
The Hidden Vector State Language Model
Vidura Seneviratne and Steve Young

Cambridge University Engineering Department
Trumpington Street, Cambridge, CB2 1PZ, England.

{vps26,sjy}@eng.cam.ac.uk

Abstract
The Hidden Vector State (HVS) model extends the basic
Hidden Markov Model (HMM) by encoding each state as a
vector of stack states but with restricted stack operations. The
model uses a right branching stack automaton to assign valid
stochastic parses to a word sequence from which the language
model probability can be estimated. The model is completely
data driven and is able to model classes from the data that
reflect the hierarchical structures found in natural language.
This paper describes the design and the implementation of the
HVS language model [1], focusing on the practical issues of
initialisation and training using Baum-Welch re-estimation
whilst accommodating a large and dynamic state space.
Results of experiments conducted using the ATIS corpus [2]
show that the HVS language model reduces test set perplexity
compared to standard class based language models.

1. Introduction
A language model estimates the probability of a word
sequence)(1

TWP , for any word string T
T wwwW ,...,, 211 = . This

can be decomposed as a product of conditional probabilities
(1) and is for most practical implementations approximated
further by defining an equivalence class function φ on the
history 1

1
−iW thus limiting the context to the last n–1,

contiguous words (2) resulting in n-gram models.

 ∏ =
−=

M

k
k

k
M WwPwPWP

2
1

111)|()()((1)

 ∏∏ =
−

+−=
− =≈

m

i
i

nii
m

i
i

i WwPWwP
1

1
11

1
1)|())(|(φ (2)

N-gram models are widely used and have proved to be
extremely difficult to improve upon. However, despite their
efficiency and simplicity, n-grams are known to be sub-
optimal due to issues of data sparcity, inability to capture
long distance dependencies and inability to model the nested
structural information found in natural language.

Class-based language models aim to alleviate the problem
of data sparcity through the introduction of a further
classification function that maps the words to a set of classes,
based on a syntactic or semantic definition, like part-of-
speech (POS) tags or derived through a data driven clustering
method. In general, the latter approach produces better class-
based language models [3].

Recent research has aimed at enhancing n-grams with the
ability to predict words using longer spans and to make use of
the syntactic structure of a sentence in language modelling
[4], [5]. These models attempt to incorporate hierarchical
information into the language model, typically by using a
generative LR parser. This assures a generic context-free

approach to language modelling but at a high computation
and memory cost. The main limitations of these methods are
their dependency on the parser performance and on the
availability of a treebank of hand annotated training
sentences.

Research in the use of HMMs in language modelling has
been based on (syntactic) POS tags [6], and (semantic)
concept tags [7] with the hidden variable corresponding to a
single tag. The Hierarchical HMM (HHMM) [8] generalises
the standard HMM to allow the hidden states to represent
stochastic processes themselves, and can be used to model
hierarchical structure but it is computationally extremely
complex.

The HVS model can be seen as a constrained version of
the HHMM in which the hidden state is a vector representing
the stack of a push-down automaton, constrained to produce
only right-branching parses. It has been successfully used in
semantic processing for relatively narrow discourse domains
using semi-annotated data [9]. The HVS language model
aims to dynamically learn hierarchical clusters and model
long-range dependencies among words. This paper presents
the design and implementation of the HVS language model
and describes experiments which show that it can be trained
using Estimation-Maximisation (EM), on unannotated data,
and that it has the ability to selectively retain and therefore
make better use of context compared to standard class n-
grams.

The remainder of the paper is organised as follows: in the
following section we describe the HVS language model.
Section 3 outlines the issues in building an HVS language
model and section 4 gives the details of a preliminary
experimental evaluation. Finally, section 5 discusses our
conclusions and our ongoing and future work.

2. The HVS Language Model
Any Probabilistic Context Free Grammar (PCFG)

formalism can be expressed as a first-order vector state
Markov model. The HVS language model further constrains
the vector state to be a stack, with state transitions restricted
to consist of zero or more pop operations followed by a single
push operation. Thus, the basic HVS model is a regular
HMM in which each state encodes history in a fixed
dimension stack-like structure.

Each state consists of a (hidden) stack where each
element of the stack is a label chosen from a finite set of
cardinality M+1. These can be thought of as class labels that
correspond to nodes of a parse tree denoted as

},,...,{ #1 cccC M= where c# corresponds, by definition, to
sentence boundaries and the empty stack will have a stack
filled with c#. Thus a D depth HVS model state can be
characterized by a vector of dimension D with the most
recently pushed element at index position 1 (bottom in Fig 1)

and the oldest at the index position D (top in Fig 1).
Furthermore, to keep the stack a constant size it is assumed
that any vacant positions resulting from the pop operation are
refilled with c#.

