtHT

t )−1Htkt(b, a),

Ht =


1 −γ · · · 0 0
0 1 · · · 0 0
...

. . . . . .
...

...
0 · · · 0 1 −γ

,
Kt = [kt((b0, a0)), . . . ,kt((bt, at))],

kt(b, a) = [k((b0, a0), (b, a)), . . . , k((bt, at), (b, a))]T

(43)

and where σ2 is a measure of the assumed additive noise in the estimate of the Q-function
and γ is the discount factor. Matrix Ht captures the discounting of the reward in Eq. 39
(see [30, 15] for details). Matrix Kt, also called the Gram matrix, defines the correlations
between the data points.

The marginal likelihood of the observed rewards has an analytic solution

rt|Bt ∼ N (0,Ht(Kt + σ2I)HT
t ), (44)

and this provides the relation between the observed rewards and the kernel function via
the Gram matrix.

The kernel function can be parameterised in the form k(·, ·) = k(·, ·; Θ) where Θ are
the kernel parameters, also called the hyper-parameters. Note that these parameters are
different to the policy parameters described earlier in this chapter. The main difference
is that the way these parameters are set does not restrict the optimality of the solution,
instead their effect is mainly on the number of data points needed and the resulting
accuracy of the optimal solution. If the kernel function is parameterised, the Gram
matrix is also parameterised Kt = Kt(Θ). Given a corpus of visited belief states, with
the actions taken and resulting rewards, the hyper-parameters can be estimated by
maximising the marginal likelihood from (44).

Due to the matrix inversion in (42), the computational complexity of calculating the
Q-function posterior is O(t3), where t is the number of data points. In the case of a
dialogue system, the number of points used for estimation will be equal to the total
number of turns, summed over all dialogues and this number can be very large. For this
reason, a sparse approximation is needed which can ensure that all the data points are
taken into account whilst reducing the computational complexity. One such method is
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the kernel span sparsification method [31]. The basic idea of this method is to select
a small subset of data points, the representative points, with which the kernel function
can be effectively approximated. It can be shown that this reduces the complexity of
calculating the posterior to O(tm2), where m is the number of representative points.

The description so far has only given the stochastic model for the Q-function. How-
ever, what is required for the dialogue management is the model for the policy π. One
way of defining a policy is via an ε-greedy approach. It requires setting of an additional
parameter ε which balances how often the action is taken based on the current best
estimate of the Q-function mean—the exploration—and how often an action is taken
randomly—the exploration. Thus, the model becomes

a =
{

arg maxaQ(b, a) with probability 1− ε
random with probability ε

(45)

Alternatively, active learning may be incorporated into the action selection process
in order to provide efficient data selection [32, 33]. The main idea behind active learning
is to select only the data points that contribute the most to the estimate. Here, similar
to [34], active learning can be used for more efficient exploration. During exploration,
actions are chosen based on the variance of the GP estimate for the Q-function and
during exploitation, actions are chosen based on the mean

a =
{

arg maxaQ(b, a) with probability 1− ε
arg maxa cov ((b, a), (b, a)) with probability ε

(46)

Both of these approaches require a manual balancing of exploration and exploitation
by tuning the parameter ε. Since the Gaussian process for the Q-function defines a
Gaussian distribution for every summary state-action pair (Eq. 42), when a new sum-
mary point b is encountered, for each action ai ∈ A, there is a Gaussian distribution
Q(b, ai) ∼ N (Q(b, ai), cov((b, ai), (b, ai)))). Sampling from these Gaussian distribu-
tions gives a set of Q-values for each action {Qi(b, ai)} from which the action with the
highest sampled Q-value can be selected

a = arg max
ai

Qi(b, ai). (47)

Thus, this approach maps the GP approximation of the Q-function into a stochastic
policy model.

All of these approaches allow observations to be processed sequentially, in direct
interaction with the user, whether real or simulated. A specific and commonly used
algorithm for achieving this is GP-Sarsa which is particularly suited to online episodic
reinforcement learning [31, 30, 15].

