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Abstract

Within the broad field of spoken dialogue systems, the application of machine-learning approaches to
dialogue management strategy design is a rapidly growing research area. The main motivation is the
hope of building systems that learn through trial-and-error interaction what constitutes a good dialogue
strategy. Training of such systems could in theory be done using human users or using corpora of human-
computer dialogue, but in practice the typically vast space of possible dialogue states and strategies cannot
be explored without the use of automatic user simulation tools.

This requirement for training statistical dialogue models has created an interesting new application
area for predictive statistical user modelling and a variety of different techniques for simulating user
behaviour have been presented in the literature ranging from simple Markov Models to Bayesian
Networks. The development of reliable user simulation tools is critical to further progress on automatic
dialogue management design but it holds many challenges, some of which have been encountered in
other areas of current research on statistical user modelling, such as the problem of “concept drift”,
the problem of combining content-based and collaboration-based modelling techniques, and user model
evaluation. The latter topic is of particular interest, because simulation-based learning is currently one of
the few applications of statistical user modelling which employs both direct “accuracy-based” and indirect
“utility-based” evaluation techniques.

In this paper, we briefly summarize the role of the dialogue manager in a spoken dialogue system,
give a short introduction to reinforcement-learning of dialogue management strategies and review the
literature on user modelling for simulation-based strategy learning. We further describe recent work on
user model evaluation and discuss some of the current research issues in simulation-based learning from
a user modelling perspective.
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1 Introduction and Overview

Research on user modelling has a long history in the field of Spoken Dialogue Systems (SDS) and Natural
Language Processing (NLP). Traditionally, the most commonly cited motivation for this work has been to
enable dialogue systems to adapt to individual user needs and preferences by consulting a model of their
human dialogue partner, similar to the way humans intuitively use mental models of their interlocutor
when engaging in a conversation. The majority of research on user modelling in SDS and NLP has
always had a strong linguistically motivated focus on non-statistical methods and the modelling techniques
employed have often been highly complex in nature and frequently based on manually constructed rules
or various forms of logic (Zukerman and Litman, 2001).

In recent years, however, the application of machine-learning approaches to dialogue system design
has created a need for simple statistical user models which are probabilistic in nature and trainable on
existing human-computer dialogue data. The purpose of user modelling in this new area of SDS research
is not to model the precise characteristics of an individual user during the live operation of a system, but
to provide the basis for user simulation tools which can be used during the development phase of a new
dialogue system (Levin et al., 2000; Young, 2002a).

Current work on predictive, statistical user modelling in SDS is of particular importance to the design
of dialogue management strategies. The task of the Dialogue Manager (DM) in a spoken dialogue system
is to control the flow of the dialogue and to decide which actions to take in response to user input. In order
to complete these tasks, the DM needs a dialogue strategy that defines when to take the initiative in a
dialogue, when to confirm receipt of a piece of information, how to identify and recover from recognition
and understanding errors, and so forth. The manual development of a good dialogue strategy is a major
design challenge and has been described as “an art, rather than a science” (Jones and Galliers, 1996) for
many years.

Machine-learning approaches to dialogue management attempt to learn optimal strategies from corpora
of real human-computer dialogue data using automated “trial-and-error” methods instead of relying on
empirical design principles. However, the size of currently available annotated dialogue corpora is far
too small to sufficiently explore the vast space of possible dialogue states and strategies. In addition, no
guarantee can be given that the truly optimal strategy is indeed present in a given training corpus and
it may thus be argued that an optimal strategy cannot be learned from a fixed corpus, regardless of its
size. An interesting solution to this problem is to train a statistical, predictive user model for simulating
user responses which can then be used to learn dialogue strategies through trial-and-error interaction
between the dialogue manager and the simulated user (Levin et al., 2000; Scheffler, 2002; Pietquin, 2004;
Henderson et al., 2005; Filisko and Seneff, 2005).
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Figurel Learning Dialogue Strategies with a Simulated User: A statistical model for simulating user behaviour is
fi rst trained on a corpus of human-computer dialogues. Using reinforcement-learning, an optimal dialogue strategy
can then be found through trial-and-error interaction between the simulated user and the learning dial ogue manager.

More specifically, the user simulation-based setup for learning dialogue strategies consists of two
phases, as illustrated in Figure 1. First, the user model is trained on a dialogue corpus to learn what



User Simulation for Reinforcement-Learning of Dialogue Strategies 3

responses a real user would provide in a given dialogue context!. A form of supervised learning, i.e.
“learning by example” is commonly used for this step. In the second phase the trained user model is used
to predict responses to system actions. The learning system interacts with the simulated user and optimises
its dialogue strategy based on the feedback given by the simulated user. This form of Reinforcement-
Learning with an automatic user simulation tool allows any number of training dialogues to be generated
and it also enables dialogue strategies that are not present in the existing corpus of human computer
dialogues to be explored. It enables the DM to deviate from the known strategies and learn new and
potentially better ones.

User simulation-based learning of dialogue strategies presents a very interesting application of predic-
tive statistical user modelling. The work is critical to further progress on machine-learning approaches to
dialogue management but it is also highly challenging. The user model needs to be capable of producing
responses that a real user might have given in a certain dialogue situation, taking into account observable
aspects such as the dialogue history as well as unobservable aspects such the user’s goal, memory and
preferences. The user model must also cover a broad variety of natural behaviour and reflect the diversity
of a real user population to ensure that the learned strategies work well for all kinds of human user
behavior. Within a specific dialogue however, the responses should be consistent and reflect individual
user characteristics such as expertise, cooperativeness and patience. Finally, the user model must achieve
a trade-off between adequately covering the complexity of human behaviour and being simple enough for
its parameters to be trainable on a limited amount of corpus data.

To date, strategy learning with a simulated user has been addressed almost entirely by research groups
with a background in dialogue systems design. In this paper, we survey the existing literature and try to
show that much could be gained by approaching the problem from a user modelling viewpoint. We argue
that many problems encountered in building user models for simulation-based learning are problems also
encountered in other areas of statistical user modelling. Our aim is to show that an understanding of user
modelling concepts such as concept-drift and the use of user modelling terminology (eg. content- vs.
collaboration-based approaches) may be very helpful for future work on dialogue strategy learning.

Research on simulation-based learning is also interesting with regards to user model evaluation. In
recent work, the topic has been approached using direct and indirect forms of evaluation to assess both the
quality of the currently available user models as well as the quality of the dialogue strategies learned with
these user models. The results are summarized in this paper and are likely to be of interest to research
groups working on statistical user modelling inside and outside of spoken dialogue systems design.

The paper is structured as follows. We first provide a brief introduction to the role of the dialogue
manager in a spoken dialogue system (Section 2) and explain how reinforcement learning techniques
can be used for finding optimal dialogue management strategies through trial and error interaction with
a simulated user (Section 3). We then summarize the background literature on user simulation-based
learning and discuss current research issues in the field from a user modelling perspective (Section 4).
Finally, we report on recent work on user model evaluation (Section 5) and conclude with a brief summary
(Section 6).

