
Back-off Action Selection in Summary Space-Based
POMDP Dialogue Systems

M. Gašić, F. Lefèvre, F. Jurčı́ček, S. Keizer, F. Mairesse, B. Thomson, K. Yu, S. Young

Spoken Dialogue Systems Group, Cambridge University Engineering Department
Trumpington Street, Cambridge CB2 1PZ, UK

{mg436, frfl2, fj228, sk561, farm2, brmt2, ky219, sjy}@eng.cam.ac.uk

Abstract—This paper deals with the issue of invalid state-
action pairs in the Partially Observable Markov Decision Process
(POMDP) framework, with a focus on real-world tasks where
the need for approximate solutions exacerbates this problem. In
particular, when modelling dialogue as a POMDP, both the state
and the action space must be reduced to smaller scale summary
spaces in order to make learning tractable. However, since not
all actions are valid in all states, the action proposed by the
policy in summary space sometimes leads to an invalid action
when mapped back to master space. Some form of back-off
scheme must then be used to generate an alternative action.
This paper demonstrates how the value function derived during
reinforcement learning can be used to order back-off actions in
an N-best list. Compared to a simple baseline back-off strategy
and to a strategy that extends the summary space to minimise the
occurrence of invalid actions, the proposed N-best action selection
scheme is shown to be significantly more robust.

I. I NTRODUCTION

It has been suggested in recent years that modelling dialogue
as a Partially Observable Markov Decision Process (POMDP)
enables dialogue systems to be built which are more easily
trainable, more natural in operation and more robust to recog-
nition errors [1].
In the POMDP approach, the dialogue is characterised as a
sequence of unobserved states with probabilistic transitions.
The attractiveness of the POMDP lies in the fact that it
maintains a probability distribution over all states, thusimplic-
itly modelling the inherent uncertainty that occurs in spoken
dialogue, especially that arising from speech recognitionand
understanding errors. However, algorithms that solve POMDPs
exactly have exponential complexity and can be applied only
to very simple problems. Even approximate solutions proved
intractable for real-world problems with a large state and
action space.
Several techniques have been developed to tackle this problem
most of which are based on the idea of compressing the state
space (themaster space) into a reduced space (thesummary
space) so that learning can be tractably performed using
approximate algorithms [2].
Two main issues arise when using the summary space method.
Firstly, there is the problem of finding the optimal compres-
sion,i.e.,what information from the master space is crucial for
learning and what can be omitted. The efficient selection of
informative features is a current topic of research [3]. The
second issue relates to mapping the summary action back

to an appropriate master action, and what to do when such
a mapping is not possible. The latter problem is addressed
in this paper within the framework of grid-based learning
algorithms. It is shown that the value functions learnt during
policy optimisation can be used to associate N-best action lists
with each grid point. Action selection then involves simply
selecting the highest ranking valid action from the appropriate
N-best list. This approach is shown to compare favourably
with both a simple fixed back-off baseline and an alternative
extended summary state scheme.
The paper is structured as follows. In Section II, the general
problem of invalid state-action pairs in POMDPs is presented
and why this problem becomes even more apparent with large
state and action sets is explained. The three approaches men-
tioned above are then described. In Section III the Monte Carlo
Control algorithm is explained in the framework of grid-based
learning. For evaluation, the HIS dialogue system is used [4]
and Section IV provides a brief overview of the relevant parts
of this system especially the master and summary space and
the learning process. In Section V, the implementation of the
back-off strategies within the HIS framework is presented and
the evaluation results are discussed. Finally, conclusions are
given in Section VI.

II. T HE INVALID ACTION PROBLEM

It is a general property of Markov decision processes that
not all actions are valid in every state. In a discrete observable
MDP, this problem can be resolved simply by defining for
each state a subset of actions that are possible. It is then
straightforward during training and operation to ensure that
the policy for any state only considers actions which are valid
for that state.
In contrast, a POMDP belief state represents a probability over
all environment states and since in principle any environment
state is possible in any belief state, the policy must include
the possibility of taking any action in any belief state. For
example, in a dialogue system given some prior information
on user preferences, there is nothing in principle to stop the
system saying as its very first action: ”Please confirm that
you want a Chinese restaurant?”, even though the user hasn’t
yet said anything. This problem is exacerbated in a system
which compresses actions into simple strategic decisions such
as “ask”, “confirm”, etc. In this case, the fact that an action