6.2 Gaussian Process Reinforcement Learning for a simple Voice Mail
Dialogue Task

The practical application of the above ideas to a spoken dialogue task and the use of the
GP-Sarsa algorithm will first be illustrated using a very simply ”toy” voice mail dialogue
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system [35]. This system has just three states: the user asked for the message either to
be saved or deleted, or the dialogue ended; and three actions: ask the user what to do,
save or delete the message. The observation of what the user actually wants to do at
each turn is corrupted with noise. For both learning and evaluation, a simulated user
is used which generates an observation error with probability 0.3 and terminates the
dialogue after at most 10 turns. In the final state, the system receives a reward of 10
for operating as intended or a penalty of −100 otherwise, eg because it deleted rather
than saving the mail. Each intermediate state receives the penalty of −1. In order to
keep the problem simple, a model defining the transition and observation probabilities is
assumed so that the belief can be easily updated, but policy optimisation is performed
on-line.

The kernel function must accurately represent prior knowledge about the Q-function
correlations and it must be defined for both states and actions. Since the action space
is discrete, a simple δ kernel can be defined over actions

k(a, a′) = 1− δa(a′), (48)

where δa is the Kronecker delta function.
In contrast, the state space is continuous space and it is assumed that points in

belief space which are in some sense similar will be more strongly correlated. Here four
different kernel functions are investigated, listed in Table 6.2. Each kernel function

kernel function expression
polynomial k(x,x′) = 〈x,x′〉
parameterised poly. k(x,x′) =

∑D
i=1

xix
′
i

r2i

Gaussian k(x,x′) = p2 exp
− ‖x− x′‖2

2σ2
k

scaled norm k(x,x′) = 1−
‖x− x′‖2

‖x‖2‖x′‖2

Table 1: Kernel functions

defines a different correlation. The polynomial kernel views elements of the state vector
as features, the dot-product of which defines the correlation. They can be given different
relevance ri in the parameterised version. The Gaussian kernel accounts for smoothness,
i.e., if two states are close to each other the Q-function in these states is correlated.
The scaled norm kernel defines positive correlations in the points that are close to each
other and a negative correlation otherwise. This is particularly useful for the voice mail
problem, where, if two belief states are very different, taking the same action in these
states generates a negatively correlated reward.

Since this toy problem is very simple, it is possible to compute an exact solution for
the optimal policy, for example using the POMDP solver toolkit [37]. Hence, the policy
learnt by GP-Sarsa can be compared with the exact solution, and in order to assess
the efficiency with which it learns, it can also be compared with a standard grid-based
algorithm such as the Monte Carlo Control (MCC) algorithm [36, 13].
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The dialogue manager was therefore trained in interaction with the simulated user
and the performance was compared between the grid-based MCC algorithm and GP-
Sarsa using the different kernel functions from Table 6.2. Kernel hyper-parameters were
optimised using 300 sample dialogues obtained using the exact optimal policy. All the
algorithms use an ε-greedy approach where the exploration rate ε was fixed at 0.1. In
order to reduce the affects of statistical variation, for every training set-up, exactly the
same training iterations were performed using 1000 different random generator seedings.
After every 20 dialogues the resulting 1000 partially optimised policies were evaluated
by testing it on 1000 dialogues.
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Figure 6: Evaluation results on Voice Mail task

The results are shown in Fig. 6. As can be seen, the grid-Based MCC algorithm
has a relatively slow convergence rate. GP-Sarsa with the polynomial kernel exhibited
a learning rate similar to MCC in the first 300 training dialogues, continuing with a
more upward learning trend. The parameterised polynomial kernel performs slightly
better. The Gaussian kernel, however, achieves a much faster learning rate. The scaled
norm kernel achieved close to optimal performance in 400 dialogues, with a much higher
convergence rate then the other methods. Thus, GP-Sarsa can learn close to optimal
policies much more quickly than standard reinforcement learning algorithms but the
choice of kernel is clearly very important.