1The diffi culties of fi nding an adequate Markovian state representation of dialogue context and building a user model
that generalises well to unseen dialogue situations will be discussed in this paper.
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2 Dialogue Management in Spoken Dialogue Systems

The field of spoken dialogue systems has seen rapid developments over the past decade, both in the
academic (Jurafsky et al., 1994; Zue, 1997; Seneff et al., 1998; Glass, 1999; Young, 2002a) as well as
the commercial domain (Aust et al., 1995; Gorin et al., 1997; Gurston et al., 2001; Pieraccini et al.,
2004). Speech recognition is turning into a mature technology and voice-driven interfaces are becoming
a common part of everyday life through mass-market applications such as portable devices, in-car navi-
gation systems or telephone-based information systems. Overall, the more recently deployed commercial
applications are gradually changing the public perception that speech interfaces are notoriously unreliable,
badly designed and error-prone.

The aim of this section is to explain the function of a dialogue management strategy in a dialogue
system and to motivate the use of statistical approaches to strategy design. We first provide a very brief
overview of the general architecture of a spoken dialogue system and outline the role of the dialogue
manager in Section 2.1. Section 2.2 introduces the concept of a dialogue strategy and investigates two of
the key issues in dialogue management strategy design. Section 2.3 concludes by contrasting empirical
and statistical approaches to strategy development.

2.1 The Role of the Dialogue Manager

The general architecture of a spoken dialogue system (SDS) is best visualised using a block diagram
depicting the flow of information between the user and the major system components. As shown in
Figure 2, the dialogue manager (DM) is the central component of a dialogue system and interfaces
with the input- as well as the output-processing side of the system. It receives the semantically parsed
representation of the user input and generates an appropriate high-level representation of the next system
action. The task of the DM is to control the flow of the dialogue and to decide which actions to take in
response to user input. The DM has to interpret the incoming semantic representation of the user input
in the context of the dialogue, resolve ellipsis and anaphora, evaluate the relevance and completeness of
user requests, identify and recover from recognition and understanding errors, retrieve information from
peripheral databases and format appropriate system replies.
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Figure 2 The main components of a Spoken Dialogue System: The speech recognizer receives the acoustic
signal emitted by the user, trandates it into a feature based representation and outputs the most likely sequence
of words, or dternatively a list of the most likely hypotheses. The text-based output of the speech recognizer is
then semantically parsed by alanguage understanding component and associated with a meaning representation. On
the output generation side, the reverse process is followed: the language generation component translates the high-
level representation of a system action into a sequence of words which is then synthesised using a text-to-speech
component.
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2.2 Dialogue Management Strategies

In order to complete the tasks described above and to decide “what to say”, the dialogue manager needs to
track the dialogue history and update some representation of the current state of the dialogue. In addition,
the DM needs a dialogue strategy that defines the conversational behaviour of the system, for example
when to take the initiative in a dialogue or when to establish common ground.

The performance of a spoken dialogue system is highly dependent on the quality of its DM strategy.
Unfortunately, the design of a good strategy is far from trivial since there is no clear definition as to
what constitutes a good strategy. User populations are often diverse, thus making it difficult to foresee
which form of system behaviour will lead to quick and successful completion of the dialogue. In addition,
the omnipresence of recognition errors leads to constant uncertainty about the true intention of the user.
As applications reach greater levels of complexity, the process of designing robust dialogue strategies
becomes very time-consuming and expensive.

To further illustrate the complexity involved in dialogue strategy design, the following subsections
briefly discuss two frequently arising design issues: the degree of initiative a system can take in a dialogue
and the choice of confirmation strategy. Our goal here is not to provide a complete overview or to argue
in favour of any specific design choices, but to indicate the potential benefits of automatic machine-
learning techniques in the context of dialogue strategy design. Two issues which have recently received
much attention but are not covered here include error handling and recovery (Bohus, 2004; Bohus and
Rudnicky, 2005a) and accounting for uncertainty introduced by the noisy communication channel (Bohus
and Rudnicky, 2005b; Williams, 2003; Williams et al., 2005a,b).

2.2.1 Degrees of Initiative

Dialogue management strategies are often classified according to the degree of initiative they take in a
dialogue. Systems following a system-initiative strategy take the lead role in a dialogue by asking precise,
direct questions such as “Where are you flying from? What is your destination? What is your preferred
departure date?”. The user is sequentially prompted for every necessary piece of information and his or
her response is expected to contain only the requested piece of information. This type of approach is often
chosen in commercial applications, because it usually results in short user responses, less out-of-domain
utterances and higher recognition performance (Kamm, 1995).

Mixed-initiative systems on the other hand, share control over the dialogue flow with the user. Systems
of this type often start with an open question such as “How can | help you?”. They can usually process
more complex linguistic constructs and allow the user to specify several pieces of information at the same
time. Mixed-initiative systems place less constraints on the information flow between the user and the
system and thus potentially allow for more efficient dialogues. An expert user who is familiar with the
system for instance, is not forced to step through a long series of prompts. Instead, he or she is able to
enter all the necessary information without having to wait for the system to request it (Smith and Hipp,
1994; Webber and Joshi, 1982).

Given adequate recognition performance, mixed-initiative strategies lead to a more powerful form of
dialogue control because they exploit the ability of human language to simultaneously convey multiple
pieces of information in a compact representation. Indeed, user frustration with current system-initiative
SDS often arises because this advantage is not exploited. A series of yes/no questions for a telephony
application, for instance, may just as well be implemented using touch-tone input. Users are often reluctant
to use a voice interface if the same functionality can be delivered using a more noise-robust and less error-
prone communication channel. With a mixed-initiative strategy, the benefits of using a natural language
interface should be more evident to the user.

Studies such as (Potjer et al., 1996), however, show that mixed-initiative strategies may not always
be preferable given the limited recognition and understanding capabilities of current systems. A system
initiative strategy places stronger constraints on the user input and enables the search space of the
recognizer to be highly constrained. As a consequence, the recognition performance and goal achievement
rate under high-noise conditions is often better when a system-initiative strategy is used. The reduced
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number of misunderstandings can lead to greater user-satisfaction, despite the strong constraints placed
on the dialogue.

In choosing between system-initiative and mixed-initiative, one also needs to consider that users draw
on previous experiences with spoken dialogue systems and tend to develop a mental model of the system
behaviour. Users who are used to traditional forms of system-initiative “slot-filling” dialogue, may expect
the SDS to fill one slot after the other. An open question such as “How can | help you?” may appear
irritating, since it gives no clear indication as to what response the system expects. Even expert-users often
prefer a clearly structured system-initiative dialogue over a mixed-initiative one (Walker et al., 1997). The
perceived dialogue progress is also very important. A system-initiative strategy may be the less efficient
form of communication, but it provides an assuring feeling of constant progress.