such as “confirm” in summary space is invalid, cannot be
determined until it is mapped back into master space where
it is discovered that there is in fact no information which can
be confirmed.
To understand this issue in more depth, some formal no-
tation is needed. A POMDP is described as a tuple of
〈S, A, T, R, Ω, O〉, whereS is a set of states,A is a set of
actions,R is a set of rewards associated with each state-action
pair, T is a transition probability function between states,Ω
is a set of observations andO is the observation function
O(s′, a, o) which is the probabilityp(o|s′, a) of observingo

in states′ given that the previous system action wasa. Since
the state is unobservable, a probability distribution overS,
is estimated at each step called thebelief stateb whereb(s)
represents the probability of being in states at that step. A
policy π : b→ a maps the current belief state into an action.
The value function of a belief stateb given policyπ, Vπ(b), is
the expected reward that can be obtained in belief stateb by
following policy π. Finding the optimal value function yields
the best policy.
Although the belief stateb is continuous, a policy can be
represented as a tree where the nodes are actions, the branches
are all possible observations and the depth is the number
of steps needed to complete the process. The value function
of a states given a policy treep, Vp(s) is the expected
reward that can be obtained in that state following policy
tree p. The value function of the belief state then becomes
Vp(b) =

∑

s∈S b(s)Vp(s) – a linear function ofb(s). The
optimal value function for each step is the upper surface of the
value functions associated with all policy trees in that step [5].
As noted earlier, even if the set of valid actions is known for
every state, the belief state can assign some probability mass to
every state. A policy is a function of the belief and it proposes
actions that give the highest expected reward assuming that
all actions are valid. Thus, there will normally be a finite
probability of issuing an invalid action from any belief state.
If we assume that once an action is proposed it is possible
to determine whether or not it is valid, even if the actual
environment states remains unknown, this problem can be
dealt with in a couple of ways. One way would be to expand
the action set so that a default action which is guaranteed
to be valid in any state is associated with every action.
However, this can lead to suboptimal results. Consider for
example, a simple POMDP with state spaceS = {s1, s2} and
action spaceA = {a1, a2, default}, actiona1 is not valid in
states2 and the rewards arer(s1, a1) = 5, r(s1, a2) = 2,
r(s1, default) = 1, r(s2, a2) = 3 andr(s2, default) = 1.
In order to allow actiona1 to be performed in any belief state
b, it has to be given a valid interpretation in states2. This can
be done by redefining actiona1 asa1 → default, meaning if
action a1 is not valid back-off todefault instead. However,
as shown in Figure 1 this is clearly a suboptimal solution
compared toa1 → a2 since the optimal 1-step value function
is associated witha1 → a2 and not the sub-optimal 1-step
value function associated witha1 → default.

In the general case, the optimal back-off for actionai

will be a sequenceai → ai1 · · · → aij
· · · → ain−1

where
n = |A| given the belief. Redefining each action to include
all possible back-off actions would increase the cardinality of
the action set ton! and this is clearly not feasible.
An alternative way of finding the optimal back-off action is to
utilise Q-values. The Q-valueQ(b, a) is the expected reward
from taking actiona in belief stateb and following the policy
thereafter. It can be calculated asQ(b, a) =

∑

s∈S Q(s, a)b(s),
where Q(s, a) is the Q-value of taking actiona in states.
For each actiona, the set of states in which that action can
be taken is known. Therefore, the learning algorithm can
estimateQ(b, a) by summing over only theQ(s, a) values
for which actiona is valid in s. OrderingQ(b, a) in a list
for each beliefb provides a sequence of possible back-off
actions which can be searched until a valid action is found.
This intuition is the motivation behind the N-best back-off
action selection mechanism proposed in this paper.

�������

�������

�������

�������

	
����

��

����	
����

������

�

�
��
������

���
��
	

����
�

���

������������
�����
��������

���������
��������

��������

�����	
�����

��������

�����	
�����

Fig. 1. Two state POMDP with an impossible action-state pair

A major problem with POMDPs is the intractability of exact
learning algorithms and hence the need for approximate solu-
tions. A POMDP can be viewed as a continuous MDP [5] and
the approximation would then be discretising the continuous
space to form a finite grid. The result is a discrete MDP
problem which can be solved using standard methods [6].

