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Abstract—This paper deals with the issue of invalid state- to an appropriate master action, and what to do when such
action pairs in the Partially Observable Markov Decision Process a mapping is not possible. The latter problem is addressed
(POMDP) framework, with a focus on real-world tasks where this paper within the framework of grid-based learning

the need for approximate solutions exacerbates this probia. In . . . .
particular, when modelling dialogue as a POMDP, both the stte algorithms. It is shown that the value functions learnt dgri

and the action space must be reduced to smaller scale summaryPOlicy optimisation can be used to associate N-best adsts |
spaces in order to make learning tractable. However, sinceat with each grid point. Action selection then involves simply

all actions are valid in all states, the action proposed by ta selecting the highest ranking valid action from the appiedpr
policy in summary space sometimes leads to an invalid action N-best list. This approach is shown to compare favourably

when mapped back to master space. Some form of back-off . . : . .
scheme must then be used to generate an alternative action.Wlth both a simple fixed back-off baseline and an alternative

This paper demonstrates how the value function derived durig €xtended summary state scheme.
reinforcement learning can be used to order back-off actios in  The paper is structured as follows. In Section II, the gdnera

an N-best list. Compared to a simple baseline back-off stragy problem of invalid state-action pairs in POMDPs is presgnte
and to a strategy that extends the summary space to minimiséie 5, \yhy this problem becomes even more apparent with large
occurrence of invalid actions, the proposed N-best actioretection : . .
scheme is shown to be significantly more robust. s_tate and action sets is explalned. The _three approaches men
tioned above are then described. In Section Il the MontéoCar
|. INTRODUCTION Control algorithm is explained in the framework of grid-bels
It has been suggested in recent years that modelling dialodearning. For evaluation, the HIS dialogue system is uséd [4
as a Partially Observable Markov Decision Process (POMD&)d Section IV provides a brief overview of the relevant part
enables dialogue systems to be built which are more eadilfythis system especially the master and summary space and
trainable, more natural in operation and more robust togecdhe learning process. In Section V, the implementation ef th
nition errors [1]. back-off strategies within the HIS framework is presented a
In the POMDP approach, the dialogue is characterised asha evaluation results are discussed. Finally, conclssene
sequence of unobserved states with probabilistic tramsiti given in Section VI.
The attractiveness of the POMDP lies in the fact that it
maintains a probability distribution over all states, timaglic-
itly modelling the inherent uncertainty that occurs in spok It is a general property of Markov decision processes that
dialogue, especially that arising from speech recognitind not all actions are valid in every state. In a discrete olzdey
understanding errors. However, algorithms that solve PGSIDMDP, this problem can be resolved simply by defining for
exactly have exponential complexity and can be applied oryach state a subset of actions that are possible. It is then
to very simple problems. Even approximate solutions provetraightforward during training and operation to ensurat th
intractable for real-world problems with a large state antthe policy for any state only considers actions which aréval
action space. for that state.
Several techniques have been developed to tackle thisggnobln contrast, a POMDP belief state represents a probability o
most of which are based on the idea of compressing the stalleenvironment states and since in principle any enviramme
space (themaster spaceinto a reduced space (tleammary state is possible in any belief state, the policy must inelud
spacg so that learning can be tractably performed usintpe possibility of taking any action in any belief state. For
approximate algorithms [2]. example, in a dialogue system given some prior information
Two main issues arise when using the summary space methmd.user preferences, there is nothing in principle to stap th
Firstly, there is the problem of finding the optimal compresystem saying as its very first action: "Please confirm that
sion,i.e.,what information from the master space is crucial foyou want a Chinese restaurant?”, even though the user hasn't
learning and what can be omitted. The efficient selection gét said anything. This problem is exacerbated in a system
informative features is a current topic of research [3]. Thehich compresses actions into simple strategic decisiool s
second issue relates to mapping the summary action bask“ask”, “confirm”, etc. In this case, the fact that an action

II. THE INVALID ACTION PROBLEM



such as “confirm” in summary space is invalid, cannot beill be a sequence; — a;, -~ — a;, --- — a;,_, where
determined until it is mapped back into master space whete= |A| given the belief. Redefining each action to include
it is discovered that there is in fact no information whichncaall possible back-off actions would increase the cardinaif

be confirmed. the action set ta! and this is clearly not feasible.