Research has suggested the use of hybrid approaches (Rosset et al., 1999; Rudnicky et al., 1999;
Fleming and Cohen, 2001) that allow a mixed-initiative system to back off to system-initiative when
dialogue problems are detected. This way, the system can regain control when the dialogue seems to
deviate from the correct path or when the recognition performance suffers.

2.2.2 Confirmation Strategies
A second key-issue in designing a dialogue manager is the choice of confirmation strategy. Since human-
computer interaction always involves a noisy communication channel, the system needs to confirm
its recognition results using grounding actions. The frequency of confirmations and the choice of
confirmation style however, leaves plenty of scope for design decisions. In a flight booking system, for
instance, the system can collect all the necessary pieces of information and then attempt to confirm all of
them in a single turn. Alternatively, it can confirm each piece of information as it goes along.

The system can also choose between implicit and explicit confirmations. The latter type of confirmation
requires the user to verify the recognition result in the next dialogue turn, as shown in the dialogue below:

System Were do you want to go?

User: To New York.

System Your destination is New York - is that correct?
User: Yes.

System k. And on what date do you want to go?

By using implicit confirmations, the system can combine the confirmation of one “slot” with a request
for a different slot, as shown below:

System Were do you want to go?
User: To New YorKk.
System And on what date do you want to go to New York?

The performance of different confirmation strategies has been investigated in a number of studies
(Smith, 1998; Shin et al., 2002; Niimi and Nishimoto, 1999). The results show that implicit confirmations
can increase the efficiency of the dialogue but that their use also involves a higher risk. If the implicitly
confirmed piece of information is incorrect, it can be difficult and time-consuming to rectify the misun-
derstanding and repair the dialogue. A possible way of combining explicit and implicit confirmations is to
choose the style of confirmation dynamically, depending on the recognition confidence score produced by
the speech recognizer. If the recognition result has a high confidence, an implicit confirmation is chosen.
If the confidence is low, the system resorts to an explicit confirmation. If the confidence is very low, the
system may even decide to reject the user utterance completely and re-request the piece of information.

2.3 Empirical and Statistical Approaches to Dialogue Strategy Design

Over the last decades, numerous research papers have attempted to develop recommendations and
guidelines for dialogue management. Examples of empirically obtained design principles can be found
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in (Bernsen et al., 1996, 1998; Rosset et al., 1999) and many further references are listed in (Walker et al.,
1998; Walker, 2000). Yet, the process of designing dialogue management strategies is still often driven by
“trial and error” (Levin et al., 2000) and remains an “art rather than a science” (Jones and Galliers, 1996).

Typically, a small number of strategies are hand-crafted by a group of expert designers. A spoken
dialogue system is then built that explores each of these alternative strategies. The system is then tested
on real users and conclusions are drawn as to which strategy performs best for the given task (Gorin et al.,
1996; Polifroni et al., 1992; Simpson and Fraser, 1993; Litman and Pan, 1999). A large number of subjects
is usually needed to obtain results of statistical significance, leading to high development costs and slow
cycles of iterative refinements. Interpretation of the results is also often difficult since user satisfaction or
dissatisfaction with a dialogue system or strategy may be due to many different factors. The results can
be biased through subtle influences such as the order in which the strategies are presented to the subjects
(Devillers and Bonneau-Maynard, 1998) and often do not necessarily provide a clear guide to further
improvements.

As the process of designing, implementing and testing dialogue management strategies is becoming
increasingly complex, the focus of scientific research is increasingly turning from empirical methods
to data-driven techniques. Statistical approaches which model processes probabilistically and estimate
parameters from corpora of real human-computer dialogues are gaining popularity and have affected all
areas of SDS research over the past decade (Young, 2002b,3).

The motivation for training models on real data rather than relying on traditional linguistically-
motivated techniques is clear. The latter approach of observing and analysing user phenomena and
then manually constructing rules to cover them incurs significant development and maintenance costs.
Moreover, the approach is inherently suboptimal because no guarantee can be given, that the hand-crafted
set of rules does in fact optimally cover all possible aspects of user behaviour. Especially as systems
become more complex, it is nearly impossible to test whether the system will perform well in all possible
dialogue scenarios and whether the given set of rules is indeed optimal.

Statistical models, in contrast, can be trained on corpora of real human-computer dialogue and they
explicitly model the variance in user behaviour that hand-written rules cannot cover. While model
construction and parameterization is of course still dependent on expert knowledge, the hope is to build
systems which offer more robust performance, improved portability, better scalability and greater scope
for adaptation. The success of statistical approaches, however, is of course naturally tied to the quality of
the models and the quality of the data.
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3 Reinforcement-L earning of Dialogue Strategieswith a Simulated User

This section summarizes the relevant background knowledge on machine-learning approaches to dialogue
strategy design. It introduces the Markov Decision Process (MDP)-model of human-computer dialogue
(Subsection 3.2) and explains how Reinforcement-Learning techniques can be used to find optimal
dialogue strategies within the MDP framework (3.3). It further contrasts so-called model-based and
simulation-based approaches to strategy learning and discusses the advantages and disadvantages of both
approaches (3.4).

The overview given in this section on machine-learning and strategy optimisation is limited to work
directly relevant to dialogue strategy design and it is by no means complete. More comprehensive reviews
of reinforcement learning can be found in (Sutton and Barto, 1998) and (Kaelbling et al., 1996).

3.1 Introduction to Strategy Learning

The machine learning community distinguishes different types of learning approaches (Ghahramani,
2004). Supervised learning follows a “learn-by-example” approach. During the training phase, example
problems are presented to the learning agent, together with the correct solutions. For a classification
task such as speech recognition, for instance, the data samples are labelled with their orthographic
representations, i.e. their corresponding classes. From these examples, probability estimates are obtained
for a parametric model. If this model generalises well, then it will also be capable of classifying unseen
data into the correct classes.

Unsupervised learning is distinguished from supervised learning by the fact that there is no a priori
knowledge of the target outputs. The observations are not labelled with their corresponding classes and it
is left to the learning algorithm to construct a representation of the input that is helpful for, say, decision
making, predicting future inputs or outlier detection. In short, unsupervised learning can be described
as “finding patterns in the data above and beyond what would be considered pure unstructured noise”
(Ghahramani, 2004).

Reinforcement-Learning (RL) is a form of machine learning which may be viewed as “learning through
trial-and-error”. It is sometimes introduced as a form of unsupervised learning, although it cannot be
regarded as “learning without a teacher”. The learning agent interacts with its dynamic environment,
receives feedback in the form of positive or negative rewards according to some reward function and tries
to optimise its actions so as to maximize the overall reward. By assigning small negative rewards for
every action and a large positive reward for successful completion, an agent can be trained to act in a
goal-oriented and efficient manner without providing explicit examples of ideal behaviour or specifying
how a given task is to be completed (Sutton and Barto, 1998; Kaelbling et al., 1996).