A detailed algorithm for implementing grid-based learning
with back-off action selection is given in Figure 2. Before that
however, it should be noted that discretisation of the belief
space further exacerbates the invalid action problem sincethe
effect of the discretisation is to represent all of the belief points
in a neighbourhood by a single representative grid point. Thus,
even if there are no belief points within the neighbourhood
with invalid actions, the merging into a single grid point will
generate the union of all neighbouring actions and this union
might have invalid actions. One possibility to avoid this isto
increase the information transferred from master to summary
space with the subset of actions that are valid in that summary
state. This possibility is straightforward to implement and it is
explored further in the experimental section below. However,
since it significantly expands summary space, it is likely to
lead to some loss in robustness.

III. T HE MONTE CARLO CONTROL ALGORITHM FOR

GRID-BASED LEARNING

The above discussion has highlighted the problem of invalid
actions in POMDP-based systems and identified an approach
to solving it based on ranking the alternative actions for each
point in belief space into an N-best list ordered by Q-value.
It has also been noted that for practical real world systems,it
is mandatory to compress the master belief space into a much
smaller summary space. This summary space will typically
consist of a set of features extracted from the master space.
These features can be a mixture of discrete and continuous
variables. All that is required is that a distance metric is defined
over the resulting space.

In this section, a specific grid-based learning algorithm is
described called the Monte Carlo Control algorithm. This is
a standard model-free approach to on-line policy optimisa-
tion [7] which is especially suited to episodic processes of
which dialogue is a prime example. The basic idea is simple.
The POMDP summary space is represented by a number of
discrete grid points. The system interacts with a user1 and
Q-values are estimated for each grid point and each action.
The action with the highest Q-value at each grid point then
forms the policy. Extending this algorithm to include N-best
action selection is then simply a matter of storing not just the
highest Q-value at each grid point but a rank-ordered list.

The main issue in grid-based learning is how to generate
grid-points efficiently. The approach used here is to start
with a single grid point and then add new points as required
during the exploration phase of training. The learning starts
by arbitrarily assigning values to the Q-values for each action
a associated with the initial grid point̂b0

2. In addition to the
Q values, a counterN(b̂, a) is associated with each grid point
and initialised to zero. This counter records the number of
times that each action is taken in that grid point. Each learning
episode is conductedǫ-greedily i.e., using the current best
policy (π(b̂) = argmaxaQ(b̂, a)) except that with probability
ǫ a random action is taken instead of the action proposed
by the policy. In the standard algorithm, the policy consists
of one action per grid point – this is the action that has
the highest Q-value [7]. For the N-best action selection, the
algorithm is modified so that the policy consists of a list of
actions per grid point ordered by their Q-values. In a similar
way, when exploring instead of generating one random action,
a random ordering of actions is generated. In all cases, the
reward obtained for each turn is assigned to the Q-value for
the action that was actually taken. Every time a new belief
state is visited, it is mapped to a summary state and then to
the nearest grid point. If there is no nearby grid point a new
one is created and added to the set of grid points. Thus, during
training grid points are created with their respective lists of Q-
and N-values. The complete algorithm is given in Figure 2.

1A simulator is often used for this to allow efficient trainingover a large
number of dialogues.

2The hat on variables denotes elements the summary space.

1: Let Q(b̂, a) = expected reward of taking actiona at grid
point b̂

2: Let N(b̂, a) = number of times actiona is taken at grid
point b̂

3: Let B be a set of grid points
4: Let π : b̂→ ai1 , · · · , ain

; ∀b̂ ∈ B be a policy
5: repeat
6: t← 0
7: ai0

1

· · · ai0n
initial random order of actions

8: b = b0 initial grid point

Generate episode using ǫ-greedy policy
9: repeat

10: t← t + 1
11: Update belief stateb
12: b̂t ← GridPoint(SummaryState(b))

13: ait
1
, · · · , ait

n
←

{

RandomlyOrderedActions
π(Nearest(b̂,B))

