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Abstract 
The Hidden Vector State (HVS) model extends the basic 
Hidden Markov Model (HMM) by encoding each state as a 
vector of stack states but with restricted stack operations.  The 
model uses a right branching stack automaton to assign valid 
stochastic parses to a word sequence from which the language 
model probability can be estimated.  The model is completely 
data driven and is able to model classes from the data that 
reflect the hierarchical structures found in natural language.  
This paper describes the design and the implementation of the 
HVS language model [1], focusing on the practical issues of 
initialisation and training using Baum-Welch re-estimation 
whilst accommodating a large and dynamic state space. 
Results of experiments conducted using the ATIS corpus [2] 
show that the HVS language model reduces test set perplexity 
compared to standard class based language models.  

1. Introduction 
A language model estimates the probability of a word 
sequence )( 1

TWP , for any word string T
T wwwW ,...,, 211 = .  This 

can be decomposed as a product of conditional probabilities 
(1) and is for most practical implementations approximated 
further by defining an equivalence class function φ on the 
history 1

1
−iW  thus limiting the context to the last n–1, 

contiguous words (2) resulting in n-gram models. 
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N-gram models are widely used and have proved to be 
extremely difficult to improve upon.  However, despite their 
efficiency and simplicity, n-grams are known to be sub-
optimal due to issues of data sparcity, inability to capture 
long distance dependencies and inability to model the nested 
structural information found in natural language.  

Class-based language models aim to alleviate the problem 
of data sparcity through the introduction of a further 
classification function that maps the words to a set of classes, 
based on a syntactic or semantic definition, like part-of-
speech (POS) tags or derived through a data driven clustering 
method.  In general, the latter approach produces better class-
based language models [3]. 

Recent research has aimed at enhancing n-grams with the 
ability to predict words using longer spans and to make use of 
the syntactic structure of a sentence in language modelling 
[4], [5].  These models attempt to incorporate hierarchical 
information into the language model, typically by using a 
generative LR parser. This assures a generic context-free 

approach to language modelling but at a high computation 
and memory cost.  The main limitations of these methods are 
their dependency on the parser performance and on the 
availability of a treebank of hand annotated training 
sentences.  

Research in the use of HMMs in language modelling has 
been based on (syntactic) POS tags [6], and (semantic) 
concept tags [7] with the hidden variable corresponding to a 
single tag.  The Hierarchical HMM (HHMM) [8] generalises 
the standard HMM to allow the hidden states to represent 
stochastic processes themselves, and can be used to model 
hierarchical structure but it is computationally extremely 
complex. 

The HVS model can be seen as a constrained version of 
the HHMM in which the hidden state is a vector representing 
the stack of a push-down automaton, constrained to produce 
only right-branching parses.  It has been successfully used in 
semantic processing for relatively narrow discourse domains 
using semi-annotated data [9].  The HVS language model 
aims to dynamically learn hierarchical clusters and model 
long-range dependencies among words.  This paper presents 
the design and implementation of the HVS language model 
and describes experiments which show that it can be trained 
using Estimation-Maximisation (EM), on unannotated data, 
and that it has the ability to selectively retain and therefore 
make better use of context compared to standard class n-
grams. 

The remainder of the paper is organised as follows: in the 
following section we describe the HVS language model.  
Section 3 outlines the issues in building an HVS language 
model and section 4 gives the details of a preliminary 
experimental evaluation.  Finally, section 5 discusses our 
conclusions and our ongoing and future work.  

2. The HVS Language Model 
Any Probabilistic Context Free Grammar (PCFG) 

formalism can be expressed as a first-order vector state 
Markov model.  The HVS language model further constrains 
the vector state to be a stack, with state transitions restricted 
to consist of zero or more pop operations followed by a single 
push operation.  Thus, the basic HVS model is a regular 
HMM in which each state encodes history in a fixed 
dimension stack-like structure.  

Each state consists of a (hidden) stack where each 
element of the stack is a label chosen from a finite set of 
cardinality M+1.  These can be thought of as class labels that 
correspond to nodes of a parse tree denoted as 

},,...,{ #1 cccC M=  where c# corresponds, by definition, to 
sentence boundaries and the empty stack will have a stack 
filled with c#.  Thus a D depth HVS model state can be 
characterized by a vector of dimension D with the most 
recently pushed element at index position 1 (bottom in Fig 1) 



and the oldest at the index position D (top in Fig 1).  
Furthermore, to keep the stack a constant size it is assumed 
that any vacant positions resulting from the pop operation are 
refilled with c#. 
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Figure 1: The HVS Language Model 

Each HVS model state transition is restricted to the 
following operations (Figure 1): (i) exactly nt class labels are 
popped off the stack, (ii) exactly one new class label ct is 
pushed onto the stack.  This results in a right branching stack 
automata.  The number of elements to pop (nt) and the choice 
of the new class label to push (ct) are determined 
probabilistically such that 