The nature of the dialogue strategy learning problem is such that we cannot present correct input/output
pairs or examples of ideal DM behaviour. In a corpus of human-computer dialogues, we may have
annotations indicating successful and unsuccessful dialogues, but we cannot know which system action
is best in any given dialogue state in the “long term interest” of the DM. Dialogue strategy optimization
is thus not a suitable candidate for supervised learning (Walker, 1993). For a given dialogue corpus,
supervised learning can only be used to find the strategy taken most frequently by the system, but it
cannot find the optimal one.

However, it is usually possible to define what constitutes the successful completion of a dialogue. In a
travel booking scenario, for instance, a positive reward can be associated with the completion of a flight
booking. Using RL, the learning dialogue manager can be trained to complete this goal as often and as
efficiently as possible but without specifying in advance how the goal should be reached. As we will
explain in the remainder of this section, it is up to the DM to automatically explore the vast space of
possible dialogue states and actions in order to find an optimal mapping from states to actions.

3.2 Dialogue as a Markov Decision Process

The Markov-Decision-Process (MDP) model serves as a formal representation of human-machine
dialogue and provides the basis for formulating strategy learning problems (Biermann and Long, 1996;
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Figure3 Diaogue as aMarkov Decision Process (MDP): The Dialogue Manager acts as alearning agent travelling
through a network of interconnected dialogue states. At each time ¢, the DM isin state s, takes action a:, transitions
into state s¢+1 and receives areward r+11. A didogue strategy 7(s) — a can be viewed as a deterministic mapping
from states to actions.

Levin and Pieraccini, 1997; Singh et al., 1999; Levin et al., 2000). Every MDP is formally described by
a finite state space S, a finite action set A, a set of transition probabilities 7" and a reward function R. At
each time step ¢, the dialogue manager is in a particular state s; € S. It executes the discrete action a; € A,
transitions into the next state s;; according to the transition probability p(s:11]|s:, a+) and receives a
reward r;1. The Markov Property ensures that the state and reward at time ¢ + 1 only depend on the state
and action at time ¢.

P(St41, Te41]St, Gty St—1, Qt—1, Tt—1, .oy S0, @0) = P(St41, re41]5¢, ar) 1)

Using the MDP model of dialogue, we can visualise the DM as an agent travelling through a network
of interconnected dialogue states (see Figure 3). Starting in some initial state, the DM transitions from
state to state by taking actions and collecting rewards as it goes along. Since the user response to a system
action is uncertain, the transitions are non-deterministic, meaning that the choice of some action a in some
state s at time ¢ does not always lead to the same next state and reward at time ¢ + 1.

The MDP model allows a dialogue management strategy (or policy) m(s) — a to be viewed as a
deterministic? mapping from states to actions: For every state s, the policy selects the next system action
a. It also enables us to formalize dialogue management as a mathematical optimization problem. The
optimal policy 7* is the policy that maximizes the cumulative reward over time, i.e. the policy that selects
those actions that yield the highest reward over the course of the dialogue.

3.2.1 State-Space and Action Set

In order to map human-computer dialogue onto the MDP model, a well defined representation of the
dialogue state-space S and the system action set A is required. In theory, the action set may cover a vast
variety of system utterances and the state may include all the currently available information regarding
internal and external processes controlled by the dialogue system. However, while it is desirable to capture
as many aspects of the dialogue state and the action set as possible, the choice of granularity is constrained
by limits of computational tractability. Finding a compact state representation which satisfies the Markov
property is often particularly difficult.

For slot-filling dialogues, a common approach is to base the number of state variables on the number
of slots that need to be filled and grounded. For a cinema booking system, for instance, this might cover
the name of the film, the desired day and the desired screening time. The total number of possible states is
then determined by the number of states each individual slot can be in. If all possible values of each
slot are considered as separate states, the total number of states easily becomes unmanageable. It is

2Stochastic dial ogue behaviour can be achieved using a probabilistic mapping from states to actions but a predictable,
deterministic strategy is usualy preferred.
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Dialogue State: @/

orig_city confirmed
dest_city known

depart_date unknown
depart_time unknown

System Action:
<impl_conf, dest_city, london>
<requ_info, depart_date>

Figure4 The Markov-Decision-Process model requires an exact specifi cation of the system action set and the state
space. In asimple fight booking dialogue system, for example, the dialogue state may encode the status of the slots
origin city, destination city, departure date and departure time. System actions can be represented as tuples consisting
of adialogue act, aslot name and an optional slot value.

therefore standard practice to use slot-status categories such as “unknown”, “known” and “confirmed”.
(See (Williams, 2003) for an overview of state space representations used by different research groups.)

Similarly, the system action set is often limited to a small number of actions such as “Request all”,
“Request n slots”, “Verify n slots”, “Verify All”, or “Quit”. A slightly more flexible alternative is to
represent each action as a tuple consisting of a speech act, a slot name and a slot value, as shown in
Figure 4. Note that the number of conceptually different system prompts depends on the choice of action
set, but the wording of individual system prompts is not affected by the high-level representation of the
action set.

3.3 Reinforcement Learning

We can define R to be the total discounted return the learning dialogue manager receives when starting at
time ¢. A discount factor , with 0 < < 1, can be used to weight immediate rewards more strongly than
distant future rewards.

00
R= Y41 + 72Tt+2 + ")/37’t+3 + ... = Z ’}/th+k (2)
k=1

Following the Maximum Expected Utility Principle (Keeney and Raiffa, 1976; Russell and Norvig,
1995), our goal is to find the optimal policy 7* that maximizes the expected value of R. Reinforcement
learning offers a variety of algorithms for finding =* within the MDP framework through trial-and-error
interaction between the learning agent and its dynamic environment. Such algorithms are commonly based
on the definition of a value-function V7 (s) that estimates the expected return of being in a given state s
given a policy 7

V7(s) = E(R|st = s). 3)

Alternatively, we can define a value function Q™ (s, a) that estimates the expected return of taking
action a in a given state s and following  thereafter.

Q" (s,a) = E(R|st =8, ar = a) 4)

Using the following short-hand notation for the transition probabilities and the expected rewards
T(s',a,8) = P(sgy1=5ar=a,s;=s) (5)
R(s',a,8) = E(rii1|sip1=¢6,a;=a,s =s) (6)

we can rewrite V™ (s) and Q™ (s, a) as follows:
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Vi(s) =Y T(s,7(s), )(R(s', w(s), ) + 7V (s)) (7)
s'esS
Q™(s,a)=Y_ T(s',a,8)(R(s', a,5) + 7V (s")) ®)
s'esS

If the transition probabilities 7 (s’, a, s) and the reward function R(s’, a, s) are known in advance,
Dynamic Programming techniques, Value Iteration, or Policy Iteration can be used to find an optimal
policy 7* off-line, i.e. without any interaction of the DM with its environment. If 7 (s’ a, s) and
R(s', a, s) are unknown, we cannot systematically account for every possible combination of state and
action and instead the agent needs to interact with its environment to learn these probabilities.