14: record〈b̂t, ait
j
〉, T ← t, whereait

j
is the

taken action
15: until episode terminates with rewardR

Scan episode and update B, Q and N

16: for t = T downto 1 do
17: if ∃bk ∈ B, |b̂t − b̂k| < δ then ← update pt in B

18: Q(b̂k, ait
j
)←

Q(b̂k,a
it
j
)∗N(b̂k,a

it
j
)+R

N(b̂k,a
it
j
)+1

19: N(b̂k, ait
j
)← N(b̂k, ait

j
) + 1

20: else ← create new pt
21: add b̂t to B
22: Q(b̂t, ait

j
)← R, N(b̂t, ait

j
)← 1

23: end if
24: R← γR ← discount the reward
25: end for

Update the policy
26: for all b̂k with updatedQ(b̂k, a) for any a do
27: π(b̂k) = actions ordered byQ(b̂k, a)
28: end for
29: until converged

Fig. 2. Monte Carlo Control Policy Optimisation Algorithm extended for
N-best back-off action selection

The described approaches are evaluated in the framework of
the HIS Dialogue manager which is explained in the next
section.

IV. HIS D IALOGUE MANAGER

The experimental evaluation of the N-best back-off action
selection method has been conducted using the Hidden Infor-
mation State (HIS) dialogue system. The pertinent featuresof
this system are briefly described here. A full description is
given in [4].

A. System Architecture

The HIS dialogue system consists of an ATK speech
recogniser [8], an SVM-based semantic tuple classifier, a
POMDP dialogue manager, a natural language generator,
and an HMM speech synthesiser. When interacting with the
system, the user’s speech is recognised by the recogniser and,
in the form of a scored N-best list, passed to the semantic
classifier. The semantic classifier outputs an N-best list of
dialogue acts. A dialogue act is a semantic representation
of the user action which contains the user intention (such as
inform, request, etc) and a list of slot-value pairs (e.g.
type=hotel, area=east). The N-best list of dialogue
acts is used by the dialogue manager to update the dialogue
state. Based on the state and the policy, a system action is
produced, again in the form of a dialogue act. The system
action is then passed to the natural language generator that
converts it to text, which is finally synthesised. The HIS
dialogue system is currently implemented for the Town-Info
domain. It provides tourist information for an imaginary town.
However, no specific domain knowledge is incorporated in the
dialogue manager that would not be applicable for any query-
driven dialogue.

B. Dialogue Manager

The unobserved dialogue state of the HIS dialogue manager
consists of the user goal, the dialogue history and the user
action. The user goal is represented as a tree structure –
a partition, which is built according to a domain ontology.
Slots and values are both represented as nodes in the tree. An
example of a partition is given in Figure 3. When querying
the data base using the partition, a set of matching entities
is produced. The dialogue history consists of the grounding
states of nodes in the partition, generated using a finite
state machine and the previous user and system action. The
combination of a partition, a user action from the last N-
best input and the respective set of grounding states forms a
hypothesis. A distribution over all hypotheses (thebelief state)
is maintained throughout the dialogue. Taking into accountthat
any real-world problem would have a non-trivial ontology, it is
clear that this belief space will be extremely large, and must
therefore be reduced to a smaller scale summary space. An
example of the summary space mapping and action selection
process is given in Figure 4. In the top part of the diagram, it
is shown how beliefb in master space is mapped to a summary
point b̂ that contains only five components.
Since the summary state space does not encapsulate all the

information that master actions can contain, these actions
cannot be learnt directly. For that reason, the action spaceis
also reduced to a summary action set. Figure 4 shows how the
policy π determines on the basis of summary pointb̂ which
of the ten possible summary actions to take.
The optimal policy is obtained using reinforcement learning
in interaction with an agenda-based simulated user [9]. At
the end of each dialogue, a reward is given to the system
based on the completion of the user goal and the efficiency
of the dialogue (20 is given for a successful completion and

Fig. 3. Example of a partition built according to the domain ontology for
the goalfind(type=hotel, area=east, near=Museum)

-1 for each turn). Policy optimisation used the Monte Carlo
Control algorithm described above in Section III. The mapping
from summary action back to a master action use heuristics
to add the appropriate information from the master space. For
example, if the proposed summary action isConfirm, then
the value pair relating to the node from the partition of the top
hypothesis that is not grounded will be confirmed together with
its slot. For instance, if the node relating to the valuehotel is
not grounded the action would beconfirm(type=hotel),
meaningYou are looking for a hotel, right?
The invalid action problem occurs when the proposed action
cannot be mapped to the master space. In the previous example
of the summary actionConfirm, if all goal tree nodes are
grounded, there is nothing left to confirm, so this action cannot
be performed and an alternative back-off selected.