)|()|()|( n
1t1tt1tt −−− ⋅= ssss tcPnPP  (3) 

where the intermediate state sn is just s with n class labels 
popped off and  

)](,[ n
1t

1
1t −
−Φ= ss D

tc . (4) 

The function Φ is a stack access function such that )(sj
iΦ  

denotes the sequence of class labels from i to j of a stack of 
depth D and ss ≡Φ )(1

D . 
When n is allowed to be greater than zero, recent class 

labels are discarded in favour of retaining older labels.  
Notice that nt is conditioned on all the class labels that are in 
the stack at t-1 but ct is conditioned only on the class labels 
that remain on the stack after the pop operation.  Thus the 
former distribution can encode embedding, whereas the latter 
focuses on modelling long-range dependencies.  Since the 
stack states are modelled using classes, the data is 
automatically smoothed and clustered dynamically by the 
model.  Thus an HVS based language model can be seen as a 
model that both clusters/smoothes the words and builds a 
dynamic semantic hierarchy among those clusters to predict 
the next occurring word. 

More formally, Let S and W be a sequence of states and 
words respectively.  Then the joint probability P(W ,S) can be 
expressed as follows 
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where  
• t

1S  denotes a sequence of vector states t1 ss K  where 
each ts  at word position t is a vector of D  class labels 

• 1
1

1
1

−− ttW S,  denotes the history up to the word at time t–1 

• tn  is the vector stack shift operation which can be up to 
the number of elements in the stack at time t–1.   

The three main components of equation 5 define the pop 
operation, the push of a new class label and the selection of 
the most probable word to output.  Thus, each hidden vector 
is defined by three probability distributions; the pop operation 
probabilities, the class assignment probabilities, and the word 
output probabilities.  By making suitable independence 
assumptions each of these three components can be 
approximated as  
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The probability of a word sequence )(WP  can be estimated 
by summing over all state sequences (or a Viterbi approx-
imation) of the joint probability in 6. 

EM-based parameter estimation can be used to train the 
model using the auxiliary function  

∑
S

WPWP )ˆ,|(log),|( λλ SS

∑=
NC

WCNPWCNP
,

)ˆ,|,(log),|,( λλ  (7) 

By substituting equation 6 in 7 above we can obtain the 
following re-estimation formulae for each of the components, 
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where )( wwt =δ  = 1 iff the word at time t is w, and is zero 
otherwise. 

The numerators of equations 8, 9, and 10 denote the 
likelihood of the pop operation, the push operation and the 
output, respectively, which can be efficiently calculated using 
the forward backward algorithm defined in terms of allowable 
stack state transitions. 

3. Training the HVS Language Model 
The primary issues in the implementation of the HVS 
language model are the efficient representation of the three 
core probability distributions (i.e. the three components of 
equation 5 and 6) that define the model in terms of storage 
and access, and the efficient calculation of the re-estimation 
formulae during training.  

The state space S, if fully populated, would comprise 
DMS =  states, which is considerable for a reasonable 

number of classes (e.g. M=100+) and stack depth (e.g. D = 3 
to 4). Associated with each of these states are probability 
vectors representing the pop operation, the push operation and 
the output, with the dimensions of these vectors 
corresponding to the stack depth (D), the number of classes 
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(M) and the vocabulary size (V).  Note that the pop operation 
probability and the output probability are conditioned on a 
regular state (s), while the push operation is conditioned on an 
intermediate state (sn). 

Due to data sparcity, in practice, only a part of the state 
space is observed, and the probabilities that were not 
observed need to be estimated through backoff.  For example, 
for the word probabilities, if ))(|()|( 1 ss DwPwP Φ=  is not 
explicitly stored in the model then the backed off probability 

))(|( 1 sD
BO wP Φ  can be computed recursively using  
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where the backoff weight ))(( 1
1 s−ΦdB  is calculated by  
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The same method can be used for the other two distributions.   
The d(r) in 12 above denotes the discount coefficient and 

was calculated by rounding the fractional counts a, and by 
using a modified version of absolute discounting [10] defined 
as 
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Here nr specifies the number of events that occurred r 
times and a fixed discounting factor was used if they are zero.  
Note that the backoff is effectively switched off if the counts 
exceed the constant k.  This value controls the amount of 
backoff in the model and should be small enough to keep the 
reliable estimates intact while facilitating backoff by 
discounting some probability from the sparse distribution.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The structure of the class tree 

For storage efficiency and to facilitate backoff the three 
core probability distributions are stored in a tree data structure 

(Figure 2), called the class tree, in which each node 
corresponds to a class label with the most recently pushed 
class label at the first level, and the oldest class label at the 
leaf level.  Then each node corresponds to a state whose stack 
elements correspond to the class labels along the path from 
the root to that node.  The depth-wise ordering of the class 
labels within the tree is important for backoff.  Each node at 
depth d is used to store the probabilities for the seen events 
and the backoff weights for the unseen events at that node.  
The root node (0) is a special node that is used to store the 
unigram probabilities.  