The Q-Learning algorithm (Watkins and Dayan, 1992b) is one of the simplest forms of on-line
reinforcement-learning. It works by maintaining Quality-values (Q-values) for every pair (s, a) of state
s and action a. These values estimate the expected return of taking action « in state s and following =
thereafter, as expressed in Equation 4.

States

S1 [S, |S3 |S4 [Ss

al 4.23 | 5.67 | 2.34 | 0.67 | 9.24 | ...

a2 1.56 | 9.45 | 8.82 | 5.81 | 2.36 | ...

Actions

a3 4.77 | 3.39 | 2.01 | 7.58 | 3.93 | ...

Figure5 Theoptimal dialogue strategy selects the system action a with the highest expected value in each state s.

One may visualise the strategy learning process with the help of a matrix of states versus actions, as
shown in Figure 5. The process is started by arbitrarily initializing the Q-values for all state-action pairs.
As the learning dialogue manager interacts with the (simulated) user, the Q-values are iteratively updated
to become better estimates of the expected return of the state-action pairs. After each system action a in
state s, the user response results in a transition to state s’ and a reward r and the Q-value is accordingly
recalculated using

Q(s,a) = (1 = a)Q(s, a) + a(r + ymax Q(s', a')) )

where « represents a learning rate parameter that decays from 1 to 0. Once the Q-values for each state-
action pair have been estimated?, the optimal policy can be found using

7 (s) = arg max Q* (s, a). (10)

To ensure convergence of the Q-values (Watkins and Dayan, 1992a), the values of « at each cycle i

must conform to
oo o
Z o =00 and Z a? < oo. (11)
=1 i=1

During the learning process, it is necessary to achieve a compromise between exploration (trying out
random actions) and exploitation (taking actions which have already been shown to lead to high rewards).
The most straightforward solution is an e-greedy control policy. At each step, a random number0 < 5 < 1
is generated and the next action is selected randomly if 5 < €. If 5 > ¢, the best action is taken. e is usually
selected so as to decrease with the number of training cycles from 1 to 0.1.

3In theory, all state-action combinations must be visited an infi nite number of times to guarantee that the policy is
optimal.
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3.4 Model-based and Simulation-based Learning

Dialogue strategy learning has been approached using two different forms of reinforcement learning which
are referred to as model-based and simulation-based learning.

The model-based approach uses the training data to build a complete model of the environment, i.e.
it estimates the transition probabilities 7~ from a corpus in which the state transitions have been logged.
Parameter estimation can be done using simple Maximum Likelihood Estimation based on the relative
frequency of occurrence of each transition

T(s, a0, 5) = count(s’, a, s) . (12)

count(s, a)

The model-based approach neglects the actual user responses to system actions - it only considers the
system-state transitions and the rewards associated with them. Once the transition probabilities have been
estimated and the reward function has been set by the system designer, the optimal strategy can be found
off-line (i.e. without any interaction between the DM and its environment) as described in the preceding
section. This approach has been heavily used by research groups between 1998 and 2002, most notably
by M. Walker, D. J. Litman and S. Singh (Walker et al., 1998; Singh et al., 1999; Litman et al., 2000;
Singh et al., 2000; Walker, 2000; Singh et al., 2002) and also in very early work by Levin et al. (Levin
and Pieraccini, 1997).

The model-based approach is a simple form of reinforcement-learning and does not require a user
simulation tool. However, it has not been used in more recent research due to a number of significant
deficiencies:

1. Currently available corpora are not large enough to reliably estimate transition probabilities for
practical systems. Even for trivial problems, the number of possible combinations of states and actions
easily exceeds 100, 000* and the provision of training data large enough to explore this state space
and obtain reliable estimates is simply not tractable. To cope with data sparsity, state-aggregation and
back-off schemes for parameter estimation have been proposed by (Denecke et al., 2004; Goddeau
and Pineau, 2000), but these are essentially smoothing methods and they offer no guarantee that the
learned strategy is indeed robust.

2. When learning from a fixed corpus, the DM can only use state-action combinations that were explored
at the time of the corpus data collection. It cannot try out entirely new strategies, since no transition
probabilities can be computed for unseen state-action combinations. A deviation in user behaviour
during the live operation of the system is likely to move the system into an unexplored portion of the
state space, possibly causing the system to fail. Furthermore, the optimal strategy is not guaranteed
to be present in the training corpus.

3. The model-based approach has the principal drawback, that the dialogue model (i.e. the state-space
and action set representation) needs to be known in advance so that the corpus can be annotated
correspondingly for estimating the state transition probabilities. Preferably, the state space and action
set should be fixed even before the data collection in order to be able to log state transitions during the
collection. However, if the chosen state space representation or action set turns out to be problematic,
it is very difficult to change the dataset or its transcriptions.

The simulation-based approach, pictured in Figure 1 on page 2, is an alternative to off-line model-
based learning and involves two phases: First a user simulation tool is trained on the given corpus
using supervised learning. The dialogue strategy is then learned on-line through interaction between the
simulated user and the dialogue manager using an algorithm such as Q-Learning as explained in the
previous subsection. The simulation-based approach requires a reliable user model which generalises to
unseen dialogue situations. As such it is the more complex approach but it offers the following advantages:

1. The simulated user allows any number of training episodes to be generated, so that the learning
dialogue manager can exhaustively explore the space of possible strategies.

*Henderson et al. (Henderson et al., 2005), for example are working with dialogue state spaces on the order of 1037,
Currently available corporain comparison typically contain on the order of 103 annotated dia ogues.
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2. It enables strategies to be explored which are not in the training data. The learning DM can deviate
from the known strategies and try out new and potentially better strategies.

3. The system state space and action set do not need to be fixed in advance, because the system is not
trained on corpus data. If the given representation turns out to be problematic it can be changed and
the system retrained using the simulated user®.

Simulation-based learning has been the preferred form of learning dialogue strategies over recent years
and can be found in (Eckert et al., 1997; Levin et al., 2000; Scheffler, 2002; Scheffler and Young, 1999,
2000, 2001, 2002; Pietquin, 2004; Georgila et al., 2005a; Schatzmann et al., 2005a).

5A change in the system action set, however, may still require modifi cations to the dialogue manager’s interface with
the simulated user.
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4 Statistical User Modelling Techniques for Simulation-Based L earning
4.1 User Modelling in Spoken Dialogue Systems and Natural Language Processing

As mentioned in the introduction to this paper, research on User Modelling has a long history in the
field of Natural Language Processing (NLP) and Spoken Dialogue Systems (SDS), particularly in areas
concerned with the design of adaptive and adaptable systems. Traditionally, the majority of work on User
Modelling in NLP and SDS is linguistically motivated and of a non-statistical nature. The aim of research
in this area is typically to construct a representative model of the individual user in order to describe
his or her state during a course of interaction with the system. In a spoken dialogue environment this
may include information about the user’s goal or knowledge regarding previously exchanged pieces of
information. Depending on the application domain, the model can also include the user’s preferences,
knowledge about the subject matter, beliefs, capabilities, level of satisfaction with the system behaviour
and so on.