V. EXPERIMENTS

This section presents results for the proposed N-best back-
off action selection method and compares it with a simple
fixed back-off baseline and an alternative based on extending
the summary space with features designed to minimise the
occurrence of invalid actions. In all cases, the system was
trained and tested using a user simulator which incorporates
an error model to allow a range of noise levels to be simulated.
That is a hand-crafted error model that creates semantic level
confusions and confidence scores at different error rates. Item-
level Cross Entropy (ICE) of the resulting N-best list decreases
as N increases. This indicates that simulated confidence scores
are informative [10]. However, in the future we plan to use a
statistical error model as in [11].

A. Fixed Back-off

The simplest solution to the back-off problem is to use
a single global default action as the back-off action. The
requirement for this action is that it can be performed for
any point in the belief space. In the HIS system, the only
appropriate candidates are theRepeat action where the
system asks the user to repeat the last input, or theBye action
where the system ends the dialogue. In the case ofRepeat,
users typically repeat the last dialogue act or hang up if the

Fig. 4. Action selection process in the HIS framework

system has already asked this several times. By asking the
user to repeat the last act, the system can potentially obtain a
better estimation of the current user state, but it can also waste
time leading to a lower reward. TheBye action would only
be appropriate for a system which could divert to an operator,
otherwise its use would be unacceptable. Hence, theRepeat
action is used for the fixed back-off baseline.

Training of the fixed back-off system starts in low noise
and then incrementally increases it, as in [12]. Approximately
1, 000, 000 dialogues were used for training and the total
number of grid points was400. The evaluation on the user
simulator performing5000 dialogues at each of 11 error rates
is shown in Figure 5.

B. Extension of the Summary Space

The second approach to the problem of invalid actions is
to extend the summary space with explicit information about
which action can be taken. In this approach, each summary
grid point was augmented with a binary flag to indicate
whether or not each summary action is valid for that grid
point. Since two belief points that have different subsets of
plausible actions cannot be mapped to the same grid point
and since there are 11 possible summary actions, this can
potentially increase the summary space by a factor of211.
In practice, however, due to the nature of the problem some
actions are always possible and there are also dependencies
between them, so in total the extended summary space resulted
in a policy with2000 grid points. The training scheme used for
this system was similar to the previous one, with the difference
that training had ten times more dialogues to compensate for
the increased number of grid points. The performance of this
system is shown in Figure 5.

C. N-best Back-off

Q values from the Monte Carlo Control algorithm produce a
list of actions ranked by the policy preference associated with
each summary state (see Section III). Utilising this N-bestlist
for back-off action selection, the policy was trained usingthe
same training scheme as in the fixed back-off strategy. The

performance results for this system are given in Figure 5.

��

��

��

��

��

��

���

� ���� ��� ���� ��� ���� ��	 ��	� ��
 ��
� ���

�
�
��
�
�
��
�
�
	

�	
�
��
�
��
�
�	
�
��
�

�

�
�

���
�	����

�������������

�������������

������������� �

�!��

Fig. 5. Comparison of the percentage of the successfully completed simulated
dialogues between the fixed back-off strategy, the strategywith extended
summary space and the N-best back-off strategy on differenterror rates

As shown, in Figure 5, the N-best back-off outperforms both
alternative strategies across all error rates. Extension of the
summary space improved the performance on low error rates.
However, due to increased fragmentation of summary space,
performance degraded rapidly in noise and increasing the
number of training dialogues by a factor of 10 was not able to
compensate for this. Hence, it appears that extending summary
space with features whose only purpose is to avoid invalid
actions degrades the policy overall and results in a system
with poor robustness to noise.