To understand this issue in more depth, some formal nan alternative way of finding the optimal back-off action ds t
tation is needed. A POMDP is described as a tuple dfilise Q-values. The Q-valu@(b,a) is the expected reward
(S, A, T,R,Q,0), where S is a set of statesd is a set of from taking actioru in belief stateb and following the policy
actions,R is a set of rewards associated with each state-actithereafter. It can be calculated@sb, a) = > g Q(s,a)b(s),
pair, T is a transition probability function between states, where Q(s,a) is the Q-value of taking actiom in states.

is a set of observations an@ is the observation function For each actioru, the set of states in which that action can
O(s',a,0) which is the probabilityp(o|s’, a) of observingo be taken is known. Therefore, the learning algorithm can
in states’ given that the previous system action wasSince estimateQ(b,a) by summing over only the&)(s,a) values
the state is unobservable, a probability distribution o$er for which actiona is valid in s. Ordering@(b,a) in a list

is estimated at each step called thelief stateb whereb(s) for each beliefb provides a sequence of possible back-off
represents the probability of being in stateat that step. A actions which can be searched until a valid action is found.
policy = : b — a maps the current belief state into an actionThis intuition is the motivation behind the N-best back-off
The value function of a belief stategiven policy, V;(b), is action selection mechanism proposed in this paper.

the expected reward that can be obtained in belief gtdtg

following policy 7. Finding the optimal value function yields

optimal 1-step value function
the best policy. E:ﬁ:}ted
Although the belief staté is continuous, a policy can be value

. boptimal
represented as a tree where the nodes are actions, the ésanch rst.al) suboptima
are all possible observations and the depth is the number
of steps needed to complete the process. The value function

. al->a2

.
"~.,a.1->default
e,

of a states given a policy treep, V,(s) is the expected a2 e r(s2.a2)
reward that can be obtained in that state following policy r(s1,a2)
tree p. The value function of the belief state then becomes default

r(s1,default) r(s2,default)

Vp(b) = > .csb(s)Vp(s) — a linear function ofb(s). The
optimal value function for each step is the upper surfacéef t

. . . . . b(sl)=1 b(s1)=0
value functions associated with all policy trees in thap $&d. b(s2)=0 . b b(s2)=1
As noted earlier, even if the set of valid actions is known for Belief state
every state, the belief state can assign some probabilisg oa Fig. 1. Two state POMDP with an impossible action-state pair

every state. A policy is a function of the belief and it propes
actions that give the highest expected reward assuming that
all actions are valid. Thus, there will normally be a finite A major problem with POMDPs is the intractability of exact
probability of issuing an invalid action from any belieft&a learning algorithms and hence the need for approximate solu
If we assume that once an action is proposed it is possibiens. A POMDP can be viewed as a continuous MDP [5] and
to determine whether or not it is valid, even if the actuahe approximation would then be discretising the contirsuou
environment states remains unknown, this problem can bespace to form a finite grid. The result is a discrete MDP
dealt with in a couple of ways. One way would be to expangtoblem which can be solved using standard methods [6].
the action set so that a default action which is guaranteedA detailed algorithm for implementing grid-based learning
to be valid in any state is associated with every actiomith back-off action selection is given in Figure 2. Befohat
However, this can lead to suboptimal results. Consider fopbwever, it should be noted that discretisation of the belie
example, a simple POMDP with state sp&te- {s1,s2} and space further exacerbates the invalid action problem gimee
action spaced = {a1, as, default}, actiona; is not valid in effect of the discretisation is to represent all of the Hel@ints
state s, and the rewards are(s;,a1) = 5, r(s1,a2) = 2, inaneighbourhood by a single representative grid point.sTh
r(s1,default) =1, r(s2,a2) = 3 andr(sq, default) = 1. even if there are no belief points within the neighbourhood
In order to allow actioru; to be performed in any belief statewith invalid actions, the merging into a single grid pointllwi
b, it has to be given a valid interpretation in state This can generate the union of all neighbouring actions and thismunio
be done by redefining action, asa; — default, meaning if might have invalid actions. One possibility to avoid thigas
actiona; is not valid back-off tode fault instead. However, increase the information transferred from master to surpmar
as shown in Figure 1 this is clearly a suboptimal solutiospace with the subset of actions that are valid in that supmar
compared taz; — as since the optimal 1-step value functionstate. This possibility is straightforward to implementanis
is associated withu; — as and not the sub-optimal 1-stepexplored further in the experimental section below. Howgeve
value function associated witty — default. since it significantly expands summary space, it is likely to
In the general case, the optimal back-off for actien lead to some loss in robustness.