The inspiration for building user models for use in spoken dialogue systems originally stems from
research on human-human interaction. People intuitively use models of their dialogue partners when
they engage in a conversation. The style of language and level of formality, for instance, depends on the
mental model of the interlocutor. Our mental model can also help us to understand the dialogue partner’s
intentions, even if they have not been well articulated or worded in a precise manner. In a similar fashion
a dialogue system can benefit from consulting a user model.

A recent review on the “Synergies and Limitations” of User Modelling and NLP by Zukerman and
Litman (Zukerman and Litman, 2001) shows that research has investigated the use of user models in
almost all subfields of spoken dialogue systems. Particularly active areas are Natural Language Generation
(NLG) and Natural Language Understanding (NLU).

In NLG, content generators can consult user models to produce output which is tailored to specific
attributes of the individual user. Examples of work in this area demonstrate how systems can attempt to
match characteristics such as expertise and interests, or domain-specific information such as medical
records, investment portfolios, etc. (Wallis and Shortliffe, 1985; Stock, 1993; Binsted et al., 1995;
Bontcheva, 2005; Harvey et al., 2005). In NLU, user modelling often takes the form of plan recognition.
The aim here is to make inferences about a user’s preferences and goals in order to (for example) respond
better to ill-formed queries (Carberry, 2001) or to detect expressions of doubt (Carberry and Lambert,
1999).

According to Zukerman and Litman, user modelling is less frequently used in dialogue management.
Very early examples of research in this area are dominated by knowledge-based formalisms and various
types of logic aimed at modelling the complex beliefs and intentions of agents (Moore, 1977; Hustadt,
1994; Dols and van der Sloot, 1992; Bretier and Sadek, 1996). In more recent years, dialogue systems
have tended to focus on cooperative, task-oriented rather than conversational forms of dialogue so that
user models are now typically less complex. User models in dialogue management now often take the
form of simple rules or attribute-value pairs (Komatani et al., 2003). As in NLG and NLU, the general
aim is usually to tailor the behaviour to specific user attributes. These can be either fixed attributes, such
as “a preference for afternoon meetings” (Elzer et al., 1994) or dynamic attributes, such as the cognitive
load on a user during a conversation (Berthold and Jameson, 1999).

4.2 Statistical User Models for Simulating Dialogue

The recent work on user modelling for strategy learning with a simulated user differs in many respects
from traditional work on user modelling in SDS and NLP. The purpose of the user model in this new
context is not to capture the individual characteristics of a specific user, but to form the basis of a user
simulation tool which is representative of a diverse user population and which takes the role of a synthetic
dialogue partner for the learning dialogue manager during the development phase of a new system.

As such, the user model must be able to predict user responses that a real user might give in the same
dialogue context and it must also represent the statistical distribution over all types of user behaviour
and user responses. These requirements clearly favour a statistical approach to user modelling. Most
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importantly, the probabilistic nature of statistical models allows for a degree of “lifelike” randomness in
user behaviour. Very early research on dialogue system design and evaluation has explored the use of
deterministic user models for simulating dialogues (Smith, 1998; Guinn, 1998; Ishizaki et al., 1999; Lin
and Lee, 2001), but these cannot naturally account for the variability in real human user behaviour.

The second advantage of statistical models is that the model parameters can be estimated using real
human-computer dialogue data. Hand-coded models require a very careful choice of parameter values,
which is difficult because human user behaviour is poorly understood and system-specific factors or user
population-dependent aspects are hard to estimate using “common sense”. The statistical, data-driven
approach of learning appropriate parameter values from training data rather than relying on heuristics or
empirical principles is less likely to introduce a bias in user behaviour. The user model is also likely to be
more robust, more scalable and easier to port to a different domain or dataset.

Statistical predictive user models in the context of dialogue strategy learning have been explored by
a number of research groups over the last decade. It is possible to classify the different approaches
with regard to the level of abstraction at which they model dialogue. This can be at either the acoustic
level, the word level or the intention-level. The latter is a particularly useful compressed representation of
human-computer interaction. Intentions cannot be observed, but they can be described using speech-act
and dialogue-act theory (Searle, 1969; Bunt, 1981; Traum, 1999).

In recent years, simulation on the intention-level has been most popular. This approach was first taken
by (Eckert et al., 1997) and has been adopted in later work on user simulation by most other research
groups (Levin et al., 2000; Scheffler, 2002; Pietquin, 2004; Georgila et al., 2005a; Cuayahuitl et al.,
2005). Modelling interaction on the intention-level avoids the need to reproduce the enormous variety of
human language on the level of speech signals or word sequences. Examples of user simulation on the
word-level (Araki et al., 1997; Watanabe et al., 1998) or acoustic level (Lopez-Cozar et al., 2003; Filisko
and Seneff, 2005) are rare and their robustness, portability and scalability is somewhat limited.

Several different statistical user modelling techniques have been applied to the problem of simulation-
based learning. All of them exploit the Markov assumption that the next user action can be predicted based
on some representation of the current state of the dialogue. The state representation typically includes the
previous system action, but may also cover longer dialogue histories and other variables representing the
user goal, user memory, and so forth.

In general, Markov Models are based on the assumption that the likelihood of occurrence of an event
depends only on a fixed number of previous events and hence the relevant history can always be encoded
in a finite state space. Given a sequence of events x,, Tn—_1, ..., Tn—m+1, & probability distribution can
be estimated over all events following this sequence in a set of training data. The likelihood that a
certain event x,,; follows the given sequence can then be computed using the conditional probability
P(Tnt1|Tn, Tno1, -, Tn—m+1). Outside the field of spoken dialogue systems research, Markov Models
are a commonly used statistical user modelling technique. A typical application is the prediction of
documents a user is most likely to request next when browsing web-pages (Bestavros, 1996; Horvitz
et al., 1998). In the field of speech recognition and spoken dialogue systems, n-grams are a popular form
of Markov Model and well-known for their use in predicting the likelihood of different word sequences
in statistical language modelling (Jelinek, 1976; Rabiner and Juang, 1993).

