
Transformation-based Learning for Semantic parsing

F. Jurčı́ček, M. Gašić, S. Keizer, F. Mairesse, B. Thomson, K. Yu, and S. Young

Engineering Department, Cambridge University, CB2 1PZ, UK

{fj228, mg436, sk561, f.mairesse, brmt2, ky219, sjy}@eng.cam.ac.uk

Abstract
This paper presents a semantic parser that transforms an initial
semantic hypothesis into the correct semantics by applying an
ordered list of transformation rules. These rules are learnt auto-
matically from a training corpus with no prior linguistic knowl-
edge and no alignment between words and semantic concepts.
The learning algorithm produces a compact set of rules which
enables the parser to be very efficient while retaining high ac-
curacy. We show that this parser is competitive with respect to
the state-of-the-art semantic parsers on the ATIS and TownInfo
tasks.
Index Terms: spoken language understanding, semantics, nat-
ural language processing, transformation-based learning

1. Introduction
The goal of semantic parsing is to map natural language to a
formal meaning representation - semantics. Such semantics can
be either defined by a grammar, e.g. LR grammar for the Geo-
Query domain [1], or by frames and slots, e.g. the TownInfo
domain [2]. Table 1 shows an example of the frame and slot
semantics from the ATIS dataset [3]. Each frame has a goal
and a set of slots. Each slot is composed of a slot name, e.g.
“from.city”, and a slot value, e.g. “Washington”. As dialogue
managers commonly use semantics in the form of frames and
slots [4, 5], our approach learns to map directly from natural
language into the frame and slot semantics.

A dialogue system needs a semantic parser which is accu-
rate and robust, easy to build, and fast. This paper presents a
parsing technique which provides state-of-the-art performance
and robustness to ill formed utterances. The parser does not
need any handcrafted linguistic knowledge and it learns from
data which has no alignment between words and semantic con-
cepts. Finally, it learns a compact set of rules that allow it to
perform real-time semantic parsing. Note that modern statisti-
cal dialogue systems typically exploit multiple ASR hypothe-
ses. Hence, the semantic parser has to process an N-best list of
user utterances every turn where N∼10 to 100.

In our approach, we adapt Transformation-Based Learning
(TBL) [6] to the problem of semantic parsing. We attempt to
find an ordered list of transformation rules which iteratively im-
prove the initial semantic annotation. In each iteration, a trans-
formation rule corrects some of the remaining errors in the se-
mantics. To handle long-range dependencies between words,
we experiment with features extracted from dependency parse
trees provided by the RASP syntactic parser [7].

In the next section, we describe previous work on mapping
natural language into a formal meaning representation. Section
3 presents an example of TBL semantic parsing and describes
the learning process. Section 4 compares the TBL parser to
the previously developed semantic parsers on the ATIS [3] and
TownInfo [2] domains. Finally, Section 5 concludes this work.

what are the lowest airfare from Washington DC to Boston
GOAL = airfare
airfare.type = lowest
from.city = Washington
from.state = DC
to.city = Boston

Table 1: Example of frame and slot semantics from the ATIS
dataset [3].

2. Related work
In Section 4, we compare the performance of our method with
four existing systems that were evaluated on the same dataset.
First, the Hidden Vector State (HVS) technique has been used
to model an approximation of a pushdown automaton with se-
mantic concepts as non-terminal symbols [8, 9]. Second, a
Probabilistic parser using Combinatory Categorical Grammar
(PCCG) has been used to map utterances to lambda-calculus
[10]. This technique produces state-of-the-art performance on
the ATIS dataset. However, apart from using the lexical cate-
gories (city names, airport names, etc) readily available from
the ATIS corpus, this method also needs a considerable num-
ber of handcrafted entries in its initial lexicon. Third, Markov
Logic Networks (MLN) have been used to extract slot values by
combining probabilistic graphical models and first-order logic
[11]. In this approach, weights are attached to first-order clauses
which represent the relationship between slot names and their
values. Such weighted clauses are used as templates for features
of Markov networks. Finally, Semantic Tuple Classifiers (STC)
based on support vector machines have been used to build se-
mantic trees by recursively calling classifiers that predict frag-
ments of the semantic representation from n-gram features [2].

In addition to the above, there is a large amount of re-
search that is related but not directly comparable because of
difference in corpora or meaning representation. For example,
transformation techniques have been previously used to sequen-
tially rewrite an utterance into semantics [1]. However, our ap-
proach differs in the way the semantics is constructed. Instead
of rewriting an utterance, we transform an initial semantic hy-
pothesis. As a result, the words in the utterance can be used
several times to trigger transformations of the semantics.