1. THE MONTE CARLO CONTROL ALGORITHM FOR
GRID-BASED LEARNING

1: Let le}, a) = expected reward of taking actianat grid
point b

) ) o 2. Let N(b,a) = number of times actiom is taken at grid
The above discussion has highlighted the problem of invalid ojnt

actions in POMDP-based systems and identified an approagh | et 3 be a set of grid points

to solving it based on ranking the alternative actions fahea 4. |etr: b — q;,, -

-, a;,;Vb € B be a policy

point in belief space into an N-best list ordered by Q-values; repeat

It has also been noted that for practical real world systéims, .
is mandatory to compress the master belief space into a mugh
smaller summary space. This summary space will typically,.
consist of a set of features extracted from the master space.
These features can be a mixture of discrete and continuous
variables. All that is required is that a distance metricafried .
over the resulting space. 10:
In this section, a specific grid-based learning algorithm ig; .
described called the Monte Carlo Control algorithm. This igo.
a standard model-free approach to on-line policy optimisa-
tion [7] which is especially suited to episodic processes of*
which dialogue is a prime example. The basic idea is simplg,.
The POMDP summary space is represented by a number of
discrete grid points. The system interacts with a Usend
Q-values are estimated for each grid point and each action.
The action with the highest Q-value at each grid point then
forms the policy. Extending this algorithm to include N-bes,.
action selection is then simply a matter of storing not jhst t ;.
highest Q-value at each grid point but a rank-ordered list.
The main issue in grid-based learning is how to generaté:
grid-points efficiently. The approach used here is to sta%_
with a single grid point and then add new points as required’
. . L . 20:
during the exploration phase of training. The learningtstar
by arbitrarily assigning values to the Q-values for eacloact
a associated with the initial grid poiri?2. In addition to the
Q values, a countel (b, a) is associated with each grid point "
and initialised to zero. This counter records the number Qf’
times that each action is taken in that grid point. Each legrn
episode is conducted-greedily i.e., using the current best
policy (r(b) = argmaz,Q(b,a)) except that with probability ,
e a random action is taken instead of the action proposegj
by the policy. In the standard algorithm, the policy corssist 8
of one action per grid point — this is the action that haS
the highest Q-value [7]. For the N-best action selectioe, th

algorithm is modified so that the policy consists of a list ofig. ».

t—0
a;o - -~ a0 initial random order of actions
b = by initial grid point

Generate episode using e-greedy policy
repeat
t—t+1
Update belief staté
by — GridPoin{SummaryState))
w4 { RandomlyprderedActions
2 m(Nearesth, B))
record (b, a;: ), T — t, wherea,: is the
taken action ’
until episode terminates with reware