 K K

Figure 1: The HVS Language Model

Each HVS model state transition is restricted to the
following operations (Figure 1): (i) exactly nt class labels are
popped off the stack, (ii) exactly one new class label ct is
pushed onto the stack. This results in a right branching stack
automata. The number of elements to pop (nt) and the choice
of the new class label to push (ct) are determined
probabilistically such that

)|()|()|(n
1t1tt1tt −−− ⋅= ssss tcPnPP (3)

where the intermediate state sn is just s with n class labels
popped off and

)](,[n
1t

1
1t −
−Φ= ss D

tc . (4)

The function Φ is a stack access function such that)(sj
iΦ

denotes the sequence of class labels from i to j of a stack of
depth D and ss ≡Φ)(1

D .
When n is allowed to be greater than zero, recent class

labels are discarded in favour of retaining older labels.
Notice that nt is conditioned on all the class labels that are in
the stack at t-1 but ct is conditioned only on the class labels
that remain on the stack after the pop operation. Thus the
former distribution can encode embedding, whereas the latter
focuses on modelling long-range dependencies. Since the
stack states are modelled using classes, the data is
automatically smoothed and clustered dynamically by the
model. Thus an HVS based language model can be seen as a
model that both clusters/smoothes the words and builds a
dynamic semantic hierarchy among those clusters to predict
the next occurring word.

More formally, Let S and W be a sequence of states and
words respectively. Then the joint probability P(W ,S) can be
expressed as follows

∏
=

−− ⋅=
T

t

tt
t WnPWP

1

1
1

1
1)|(),(S,S

)|(),|(1
1

1
1

1
1

1
tt

tt
tt

t WwPnWcP S,S, −−− ⋅ (5)

where
• t

1S denotes a sequence of vector states t1 ss K where
each ts at word position t is a vector of D class labels

• 1
1

1
1

−− ttW S, denotes the history up to the word at time t–1

• tn is the vector stack shift operation which can be up to
the number of elements in the stack at time t–1.

The three main components of equation 5 define the pop
operation, the push of a new class label and the selection of
the most probable word to output. Thus, each hidden vector
is defined by three probability distributions; the pop operation
probabilities, the class assignment probabilities, and the word
output probabilities. By making suitable independence
assumptions each of these three components can be
approximated as

∏
=

−
−Φ≈

T

t
tt

n
t

D
tt-t wPcPnPWP

1
1

1
11)|())(|()|(),(sssS (6)

The probability of a word sequence)(WP can be estimated
by summing over all state sequences (or a Viterbi approx-
imation) of the joint probability in 6.

EM-based parameter estimation can be used to train the
model using the auxiliary function

∑
S

WPWP)ˆ,|(log),|(λλ SS

∑=
NC

WCNPWCNP
,

)ˆ,|,(log),|,(λλ (7)

By substituting equation 6 in 7 above we can obtain the
following re-estimation formulae for each of the components,

),(

),,(
)|(ˆ

1

1

λ

λ

WP

WnnP
nP

t
t

t
tt

|s s

|s s
s

∑
∑

=

==
=

−

−
, (8)

),(

),)](,[(
)|(ˆ

1

1
1

λ

λ

WP

WcP
cP

t

nn
t-

t

nD
t

n

|ss

|ss
s

∑
∑

=

Φ=
=

−

, (9)

and

),(

)(),|(
)|(ˆ

λ

δλ

WP

wwWP
wP

t
t

t
t

t

|s s

 s s
s

∑
∑

=

==
= (10)

where)(wwt =δ = 1 iff the word at time t is w, and is zero
otherwise.

The numerators of equations 8, 9, and 10 denote the
likelihood of the pop operation, the push operation and the
output, respectively, which can be efficiently calculated using
the forward backward algorithm defined in terms of allowable
stack state transitions.

3. Training the HVS Language Model
The primary issues in the implementation of the HVS
language model are the efficient representation of the three
core probability distributions (i.e. the three components of
equation 5 and 6) that define the model in terms of storage
and access, and the efficient calculation of the re-estimation
formulae during training.

The state space S, if fully populated, would comprise
DMS = states, which is considerable for a reasonable

number of classes (e.g. M=100+) and stack depth (e.g. D = 3
to 4). Associated with each of these states are probability
vectors representing the pop operation, the push operation and
the output, with the dimensions of these vectors
corresponding to the stack depth (D), the number of classes

wt

Pop
 nt

Push
 ct

c#
c#
c#
c2

c#
c#
c#
c#

c#
c#
c1
ct

c#
c#
c#
c1

c#
c1
cx
ct-1

c#
c#
c#
c1

c#
c#
c#
c#

w1 wt-1 wT #

s0 s1 st-1 st sT sT+1 n
1ts −

Output
 wt

(M) and the vocabulary size (V). Note that the pop operation
probability and the output probability are conditioned on a
regular state (s), while the push operation is conditioned on an
intermediate state (sn).