3. Transformation-based parsing
The TBL parser transforms an initial semantic hypothesis into
the correct semantics by applying transformations from a list
of rules. Each rule is composed of a trigger and a transforma-
tion. The trigger is matched against both the utterance and the
semantic hypothesis, and when successfully matched, the trans-
formation is applied to the current hypothesis.

In the TBL parser, a trigger contains one or more conditions

as follows: the utterance contains N-gram N, the goal equals G,
and the semantics contains slot S. If a trigger contains more than
one condition, then all conditions must be satisfied. N-gram
triggers can be unigrams, bigrams, trigrams or skipping bigrams
which can skip up to 3 words. A transformation performs one
of the following operations: replace the goal, add a slot, delete
a slot, and replace a slot. A replacement transformation can
replace a whole slot, a slot name, or a slot value.

Some example rules with triggers composed of unigrams,
skipping bigrams, and goal matching are:

trigger transformation
“tickets” replace the goal by “airfare”
“flights * from” replace the goal by “flight”
& GOAL=airfare
“Seattle” add the slot “to.city=Seattle”
“connecting” replace the slot

“to.city=*” by “stop.city=*”

The first rule replaces the goal by “airfare” if the word “tick-
ets” is in the utterance. The second rule changes the goal from
“airfare” to “flight” if the utterance contains the words “flights”
and “from”, which can be up to 3 words apart. The fourth rule
adds the slot “to.city=Seattle” whenever the utterance contains
the word “Seattle”. Finally, every slot name “to.city” is replaced
by ”stop.city“ if the utterance includes the word ”connecting“.

In the next section, we give an example of how the parsing
algorithm works. Then, we detail locality constraints on the
transformation rules. Next, we describe features capturing long-
range dependencies. Finally, the automatic learning process is
described.

3.1. Example of Parsing

This section demonstrates the parsing process on the example:
“find all the flights between Toronto and San Diego that arrive
on Saturday”

First, the goal “flight” with no slots is used as the initial se-
mantics because it is the most common goal in the ATIS dataset.
As a result, the initial semantics is as follows:

GOAL = flight

Second, the rules, whose triggers match the utterance and
the hypothesised semantics, are sequentially applied.

trigger transformation
1 “between toronto” add the slot

“from.city=Toronto”
2 “and san diego” add the slot “to.city=San Diego”
3 “saturday” add the slot

“departure.day=Saturday”

After applying the transformations, we obtain the following
semantic hypothesis:

GOAL = flight
from.city = Toronto
to.city = San Diego
departure.day = Saturday

As the date and time values are associated with the “depar-
ture.*” slots most of the time in the ATIS dataset, the parser
learns to associate them with the “departure.*” slots. The in-
correct classification of the word “Saturday” is a result of such
a generalisation. However, the TBL method learns to correct
its errors. Therefore, the parser also applies the error correcting
rules at a later stage. For example, the following rule corrects
the slot name of the slot value “Saturday”.

trigger transformation
4 “arrive” replace the slot “departure.day=*”

by “arrival.day=*”

In this case, we substitute the slot name with the correct
name, to produce the following semantic hypothesis:

GOAL = flight
from.city = Toronto
to.city = San Diego
arrival.day = Saturday

3.2. Locality constraints

So far the relationship between slots and their lexical realisation
has not been considered. For example, before we replace the
slot “departure.day” by “arrival.day”, we should test whether
the word “arrive” is near the slot’s lexical realisation. Other-
wise we may accidentally trigger the substitution of the slot
“from.city=Toronto” by “to.city=Toronto”. This could happen
if the parser had also learnt the following rule:

trigger transformation
5 “arrive” replace the slot

“from.city=*” by “to.city=*”

find all the flights between toronto and san diego that arrive on saturday

from.city=Toronto to.city=San Diego departure.day=Saturday

find all the flights between toronto and san diego that arrive on saturday

from.city=Toronto to.city=San Diego arrival.day=Saturday

(a) alignment after applying the rules #1,2, and 3

(b) alignment after applying the substititution rule #4

Figure 1: Alignment between the words and the slots in the
example utterance.