It is also interesting to note that the frequency with which the
top proposed action is not taken differs in the N-best and fixed
back-off strategies. The policy obtained using the N-Best back-
off strategy backs off more often (see Figure 6). This suggests
that this policy has more liberty when choosing the action,
since there is a whole list of back-off actions to try if the top
action fails. Not only does the N-best strategy back off more,
but the percentage of backing-off increases more dramatically
than with the fixed back-off strategy. This may be ascribed
to the difficulty of correctly determining which actions are

Fig. 6. Percentage of backed-off actions for the Fixed back-off strategy and
the N-best back-off strategy for different error rates

valid in noisy states. Therefore, the N-best strategy triesthe
actions that, if valid, achieve the best reward, whereas the
fixed back-off chooses the actions that rarely lead to back-off.
Figure 7 shows the percentage of the first-, the second- and the
third-best action taken. The results were obtained from2500
dialogues for each error rate. It shows that on average 82%
of the time the top action can be mapped to a master action,
but there is a significant tail when the system backs off to the
second- and the third-best action.

Fig. 7. Percentage of actions on different positions in the N-best list taken
in the N-best back-off strategy

VI. CONCLUSION

Invalid state-action pairs are an intrinsic feature of
POMDPs. Available solutions try to back off to a default
action that is defined everywhere, but this leads to sub-
optimal performance. Alternative solutions to this problem
have been empirically examined in the framework of a real-
world summary space-based POMDP dialogue system with the
goal of overcoming the sub-optimality problem. In a baseline
back-off strategy, one summary action is chosen to be the
back-off action. In another strategy, the summary space was
extended to include information about the subset of actions
which are plausible in that particular state. However, this
resulted in fragmentation of the space, increased demand for
training dialogues and poor robustness to noise.

On the other hand, the proposed strategy of associating
an N-best list of actions ranked by Q-value with each grid

point worked very well. This approach provided the best
performance at all error rates and, importantly, it did not need
any more training data than the fixed back-off strategy.
Apart from showing how dialogue performance can be im-
proved by the correct choice of back-off actions, these results
also show that fragmentation of the summary space can lead to
reduced robustness. Therefore future work will consider both
improvements to the design of the master to summary space
mapping and to the overall management of the summary space
structure.

ACKNOWLEDGEMENTS

This research was partly funded by the UK EPSRC under
grant agreement EP/F013930/1 and by the EU FP7 Pro-
gramme under grant agreement 216594 (CLASSIC project:
www.classic-project.org).

REFERENCES

[1] S. Young, “Talking to Machines (Statistically Speaking),” in Int Conf
Spoken Language Processing, Denver, Colorado, 2002.

[2] J. Williams and S. Young, “Scaling POMDPs for Spoken Dialog
Management,”IEEE Audio, Speech and Language Processing, vol. 15,
no. 7, pp. 2116–2129, 2007.

[3] L. Li, J. Williams, and S. Balakrishnan, “ReinforcementLearning
for Dialog Management using Least-Squares Policy Iteration and Fast
Feature Selection,” inInterspeech, Brighton, 2009.

[4] S. Young, M. Gašić, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson,
and K. Yu, “The Hidden Information State Model: a practical framework
for POMDP-based spoken dialogue management,”Computer Speech and
Language, In press, 2009.

[5] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and Acting in
Partially Observable Stochastic Domains,”Artificial Intelligence, vol.
101, pp. 99–134, 1998.

[6] R. Brafman, “A Heuristic Variable Grid Solution Method for POMDPs,”
in AAAI, Cambridge, MA, 1997.

[7] R. Sutton and A. Barto,Reinforcement Learning: An Introduction, ser.
Adaptive Computation and Machine Learning. Cambridge, Mass: MIT
Press, 1998.

[8] S. Young, “ATK: An Application Toolkit for HTK,” 2005. [Online].
Available: http://mi.eng.cam.ac.uk/research/dialogue/atk home

[9] J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and S. Young,
“Agenda-Based User Simulation for Bootstrapping a POMDP Dialogue
System,” inHLT/NAACL, Rochester, NY, 2007.

[10] B. Thomson, K. Yu, M. Gašić, S. Keizer, F. Mairesse, J.Schatzmann, and
S. Young, “Evaluating semantic-level confidence scores with multiple
hypotheses,” inInterspeech, Brisbane, Australia, 2008.

[11] J. Schatzmann, B. Thomson, and S. Young, “Error Simulation for
Training Statistical Dialogue Systems,” inASRU, Kyoto, Japan, 2007.

[12] M. Gašić, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson, K. Yu,
and S. Young, “Training and evaluation of the HIS-POMDP dialogue
system in noise,” in9th SIGdial Workshop on Discourse and Dialogue,
Columbus, Ohio, 2008.