Due to data sparcity, in practice, only a part of the state
space is observed, and the probabilities that were not
observed need to be estimated through backoff. For example,
for the word probabilities, if))(|()|(1 ss DwPwP Φ= is not
explicitly stored in the model then the backed off probability

))(|(1 sD
BO wP Φ can be computed recursively using

))(|())(())(|(1
1

1
11 sss −− Φ⋅Φ=Φ d

BO
dD

BO wPBwP (11)

where the backoff weight))((1
1 s−ΦdB is calculated by

∑
∑

Ω∈
−

Ω∈

Φ−−

Φ⋅−−
=Φ

)(
1

1

)(1
1))(|(11

))(|()(11
))((

dw
d

BO

dw
d

d

wP
wPrd

B
s

s
s . (12)

The same method can be used for the other two distributions.
The d(r) in 12 above denotes the discount coefficient and

was calculated by rounding the fractional counts a, and by
using a modified version of absolute discounting [10] defined
as

()

≠+−

=≠+

≥

=

0)2(

0,0,)2(

1

)(

211

21
21

1

aannna

annnn
n

ka

rd (13)

Here nr specifies the number of events that occurred r
times and a fixed discounting factor was used if they are zero.
Note that the backoff is effectively switched off if the counts
exceed the constant k. This value controls the amount of
backoff in the model and should be small enough to keep the
reliable estimates intact while facilitating backoff by
discounting some probability from the sparse distribution.

Figure 2: The structure of the class tree

For storage efficiency and to facilitate backoff the three
core probability distributions are stored in a tree data structure

(Figure 2), called the class tree, in which each node
corresponds to a class label with the most recently pushed
class label at the first level, and the oldest class label at the
leaf level. Then each node corresponds to a state whose stack
elements correspond to the class labels along the path from
the root to that node. The depth-wise ordering of the class
labels within the tree is important for backoff. Each node at
depth d is used to store the probabilities for the seen events
and the backoff weights for the unseen events at that node.
The root node (0) is a special node that is used to store the
unigram probabilities.

The initial class tree had only one level of nodes and their
parameters were initialised using a uniform distribution for
the pop operation and Kneser-Ney class bigram probabilities
[10] such that

)1,0U()|(=snP (14)

)|())(|()|(1
1 ccPcPcP nn ′=Φ= ss (15)

)|())(|()|(1
1 cwPwPwP =Φ= ss (16)

During each training cycle, the occurrence statistics are
accumulated and used to select one or more candidate nodes
to be split. A selected node is initially split into the maximum
number of child nodes, which is equivalent to the number of
classes in the model, and their parameters are initialised to be
identical to those of their parent. The backoff is then
recalculated and a second pass is performed on this “grown”
tree and the statistics obtained are used to both update the
parameters and to prune the model by restricting the number
of states retained to those that occur more than once. Also,
probabilities that are very small are zeroed out thereby
retaining only the estimates that the model is confident about.

4. Experiments
A preliminary evaluation of the HVS model was conducted
using the ATIS corpus and a conventional class n-gram as a
baseline. For each value of n (up to 5) the optimal number of
classes was determined by exhaustive search over the test
data, thus ensuring that any bias in the choice of class size
was in favour of the baseline. We then built HVS models
with the same number of classes and iteratively trained them
using the procedure described in section 3.

All of the data was used for the training sentences except
for the ATIS-3 Nov 93 set, which was used as the
developmental set to optimise parameters and the ATIS-3 Dec
94 set, which was used as the test set. The training data had
276K words in 23K sentences while both the developmental
set and the test set consisted of 10K words in 1K sentences.
The vocabulary size was 1644 and the average sentence
length was 10. All hesitations and interjections that had been
marked up in the data were removed. All sentences that
contained out-of-vocabulary words were removed from the
test set.

Two separate classes were assigned for the start and end
words and all other words were assigned among the
remaining classes. The k, in equation 13, was set to 850.

C3

])[|(#,3,3,3 cccwP

])[|(3,3 ccwP

])[|(3,3,3 cccwP

])[|(3cwP

C3

C4

C4

C3

0

Cm

Cn Ck

M
M

M
])[|(4,3,3,3 ccccwP

To study the variation of the perplexity improvement with
the depth of the stack, several smaller models were made and
the corresponding class n-gram perplexities are given for
comparison. It should be noted that a HVS model of depth d
corresponds to a class (d+1)-gram. The perplexity values for
the model with 52 classes is presented in Table 1.

of classes in
history

2
(3-gram)

3
(4-gram)

4
(5-gram)

52 class n-gram 26.3 25.0 24.9
HVS_52 21.7 20.4 20.1

Table 1: Perplexity for models of varied
stack depths trained for 250 iterations.