One way to handle this problem is to constrain triggers of
rules performing substitutions to be activated only by the words
aligned to the replaced slot. To do this; we track the words from
the utterance that were used in triggers. Every time we apply a
transformation of a slot, we store links between the words which
triggered the transformation and the target slot. Such links are
referred to as “direct alignment”.

In Figure 1 (a), we see the alignment between the words
and the slots in the example utterance after applying the rules
#1,2, and 3. The full arrows denote direct alignment. Because
no rules were triggered by the words “find all the flights” and
“that arrive on”, those words could not be aligned directly to
any of the slots. Therefore, we have to infer an appropriate
alignment (see Figure 1 (a) dashed arrows). A word is aligned
to a slot if the alignment does not cross any direct alignment. In
Figure 1 (a), the phrase “find all the flights” can be aligned to
the slot “from.city=Toronto” only (dashed arrows). The phrase
“that arrive on” can be aligned to two slots “to.city=San Diego”
and “departure.day=Saturday”.

In Figure 1 (a), we see that the rule #4 meets the locality
constraint because the word “arrive” is aligned to the slot “de-
parture.day”. As a result of applying the rule, the slot and the
alignment of the phrase “that arrive on” have changed (see Fig-
ure 1 (b)). The rule #5 is not triggered because the word “arrive”

is not aligned to the slot “from.city”.

3.3. Improving the disambiguation of long-range depen-
dencies

show

the cheapest flights from
Boston

to

Miami

arriving

7pmbefore on Monday

Figure 2: Dependency tree of the utterance ”show the cheapest
flights from Boston to Miami arriving before 7pm on Monday“.

Besides simple n-grams and skipping bigrams, more com-
plex lexical features can be used. Kate [12] used manually
annotated dependency trees to capture long-range relationships
between words. In a dependency tree, each word is viewed as
the dependant of one other word, with the exception of the root.
Dependency links represent grammatical relationships between
words. Kate showed that word dependencies significantly im-
prove semantic parsing because long-range dependencies from
an utterance tend to be local in a dependency tree. For exam-
ple, the words ”arriving“ and ”Monday“ are neighbours in the
dependency tree but they are four words apart in the utterance
(see Figure 2).

Instead of using manually annotated word dependencies
[12], we used dependencies provided by the RASP dependency
parser [7]. New n-gram features were generated in which a
word history is given by links between words. For example,
the algorithm would generate bi-gram (’arriving’,’Monday’) for
the word ”Monday“. Note however that RASP was used ”off-
the-shelf“ and more accurate dependencies could be obtained
by adapting it to the target domain.

3.4. Learning

The main idea behind transformation-based learning [6] is to
learn an ordered list of rules which incrementally improve an
initial semantic hypotheses (see the algorithm in Figure 3)1.
The initial assignment is made based on simple statistics - the
most common goal is used as initial semantics. The learning is
conducted in a greedy fashion, and at each step the algorithm
chooses the transformation rule that reduces the largest num-
ber of errors in hypotheses. Errors include goal substitutions,
slot insertions, slot deletions, and slot substitutions. The learn-
ing process stops when the algorithm cannot find a rule that
improves the hypotheses beyond some pre-set threshold. Note
that no prior alignment between words and semantic concepts
is needed.

As in the previous work [2, 8, 10, 11], we make use of a
database with lexical realisations of some slots, e.g. city and
airport names. Since the number of possible slot values for each
slot is usually very high, the use of a database results in a more
robust parser. In our method, we replace lexical realisations of
slot values with category labels before parsing, e.g. “i want to
fly from CITY”. After parsing we use a deterministic algorithm
to recover the original values for category labels, which is de-
tailed in [2].

1The list of rules must be ordered because each learnt rule corrects
some of the remaining errors after applying the preceding rules.

1. ASSIGN INITIAL SEMANTICS TO EACH UTTERANCE

2. REPEAT AS LONG AS THE NUMBER OF ERRORS ON THE
TRAINING SET DECREASES

(A) GENERATE ALL RULES WHICH CORRECT AT LEAST
ONE ERROR IN THE TRAINING SET

(B) MEASURE THE NUMBER OF CORRECTED ERRORS BY
EACH RULE

(C) SELECT THE RULE WITH THE LARGEST NUMBER OF
CORRECTED ERRORS

(D) APPLY THE SELECTED RULE TO THE CURRENT STATE
OF THE TRAINING SET

(E) STOP IF THE NUMBER OF CORRECTED ERRORS IS
SMALLER THAN THRESHOLD T.