4.2.1 N-grams

In the context of dialogue strategy evaluation and learning, statistical predictive user models were first
suggested by Eckert, Levin and Pieraccini (Eckert et al., 1997, 1998). Their pioneering work introduces a
simple n-gram model for predicting the user action a,, + at time ¢ that is most probable given the dialogue
history of system and user actions. In practice, data sparsity may prohibit the use of long dialogue histories.
Eckert et al. approximate the full history with a bigram model, using a, ; to denote the system action at
time ¢:
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Gyt = arg max Pty t|Qs,t—15 Gut—1, Qs,t—2, -vy Q05 Gs,0) (13)
u,t

A~ argmax Pay,tlasi—1) (14)
w,t

The bigram model suggested by Eckert et al. has the advantage of being purely probabilistic and
fully domain-independent. Its weakness is that it does not place any constraints on the simulated user
behaviour. Any user action may follow any system action, regardless of the rest of the dialogue history.
The generated responses may correspond well to the previous system action, but they often do not make
sense in the larger context of the dialogue since all state information is neglected. Dialogues simulated
with a bigram user model often continue for a long time, with the user continuously changing his goal,
repeating information or violating logical constraints.

System Wiere are you flying fron®
User nodel: | amflying from New York.
System Where do you want to go?
User nodel: 1'mgoing to New York.

In later work by the same group of authors, Levin, Eckert and Pieraccini (Eckert et al., 1997, 1998;
Levin et al., 2000) describe how the pure Bigram model can be modified to account for a more realistic
degree of conventional structure in dialogues. Instead of allowing any user response a,, ; to follow a given
system action as+—1, only the probabilities for “sensible” pairs of user response and system action are
estimated, while all others are assumed to be zero. For a system request for a slot S;, for instance, only
the probability is estimated that the user actually provides a value for slot .S; and the probability that he or
she provides a value for a different slot Sy.

P(provide_info S;|request_info S;) (15)
P(provide_info Sk|request_info S;) (16)

The set of probabilistic user model parameters selected by Levin et al. implicitly characterizes the
level of cooperativeness and the degree of initiative taken by the simulated user. The Levin model places
stronger constraints on the user actions than the pure Bigram model, but it also makes assumptions
concerning the format of the dialogue. If the dialogue manager deviates from the anticipated simple
mixed-initiative slot-filling dialogue format then a new set of parameters is needed.

Like the Bigram model, the Levin model does not ensure consistency between different user actions
over the course of a dialogue because of the flawed assumption that every user response depends only
on the previous system turn. As in the Bigram Model, the user actions can violate logical constraints and
the synthetic dialogues often continue for a long time, with the user continuously changing its goal or
repeating information.

4.2.2 Graph-based Models

Scheffler and Young (Scheffler, 2002; Scheffler and Young, 1999, 2000, 2001) propose the use of a graph-
based model to overcome the lack of goal consistency that the Levin model suffers from while maintaining
variability in user behaviour. Their work combines deterministic rules for goal-dependent actions and
probabilistic modelling to cover the conversational behaviour of the simulated user.

In Scheffler and Young’s model, all of the possible “paths” that a user may take during a dialogue
need to be mapped out in advance in the form of a network. The arcs of the network represent actions
and the nodes represent “choice points”. Some of the latter are identified as probabilistic choice points,
representing a “random decision” by the simulated user. Suitable probability values for these choice points
are estimated from data. The remaining nodes in the network are deterministic choice points. The route
taken at these points depends on the user goal, which remains fixed over the course of the dialogue and
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is represented as a table consisting of slot-name, slot-value pairs with associated status variables. The
explicit representation of the user goal ensures that the user always acts in accordance with his goal. Figure
6 illustrates the concept of choice points using an example from the cinema-ticket booking domain.

determinstic
choice point

probabilistic

choice point >
specify type

or mumble? —>

Figure 6 In Scheffer and Young's model each choice point represents a (possibly unconscious) user decision that

infuences the further direction of the dialogue. The diagram shows an example from the cinema-ticket booking

domain. At the left (probabilistic) choice point, a "random” decision is made whether the user utters something

incomprehensible (a "mumble’ intention) or moves to the next choice point. In the latter case, the user reaches a

deterministic choice point, at which he/she can either request alisting of fi Imsor ask for showtimes. The choice made
at this point depends on the user goal.

The major disadvantage of Scheffler and Young’s work is the high dependence on domain-specific
knowledge. The exhaustive specification of all possible dialogue path is the critical issue. The authors
show that this task can be partly automated if a prototype dialogue system is available and the range
of acceptable user actions has been well defined for each state of the prototype dialogue manager.
Nevertheless, the identification of probabilistic and deterministic choice points still requires manual effort.

4.2.3 Bayesian Networks

Pietquin (Pietquin, 2004, July 2005; Pietquin and Beaufort, 2005; Pietquin and Dutoit, 2005) combines
features from Scheffler and Young’s work with the Levin Model in an attempt to avoid the manual effort
involved in building networks of choice points while ensuring that actions are consistent with the user’s
goal. The core idea of his work is to condition the set of probabilities selected by Levin et al. on an explicit
representation of the user goal and memory.

P(provide_info S;|request_info S;, goal, memory) a7)

As in Scheffler and Young’s work, the user goal is simply a table of <slot name, slot value> pairs
with associated status variables. Pietquin uses the status variables to rank the user’s priority for each slot
value and to track how often a certain piece of information has been mentioned by the user during the
conversation with the system. Although these models of the user goal and memory are rather crude, they
do acknowledge that a better understanding of the user state and its effect on conversational behaviour is
needed to make accurate predictions of user behaviour.

In his work, Pietquin hand-selects all model parameters using empirical principles and common sense.
Suitable probability values (eg. Equation 17) are set by hand. Pietquin suggests that in future work the
conditional dependencies in the user model be graphically visualised and implemented as a Bayesian
network, as illustrated in Figure 7. According to Pietquin, the network can be easily extended to include
factors such as the level of cooperativeness, the degree of initiative, etc. It is however not intuitively clear
which parameters are potential candidates for modelling these user attributes and how they can be trained
on human-computer dialogue data.
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Slot names in
system output

Type of
Input system action

Variables

Internal
Variables

Output

Variables

. Slot names in
Close dialogue? r output

Slot values in
user output

Figure 7 Pietquin suggests a Bayesian network approach to user modelling. The input variables to the network are
thetype of system action (eg. “greeting”, “request info”, etc.) and the slot names mentioned by the system. The output
variables are the slot names and val ues mentioned by the user and a bool ean variable indicating whether the user will

hang up or not. The user goal and the user memory function asinternal variables of the network.

4.2.4 Machine-Learning techniques
Recent work by Georgila, Henderson and Lemon (Georgila et al., 2005a) returns to Markov Models and
explores the use of richer state descriptions, longer dialogue histories and machine-learning techniques.
In Georgila et al’s work, dialogue is viewed as a sequence of Information States (Bos et al., 2003), each
of which is represented as a large feature vector describing the current state of the dialogue, the previous
dialogue history and any ongoing actions. The rich state description helps to compensate for the Markov
assumption, but it also requires a large amount of training data to reliably estimate model parameters.