The baseline class n-gram models were built using the HTK
toolkit [11]. The optimum number of classes (yielding the
lowest perplexity) was found to be 116 for all the n-gram
models. The perplexity values corresponding to each class n-
gram model and that of an HVS model with stack depth three
is given in Table 2 below.

Data Set Class
3-gram

Class
4-gram

Class
5-gram HVS 3d

ATIS-3 Nov93 18.6 18.0 18.0 16.5
ATIS-3 Dec94 17.3 16.4 16.9 15.5

Table 2: Perplexity results for models with
the optimum number of classes (116).

In all of the above cases the class perplexity values of the
HVS models are lower than that of the corresponding class n-
gram perplexity. It can be seen from Table 1 that the
perplexity values improve as the depth of the stack is
increased. To observe the efficiency of the training regime
we checked the perplexity at the end of each iteration and
observed that even with the current rather naïve node splitting
method the training progressed smoothly (Figure 3).

15

17

19

21

23

25

1 51 101 151 201 251 301
Iteration number

P
er

pl
ex

ity

HVS 5-gram

Figure 3: Variation of the perplexity during
training using the ATIS-3 Nov 93 set

5. Conclusions and Future Work
This paper has presented the Hidden Vector State model for
language modelling and a preliminary experimental
evaluation using the ATIS corpus. The perplexity results
obtained so far suggest that the HVS language model is able
to make better use of context than the standard class n-gram
models. Furthermore, inspection of the stack contents during
typical parses suggests that the model is tracking to some
extent the phrase structure of the data. Thus, the model might
be used not only in recognition but also in assisting with
meta-data extraction such as punctuation and phrase boundary
detection [12].

The fact that the HVS model is trainable using EM
enables, in principle at least, the advantages of a structured
language model to be extended into the domain of very large
training sets where the provision of annotated treebank data is
impractical. However, to achieve this in practice,
significantly more efficient training algorithms will need to
be developed. The specific areas needing development are
the backoff computations, the pruning of irrelevant states, and
the node splitting strategy, and these will be the focus of
future work.

6. References
[1] Young, S. J., “The Hidden Vector State language model”,

Tech. Report CUED/F-INFENG/TR.467, Cambridge
University Engineering Department, 2003.

[2] Price, P., “Evaluation of spoken language systems: the
ATIS domain”, In Proc. ARPA HLT Workshop, 91-95,
1990.

[3] Niesler, T.R., Whittaker, E.W.D., and Woodland, P.C.,
“Comparisons of Part-of-Speech and automatically
derived category-based language models for speech
recognition”, In Proc. of the ICASSP, Washington, 1998.

[4] Chelba, C. and Jelinek F., “Structured language
modelling”, Comp. Speech & Language, 14(4): 283–332,
2000.

[5] Roark, B., “Probabilistic top-down parsing and language
modelling”, In Comp. Linguistics 27(2): 249-276, 2001.

[6] Jelinek, F. “Robust Part-Of-Speech tagging using a
Hidden Markov Model”, IBM Tech. Report, 1985.

[7] Levin, E. and Pieraccini R., “CHRONUS, the next gene-
ration”, In Proc. of the 1995 DARPA Speech and Natural
Language Workshop, Texas, 269-271, 1995.

[8] Fine, S., Singer Y., and Tishby N., “The Hierarchical
Hidden Markov Model: Analysis and applications”,
Machine Learning 32(1): 41-62, 1998.

[9] He, Y. and Young S.J., “Hidden Vector State Model for
hierarchical semantic parsing”, In Proc. of the ICASSP,
Hong Kong, 2003.

[10] Ney, H., Essen, U., and Kneser R., “On structuring
probabilistic dependences in stochastic language
modeling”, Comp. Speech and Language, 8:1-38, 1994.

[11] Young, S. J., Kershaw D., Moore G., Odell J., Ollason
D., Valtchev V., and Woodland P. C., The HTK Book,
Cambridge University Engineering Department, URL:
http://htk.eng.cam.ac.uk/. 2002.

[12] Liu Y., Shriberg E., Stolcke A., Peskin B., Ang J., Hillard
D., Ostendorf M., Tomalin M., Woodland P.C., and
Harper M., “Structural metadata research in the EARS
program”, In Proc. of the ICASSP, Philadelphia, 2005.