The initial class tree had only one level of nodes and their 
parameters were initialised using a uniform distribution for 
the pop operation and Kneser-Ney class bigram probabilities 
[10] such that 

)1,0U()|( =snP  (14) 
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During each training cycle, the occurrence statistics are 
accumulated and used to select one or more candidate nodes 
to be split.  A selected node is initially split into the maximum 
number of child nodes, which is equivalent to the number of 
classes in the model, and their parameters are initialised to be 
identical to those of their parent.  The backoff is then 
recalculated and a second pass is performed on this “grown” 
tree and the statistics obtained are used to both update the 
parameters and to prune the model by restricting the number 
of states retained to those that occur more than once.  Also, 
probabilities that are very small are zeroed out thereby 
retaining only the estimates that the model is confident about. 

4. Experiments 
A preliminary evaluation of the HVS model was conducted 
using the ATIS corpus and a conventional class n-gram as a 
baseline. For each value of n (up to 5) the optimal number of 
classes was determined by exhaustive search over the test 
data, thus ensuring that any bias in the choice of class size 
was in favour of the baseline.  We then built HVS models 
with the same number of classes and iteratively trained them 
using the procedure described in section 3.  

All of the data was used for the training sentences except 
for the ATIS-3 Nov 93 set, which was used as the 
developmental set to optimise parameters and the ATIS-3 Dec 
94 set, which was used as the test set.  The training data had 
276K words in 23K sentences while both the developmental 
set and the test set consisted of 10K words in 1K sentences.  
The vocabulary size was 1644 and the average sentence 
length was 10.  All hesitations and interjections that had been 
marked up in the data were removed.  All sentences that 
contained out-of-vocabulary words were removed from the 
test set. 

Two separate classes were assigned for the start and end 
words and all other words were assigned among the 
remaining classes.  The k, in equation 13, was set to 850. 
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To study the variation of the perplexity improvement with 
the depth of the stack, several smaller models were made and 
the corresponding class n-gram perplexities are given for 
comparison.  It should be noted that a HVS model of depth d 
corresponds to a class (d+1)-gram.  The perplexity values for 
the model with 52 classes is presented in Table 1. 

 
# of classes in 
history  

2 
(3-gram) 

3 
(4-gram) 

4 
(5-gram) 

52 class n-gram 26.3 25.0 24.9 
HVS_52 21.7 20.4 20.1 

Table 1: Perplexity for models of varied 
stack depths trained for 250 iterations. 

The baseline class n-gram models were built using the HTK 
toolkit [11].  The optimum number of classes (yielding the 
lowest perplexity) was found to be 116 for all the n-gram 
models.  The perplexity values corresponding to each class n-
gram model and that of an HVS model with stack depth three 
is given in Table 2 below. 
 

Data Set Class 
3-gram 

Class 
4-gram 

Class 
5-gram HVS 3d

ATIS-3 Nov93  18.6 18.0 18.0 16.5 
ATIS-3 Dec94 17.3 16.4 16.9 15.5 

Table 2: Perplexity results for models with 
the optimum number of classes (116). 

In all of the above cases the class perplexity values of the 
HVS models are lower than that of the corresponding class n-
gram perplexity. It can be seen from Table 1 that the 
perplexity values improve as the depth of the stack is 
increased.  To observe the efficiency of the training regime 
we checked the perplexity at the end of each iteration and 
observed that even with the current rather naïve node splitting 
method the training progressed smoothly (Figure 3). 
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Figure 3: Variation of the perplexity during 
training using the ATIS-3 Nov 93 set 

5. Conclusions and Future Work 
This paper has presented the Hidden Vector State model for 
language modelling and a preliminary experimental 
evaluation using the ATIS corpus.  The perplexity results 
obtained so far suggest that the HVS language model is able 
to make better use of context than the standard class n-gram 
models.  Furthermore, inspection of the stack contents during 
typical parses suggests that the model is tracking to some 
extent the phrase structure of the data.  Thus, the model might 
be used not only in recognition but also in assisting with 
meta-data extraction such as punctuation and phrase boundary 
detection [12]. 

The fact that the HVS model is trainable using EM 
enables, in principle at least, the advantages of a structured 
language model to be extended into the domain of very large 
training sets where the provision of annotated treebank data is 
impractical.  However, to achieve this in practice, 
significantly more efficient training algorithms will need to 
be developed.  The specific areas needing development are 
the backoff computations, the pruning of irrelevant states, and 
the node splitting strategy, and these will be the focus of 
future work. 
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