Scan episode and update B, @ and N
for t =T downto 1 do

if 3by € B, |b — by| < & then — update ptin B
Q(bk,aiz_)*N(bk,aiE_)—f—R

Q(br, a"'ﬁ') - N(i)k,ai;)ﬂ
N((A)k,ait) — N(i)k,ait) +1
else ’ ! — create new pt
addb, to BB
Q(i)taai,‘-) < R, N(i)taaz‘?) —1
endif ’
R —~R «— discount the reward
end for

Update the policy

for all b, with updatedQ (b, a) for anya do
7(bx) = actions ordered by (b, a)

end for

29: until converged

Monte Carlo Control Policy Optimisation Algorithnxtended for

actions per grid point ordered by their Q-values. In a simila-best back-off action selection

way, when exploring instead of generating one random action
a random ordering of actions is generated. In all cases, the

reward obtained for each turn is assigned to the Q-value fbhe described approaches are evaluated in the framework of
the action that was actually taken. Every time a new beligfe HIS Dialogue manager which is explained in the next
state is visited, it is mapped to a summary state and thensgction.

the nearest grid point. If there is no nearby grid point a new
one is created and added to the set of grid points. Thus,glurin
training grid points are created with their respectiveslist Q-

IV. HIS DIALOGUE MANAGER

and N-values. The complete algorithm is given in Figure 2. tne experimental evaluation of the N-best back-off action
selection method has been conducted using the Hidden Infor-

1A simulator is often used for this to allow efficient trainimyer a large
number of dialogues.
2The hat on variables denotes elements the summary space.

mation State (HIS) dialogue system. The pertinent featafes
this system are briefly described here. A full description is
given in [4].



A. System Architecture

The HIS dialogue system consists of an ATK speech o
recogniser [8], an SVM-based semantic tuple classifier, a '

POMDP dialogue manager, a natural language generator,
and an HMM speech synthesiser. When interacting with the
system, the user’s speech is recognised by the recognider an
in the form of a scored N-best list, passed to the semantic

atomic

| type | | name | I near | area

classifier. The semantic classifier outputs an N-best list of l Muium ei‘ l
dialogue acts. A dialogue act is a semantic representation

of the user action which contains the user intention (such as

i nf orm request, etc) and a list of slot-value pairs (e.g. ? ?

type=hot el , area=east). The N-best list of dialogue

acts is used by the dialogue manager to update the dialogug3. Example of a partition built according to the domaimiaogy for
state. Based on the state and the policy, a system actiorihgsgoalfi nd(type=hotel, area=east, near=Miseum
produced, again in the form of a dialogue act. The system

action is then passed to the natural language generator that ) o
converts it to text, which is finally synthesised. The Hisl for each turn). Policy optimisation used the Monte Carlo

dialogue system is currently implemented for the Town-Infgontrol algorithm d_escribed above in Section_ lll. The magpi _
domain. It provides tourist information for an imaginarytn 1M summary action back to a master action use heuristics
However, no specific domain knowledge is incorporated in tfi@ @dd the appropriate information from the master space. Fo

dialogue manager that would not be applicable for any quer‘iﬁample’ if the proposed summary actionGsnf i r m then
driven dialogue. the value pair relating to the node from the partition of the t