6.3 Gaussian Process Reinforcement Learning for a Real-world Tourist
Information Task

To show that the GP approach can be scaled to practical dialogue systems, this section
will briefly describe its application to policy optimisation in the Cambridge CamInfo
tourist information system which provides information about restaurants, bars, hotels,
and other tourist attractions in the Cambridge area. The database consists of more than
400 entities each of which has up to 10 attributes that the user can query.
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The CamInfo system can be configured to run with either the BUDS based dialogue
manager described in Section 3 or with the Hidden Information State (HIS) dialogue
manager [13]. Since the HIS system is slightly easier to adapt to GP-Sarsa, that version
will be described here.

The summary state in the HIS system is a four-dimensional space consisting of two
elements that are continuous (the probability of the top two hypotheses) and two discrete
elements (one relating the portion of the database entries that matches the top partition
and the other relating to the last user action type). The summary action space is discrete
and consists of eleven elements. The nature of the HIS state space is quite different from
that of the toy problem and kernels that have negative correlations, such as the scaled
norm kernel cannot be used. Instead, and somewhat contrary to the results for the toy
problem, a second order polynomial kernel k(x,x′) = (〈x,x′〉 + 1)2 turns out to be the
most appropriate for the continuous elements. For the discrete elements, the δ-kernel
(6.2) is used.

As previously, policy optimisation is performed by interacting with a simulated user
and the system receives a reward of 20 or 0, depending on whether or not the dialogue was
successful, less the number of turns taken to fulfil the user’s request. Fig. 7 shows a graph
of performance as a function of the number of dialogues used for policy optimisation for
both GP-Sarsa and the baseline grid-based MCC algorithm.
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Figure 7: Evaluation results on CamInfo task

The results show that in the very early stage of learning, i.e., during the first 400
dialogues, the GP-based method learns much faster. Furthermore, the learning process
can be accelerated by using active learning (AL) where the actions are selected based
on the estimated uncertainty as in (46). After performing many iterations both the
GP-Sarsa and the grid-based MCC algorithms converge to the same performance.

Fig. 7 shows that active learning using an ε-greedy policy with variance exploration
learns faster than a standard random exploration. However, this graph only displays the
average reward. If GP is to be used to learn on-line with real users then the variance of
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Figure 8: Average reward vs training epoch with a simulated user for a stochastic policy
compared to an ε-greedy policy with variance exploration. The upper and lower bounds
in each case denote 95% confidence intervals.

the reward is also a concern.
Fig. 8 compares the learning rates of an ε-greedy policy with variance exploration

with that of the fully stochastic policy given by (47). As can be seen the learning rates
are similar, but the variance of the stochastic policy is much reduced. This suggests that
for practical systems the use of the stochastic policy is preferable because it reduces the
risk of taking bad actions during learning. When real users are involved, this benefit
may well be significant.

7 Conclusions

Statistical spoken dialogue systems based on the framework of partially observable
Markov decision processes (POMDPs) offer considerable potential for reducing costs
and increasing robustness. However, practical systems have complex probability models
and very large state spaces. The availability of efficient algorithms for optimising model
parameters and policies is therefore essential for developing these systems further.

This chapter has described three different approaches to optimisation. Firstly, it
was shown that by incorporating the model parameters into a Bayesian Network rep-
resentation of the dialogue model and using an extended form of inference algorithm
called Expectation-Propagation (EP), it is possible to learn model parameters on-line
in parallel with belief monitoring. Secondly, it was shown that standard policy gradient
methods are not only effective for policy exploration, they can also be used to optimise
model parameters. This is particularly appealing because unlike EP, the gradient ap-
proach directly maximises the expected reward. Finally, the use of a non-parametric
approach was presented in which the Q function is modelled as a Gaussian Process.
The key features of this approach are that it includes an explicit model of state space
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correlations and it explicitly provides a measure of the uncertainty in the current Q
function estimate. These allow the GP approach to achieve much faster learning and
safer exploration of alternative actions.
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[28] M Gašić, S Keizer, F Mairesse, J Schatzmann, B Thomson, K Yu, and S Young.
Training and evaluation of the HIS-POMDP dialogue system in noise. In Proceedings
of SIGDIAL, 2008.
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