Figure 3: Rule learning algorithm.

4. Evaluation
In this section, we evaluate our parser on two distinct corpora,
and compare our results with state-of-the-art techniques and a
handcrafted Phoenix parser [13].

4.1. Datasets

In order to compare our results with previous work [2, 8, 10,
11], we apply our method to the ATIS dataset [3]. We use 5012
utterances for training, and the DEC94 dataset as development
data. As in previous work, we test our method on the 448 ut-
terances of the NOV93 dataset, and the evaluation criterion is
the F-measure of the number of reference slot/value pairs that
appear in the output semantics (e.g., from.city = New York). He
& Young detail the test data extraction process in [8].

Our second dataset consists of tourist information dialogues
in a fictitious town (TownInfo). The dialogues were collected
through user trials in which users searched for information
about a specific venue by interacting with a dialogue system in
a noisy background. The TownInfo training, development, and
test sets respectively contain 8396, 986 and 1023 transcribed
utterances. The data includes the transcription of the top hy-
pothesis of a speech recogniser, which allows us to evaluate the
robustness of our models to recognition errors (word error rate
= 34.4%). We compare our model with the STC parser [2] and
the handcrafted Phoenix parser [13]. The Phoenix parser imple-
ments a partial matching algorithm that was designed for robust
spoken language understanding.

4.2. Results

The results for both datasets are shown in Table 2. The
model accuracy is measured in terms of precision, recall, and
F-measure (harmonic mean of precision and recall) of the
slot/value pairs. Both slot and value must be correct to count
as a correct classification.

Results on the ATIS dataset show that the TBL parser (F-
measure = 95.74%) is competitive with respect to the Zettle-
moyer & Collins’ PCCG model [10] (95.9%). Note that this
PCCG model makes use of a considerably large number of
handcrafted entries in their initial lexicon. In addition, TBL
outperforms the STC [2], HVS [8] and MLN [11] parsers. Con-
cerning the TownInfo dataset, Table 2 shows that TBL produces
87.82% of F-measure, which represents a 3.28% improvement
over the handcrafted Phoenix parser, while being competitive
with the STC model - TBL’s performance is only 0.76% lower.

Table 3 shows a contrast between the full system and the

Parser Prec Rec F
ATIS dataset with transcribed utterances:
TBL 96.37 95.12 95.74
PCCG 95.11 96.71 95.9
STC 96.73 92.37 94.50
HVS - - 90.3
MLN - - 92.99
TownInfo dataset with transcribed utterances:
TBL 96.05 94.66 95.35
STC 97.39 94.05 95.69
Phoenix 96.33 94.22 95.26
TownInfo dataset with ASR output:
TBL 92.72 83.42 87.82
STC 94.03 83.73 88.58
Phoenix 90.28 79.49 84.54

Table 2: Slot/value precision (Prec), recall (Rec) and F-measure
(F) for the ATIS and TownInfo datasets.

Parser Prec Rec F
ATIS development dataset:
TBL 93.95 93.70 93.82
No locality constraints 93.38 92.64 93.01
No dependency tree features 92.78 92.04 92.41

Table 3: Comparison of different aspects of the TBL method on
the ATIS development dataset.

system with no features extracted from dependency trees and
the system with no locality constraints. Experiments were car-
ried out on the ATIS development dataset. The results show
that if the dependency tree features are removed or the locality
constraints are not used, the performance degrades.

The learning time of the TBL parser2 is acceptable and the
parsing process is efficient. First, the learning time is about
24 hours on an Intel Pentium 2.8GHz for each dataset. The
TBL parser generates up to 1M potential transformation rules
in each iteration; however, only a fraction of these rules have to
be tested because the search space can be efficiently organised
[6]. Second, the TBL parser is able to parse an utterance in 6ms
while the STC parser needs 200ms on average [2]. We cannot
report on speed the other approaches because such information
is not publicly available.

The TBL parser is very efficient on domains such as ATIS
and TownInfo because the final list of learnt rules is small.
There are 17 unique dialogue acts and 66 unique slots in the
ATIS dataset and the total number of learnt rules is 372. This re-
sults in 4.5 rules per semantic concept on average. In the Town-
Info dataset, we have 14 dialogue acts and 14 slots and the total
number of learnt rules is 195. The average number of rules per
semantic concept is 6.9. The number of semantic concepts per
utterance is 5 on average.