hypothesis that is not grounded will be confirmed togethén wi

B. Dialogue Manager its slot. For instance, if the node relating to the vaiae el is

The unobserved dialogue state of the HIS dialogue managet grounded the action would e®nf i r m(t ype=hot el ),
consists of the user goal, the dialogue history and the useeaningYou are looking for a hotel, right?
action. The user goal is represented as a tree structurdhe invalid action problem occurs when the proposed action
a partition, which is built according to a domain ontology.cannot be mapped to the master space. In the previous example
Slots and values are both represented as nodes in the treeoAthe summary actiofConf i r m if all goal tree nodes are
example of a partition is given in Figure 3. When queryingrounded, there is nothing left to confirm, so this actionnean
the data base using the partition, a set of matching entitieg performed and an alternative back-off selected.
is produced. The dialogue history consists of the grounding
states of nodes in the partition, generated using a finite
state machine and the previous user and system action. Th&his section presents results for the proposed N-best back-
combination of a partition, a user action from the last Noff action selection method and compares it with a simple
best input and the respective set of grounding states forméxad back-off baseline and an alternative based on extgndin
hypothesisA distribution over all hypotheses (thelief stat¢ the summary space with features designed to minimise the
is maintained throughout the dialogue. Taking into accthait occurrence of invalid actions. In all cases, the system was
any real-world problem would have a non-trivial ontolodgysi trained and tested using a user simulator which incorpsrate
clear that this belief space will be extremely large, and tmuan error model to allow a range of noise levels to be simulated
therefore be reduced to a smaller scale summary space. Hrat is a hand-crafted error model that creates semantit lev
example of the summary space mapping and action select@amfusions and confidence scores at different error rates- |
process is given in Figure 4. In the top part of the diagram,lével Cross Entropy (ICE) of the resulting N-best list deses
is shown how belieb in master space is mapped to a summas N increases. This indicates that simulated confidencesco
pointf) that contains only five components. are informative [10]. However, in the future we plan to use a
Since the summary state space does not encapsulate allstla¢istical error model as in [11].
information that master actions can contain, these actions _
cannot be learnt directly. For that reason, the action simce® Fixed Back-off
also reduced to a summary action set. Figure 4 shows how th&he simplest solution to the back-off problem is to use
policy = determines on the basis of summary pdﬁmvhich a single global default action as the back-off action. The
of the ten possible summary actions to take. requirement for this action is that it can be performed for
The optimal policy is obtained using reinforcement leagninany point in the belief space. In the HIS system, the only
in interaction with an agenda-based simulated user [9]. Appropriate candidates are tliRepeat action where the
the end of each dialogue, a reward is given to the systaystem asks the user to repeat the last input, oBjfeaction
based on the completion of the user goal and the efficiemajnere the system ends the dialogue. In the cadRepfeat ,
of the dialogue (20 is given for a successful completion angers typically repeat the last dialogue act or hang up if the

V. EXPERIMENTS



! N find(typeshotel area=east,near=Museum) i TopHypProb: 0.25
i________— find(type=bar, ,near=M ) i NxtHypProb: 0.2
b m ﬁ"d“\‘né:hme'lar%_ieai‘) ~ | TopPartitionStatus: 1 matching DB entity
) [ ] ﬁ“dm’pe=h°te'»3'é|@=‘”es’) ﬁ b TopHypStatus: supported by the user
_ find(type=hotel) TopUserAct: inform

.etc

Bye
Confirm

Confirm&Requesl
a HEURISTIC ChooseBetweenTop2Hyp -
= § S ﬁ | @ v
" confirm(type=hotel) MAPPING Confirm FindAlternativeHyp poue
Greet
(’} Inform 72.
m Offer

Repeat
Request

Fig. 4. Action selection process in the HIS framework

system has already asked this several times. By asking frexformance results for this system are given in Figure 5.
user to repeat the last act, the system can potentiallyrohtai
better estimation of the current user state, but it can akstav
time leading to a lower reward. TH8ye action would only 100
be appropriate for a system which could divert to an operator
otherwise its use would be unacceptable. HenceRémeat
action is used for the fixed back-off baseline.

Training of the fixed back-off system starts in low noise
and then incrementally increases it, as in [12]. Approxahat

95

90 -
N \\\
. A Y
85 NN
. \\
NN
\

Nbest back-off

= ===Fixed back-off

80

Percentage of successful dialogues

1,000,000 dialogues were used for training and the total \_\ -~-§;;ec2dedsummarv
number of grid points wag00. The evaluation on the user 7 \

simulator performing000 dialogues at each of 11 error rates 70 4,

|S shown in F|gure 5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Error rate