5. Conclusion
This paper presents a novel application of TBL for semantic
parsing. Our method learns a sequence of rules which itera-
tively transforms the initial semantics into the correct semantics.
The TBL parser was applied to two very different domains and
it was shown that its performance is competitive with respect
to the state-of-the-art semantic parsers on both datasets. On the
ATIS dataset, TBL outperforms STC, HVS and MLN parsers

2The source code is available under GNU GPL at http://code.
google.com/p/tbed-parser/.

by 1.27%, 2.75%, and 5.44% respectively [2, 8, 11]. We also
show that TBL outperforms the handcrafted Phoenix parser by
3.28% on ASR output of the TownInfo dataset [2].

Although the TBL approach cannot directly generate an N-
best list of hypotheses with confidence scores, several methods
have been developed to alleviate this problem. For example,
transformation rules can be converted into decision trees from
which informative probability distributions on the class labels
can be obtained [14]. In future work, we plan to investigate
how to adapt the TBL method to obtain multiple hypotheses
and confidence scores, and extend the model to richer domains
where the ability to model long-range dependencies might be
more important.

6. Acknowledgment
This research was partly funded by the UK EPSRC under grant
agreement EP/F013930/1 and by the EU FP7 Programme un-
der grant agreement 216594 (CLASSIC project: www.classic-
project.org).

7. References
[1] R. Kate, Y. Wong, and R. Mooney, “Learning to transform natural

to formal languages,” in Proceedings of AAAI, 2005.

[2] F. Mairesse, M. Gašić, F. Jurčı́ček, S. Keizer, B. Thomson, K. Yu,
and S. Young, “Spoken language understanding from unaligned
data using discriminative classification models,” in Proceedings
of ICASSP, 2009.

[3] D. Dahl, M. Bates, M. Brown, W. Fisher, K. Hunicke-Smith,
D. Pallett, C. Pao, A. Rudnicky, and E. Shriberg, “Expanding the
scope of the ATIS task: The ATIS-3 corpus,” in Proceedings of
the ARPA HLT Workshop, 1994.

[4] J. Williams and S. Young., “Partially observable Markov decision
processes for spoken dialog systems,” Computer Speech and Lan-
guage, vol. 21, no. 2, pp. 231–422, 2007.

[5] B. Thomson, M. Gašić, S. Keizer, F. Mairesse, J. Schatzmann,
K. Yu, and S. Young, “User study of the Bayesian update of dia-
logue state approach to dialogue management,” in Proceedings of
Interspeech, 2008.

[6] E. Brill, “Transformation-based Error-driven Learning and natural
language processing: A case study in Part-of-Speech Tagging,”
Computational Linguistics, vol. 21, no. 4, pp. 543–565, 1995.

[7] E. Briscoe, J. Carroll, and R. Watson, “The second release of the
RASP system,” in Proceedings of COLING/ACL, 2006.

[8] Y. He and S. Young, “Semantic processing using the Hidden Vec-
tor State model,” Computer Speech & Language, vol. 19, no. 1,
pp. 85–106, 2005.

[9] F. Jurčı́ček, J. Svec, and L. Muller, “Extension of HVS seman-
tic parser by allowing left-right branching,” in Proceedings of
ICASSP, 2008.

[10] L. Zettlemoyer and M. Collins, “Online learning of relaxed CCG
grammars for parsing to logical form,” in Proceedings of EMNLP-
CoNLL, 2007.

[11] I. Meza-Ruiz, S. Riedel, and O. Lemon, “Spoken Language Un-
derstanding in dialogue systems, using a 2-layer Markov Logic
Network: Improving semantic accuracy,” in Proceedings of Lon-
dial, 2008.

[12] R. Kate, “A dependency-based word subsequence kernel,” in Pro-
ceedings of EMNLP, 2008.

[13] W. Ward, “The phoenix system: Understanding spontaneous Pro-
ceedings of ICASSP, 1991.

[14] R. Florian, J. C. Henderson, and G. Ngai, “Coaxing confidence
from an old friend: Probabilistic classifications from transforma-
tion rule lists,” in Proceedings EMNLP, 2000.

http://code.google.com/p/tbed-parser/
http://code.google.com/p/tbed-parser/

	 Introduction
	 Related work
	 Transformation-based parsing
	 Example of Parsing
	 Locality constraints
	 Improving the disambiguation of long-range dependencies
	 Learning

	 Evaluation
	 Datasets
	 Results

	 Conclusion
	 Acknowledgment
	 References