B. Extension of the Summary Space ! _ _
Fig. 5. Comparison of the percentage of the successfullypteted simulated

The second approach to the problem of invalid actions dlogues between the fixed back-off strategy, the strateigl extended
to extend the summary space with explicit information abog¢mmary space and the N-best back-off strategy on diffezanf rates
which action can be taken. In this approach, each summary
grid point was augmented with a binary flag to indicatgs shown, in Figure 5, the N-best back-off outperforms both
whether or not each summary action is valid for that griditernative strategies across all error rates. Extensfothe
point. Since two belief points that have different subsdts gummary space improved the performance on low error rates.
plausible actions cannot be mapped to the same grid poifdwever, due to increased fragmentation of summary space,
and since there are 11 possible summary actions, this grformance degraded rapidly in noise and increasing the
potentially increase the summary space by a factoR'df number of training dialogues by a factor of 10 was not able to
In practice, however, due to the nature of the problem soraempensate for this. Hence, it appears that extending suynma
actions are always possible and there are also dependensjece with features whose only purpose is to avoid invalid
between them, so in total the extended summary space résufietions degrades the policy overall and results in a system
in a policy with2000 grid points. The training scheme used fowith poor robustness to noise.
this system was similar to the previous one, with the diffiese
that training had ten times more dialogues to compensate fpis also interesting to note that the frequency with whicé t
the increased number of grid points. The performance of thisp proposed action is not taken differs in the N-best andifixe
system is shown in Figure 5. back-off strategies. The policy obtained using the N-Baskb

off strategy backs off more often (see Figure 6). This sugges

C. N-best Back-off that this policy has more liberty when choosing the action,

@ values from the Monte Carlo Control algorithm produce since there is a whole list of back-off actions to try if th@to
list of actions ranked by the policy preference associatitl waction fails. Not only does the N-best strategy back off more
each summary state (see Section Ill). Utilising this N-lisst but the percentage of backing-off increases more dranfigtica
for back-off action selection, the policy was trained usihg than with the fixed back-off strategy. This may be ascribed
same training scheme as in the fixed back-off strategy. Ttee the difficulty of correctly determining which actions are
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Fig. 6. Percentage of backed-off actions for the Fixed htlstrategy and
the N-best back-off strategy for different error rates

point worked very well. This approach provided the best
performance at all error rates and, importantly, it did nedah

any more training data than the fixed back-off strategy.

Apart from showing how dialogue performance can be im-
proved by the correct choice of back-off actions, theseltesu
also show that fragmentation of the summary space can lead to
reduced robustness. Therefore future work will consideh bo
improvements to the design of the master to summary space
mapping and to the overall management of the summary space
structure.
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valid in noisy states. Therefore, the N-best strategy tifies

actions that, if valid, achieve the best reward, whereas the
fixed back-off chooses the actions that rarely lead to bdtk-o [y
Figure 7 shows the percentage of the first-, the second- @&nd th
third-best action taken. The results were obtained fasion 2]
dialogues for each error rate. It shows that on average 82%
of the time the top action can be mapped to a master actiof3]
but there is a significant tail when the system backs off to the
second- and the third-best action. [4]

420 8

(6]

40 | 7

(8]
Bl

Ist-best 2nd-best 3rd-best

Position in the N-best list

rest

Fig. 7. Percentage of actions on different positions in thbelt list taken [10]
in the N-best back-off strategy

[11]
VI. CONCLUSION [12]

Invalid state-action pairs are an intrinsic feature of
POMDPs. Available solutions try to back off to a default
action that is defined everywhere, but this leads to sub-
optimal performance. Alternative solutions to this prable
have been empirically examined in the framework of a real-
world summary space-based POMDP dialogue system with the
goal of overcoming the sub-optimality problem. In a baselin
back-off strategy, one summary action is chosen to be the
back-off action. In another strategy, the summary space was
extended to include information about the subset of actions
which are plausible in that particular state. However, this
resulted in fragmentation of the space, increased demand fo
training dialogues and poor robustness to noise.

On the other hand, the proposed strategy of associating
an N-best list of actions ranked by Q-value with each grid
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