Georgila et al. investigate two different methods for predicting the next user action given a history of
information states. The first method reuses the n-gram model suggested by Eckert et al., but with n ranging
from 2 to 5 in order to cover longer spans of dialogue history. Georgila et al. find that best results can be
obtained with a 4-gram, ie. by using a history of 4 information states to predict the next user action. The
authors do not comment on data sparsity problems, but given that the state space used in the experiments
has on the order of 1037 states, it must be presumed that many state sequences never occur in the training
data.

The second method examined by Georgila et al. uses linear feature combination to map from a state
s to a vector of real-valued features f(s). Most of these features are binary indicating the presence or
absence of a piece of information (e.g. destination place known, departure time confirmed, etc) and the
remainder are continuous real values (e.g. estimated word error rate). In total, there are around 290 such
features (Georgila et al., 2005b,a). Supervised learning is used to estimate a set of weights w,, for each
action a which describe how “useful” each vector element of f(s) is for predicting a. Once the weights
are estimated, a probability distribution P(a|s) can be computed over all user actions by applying a
normalised exponential function to the inner product of f(s) and w,. (f(s)? denotes the transpose of

f(s))

exp(f(s)"wa)
2-a xp(f(s)" wa)

The linear feature combination approach is attractive, because it allows the relevance of each state
feature for predicting the next user action to be learned automatically from data. Since the Information
State includes not only the current state of the dialogue but also information about the previous dialogue
history, any aspect that possibly influences user behaviour can in principle contribute to the prediction of
the next action.

P(als) =

(18)

4.2.5 Hidden Markov Models
Very recent work by Cuayahuitl, Renals, Lemon, and Shimodaira (Cuayahuitl et al., 2005) presents a
method for dialogue simulation based on Hidden Markov Models (HMMs). Their method generates
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both system and user actions, the objective being to extend an existing small corpus of human-computer
dialogue data with simulated dialogues.

Cuayahuitl et al. experiment with different variations of HMMs. The most advanced one is an
Input-Output-HMM (IOHMM), as shown in Figure 8 (adapted from (Cuayahuitl et al., 2005)). The
model is characterised by a set of (visible) states S = {51, Sa,..., Sn} and a set of observations
V ={W1, Va, ..., Vas}. The states S represent system turns, and the observations V' correspond to the
system action set. The state at time ¢ is denoted using ¢; and as . is the system action at time ¢. The
user responses are represented using a set of user intentions H = { H;, Ho, ..., Hy, } and the user action
at time ¢ is denoted using a,, ;. The behaviour of the model is governed by a set of transition probabilities
P(qi+1|qt, as,) and a set of output probabilities P(as ¢|q:, au,—1). User responses are predicted using a
set of user model probabilities P(ay, ¢|g:, as.¢)-

User actions
States

Observations
(System actions)

Figure 8 Cuayahuitl et a. suggest a diadogue simulation method based on Input-Output-HMMs, an extension
of standard Hidden Markov Models. The fi gure shows the states representing system turns (white circles), the
observations representing system actions (dark shaded circles) and the user actions (light shaded circles). The arcs
denote conditional dependencies.

Instead of training a single giant IOHMM for simulating complete dialogues, all conversations in the
dialogue corpus are divided into subgoals and a separate model is trained for each subgoal. A full dialogue
is viewed as a concatenation of subgoals and a bigram model P(g.,|g.—1) is used to predict the sequence
of subgoals.

4.3 User Simulation-Based Learning from a Statistical User Modelling Perspective

Quite remarkably, almost all of the research groups investigating the topic of user simulation-based
strategy learning have a background in dialogue systems design rather than user modelling. To date,
the user modelling community has taken fairly little notice of the ongoing work on simulation-based
reinforcement-learning in SDS, although many of the modelling techniques used in strategy learning are
in fact similar to standard statistical user modelling techniques as we have pointed out in the previous
section. Vice versa, the SDS community is also largely unaware of related research in the field of user
modelling and references to user modelling research in papers on simulation-based learning are almost
non-existent. We argue that much could be gained by casting the user simulation problem in SDS as a
statistical user modelling problem and we provide support for this claim in the following two subsections.

4.3.1 Content and Collaboration-based Modelling

Research on predictive statistical user modelling commonly distinguishes between content-based and
collaboration-based forms of modelling (Zukerman and Albrecht, 2001). While content-based approaches
use the user’s history of actions to predict future actions, collaboration-based approaches predict the user’s
next action based on the actions taken by other users in the same state. Content-based techniques are
typically employed when a sufficient amount of data describing the user’s past behaviour is available
and it appears to be a reliable indicator of his future behaviour. “Persistence of interest” is important for
content-based systems. In contrast, collaboration-based approaches are attractive when large amounts of
data are available from other previous users and when user behaviour is sufficiently homogeneous for
actions taken by users in the same state to be likely actions of the new user. Collaboration-based systems
are less influenced by long-term information and exploit better context-dependent data (Burke, 2002;
Resnick and Varian, 1997).
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Despite being a common classification for statistical user modelling techniques, the concepts of
content-based and collaboration-based learning have so far not been used in the context of user modelling
for simulation-based strategy learning. Nevertheless, it is interesting to consider the problem of modelling
user dialogue behaviour in the light of the above classification. Indeed, all of the modelling techniques
which are currently available for simulation-based learning are primarily collaborative approaches. This
is not surprising given that we typically have a fair amount of dialogue data from many different previous
users but only a small amount of data per user.

However, many characteristics of individual user behaviour (such as expertise and cooperativeness) are
not covered well by the currently available techniques. As we will further discuss in the section on user
model evaluation, the current user models generate a variety of user behaviour which reflects the statistical
distribution in the training data, but they do not acknowledge that some aspects of user behaviour are likely
to remain fixed over the course of a dialogue while others are likely to be variable.

It is hence desirable to combine the collaborative models currently available with content-based
modelling components to ensure that user actions are taken in accordance with the previous user dialogue
history and that they reflect individual user characteristics. The models presented by Scheffler and Young
and by Pietquin (reviewed above) both introduce the concept of a user goal in their user models to achieve
goal-consistency over the course of a dialogue. Pietquin further introduces a simple model of user memory
and suggests further work on modelling user satisfaction. As we have discussed in the previous section,
the use of such content-based forms of modelling in otherwise collaborative models is clearly beneficial
to the realism of the simulated user behaviour. We argue that user dialogue behaviour is in fact a prime
candidate for combining content-based and collaboration-based approaches.

It is interesting to note that it is well known in the user modelling community that collaboration-based
approaches naturally tend to model an average user unless careful steps are taken to model individual
users or user groups (such as experts and novices, for instance) (Alspector et al., 1997; Horvitz et al.,
1998). It is only in very recent evaluation efforts (Schatzmann et al., 2005a) that this pitfall has been
highlighted in research on strategy learning. As Zukerman and Albrecht (Zukerman and Albrecht, 2001)
formulate: “the fundamental inability of the collaborative approach to represent the idiosyncrasies of
individual users calls for a solution which combines both (content-based and collaboration based) types
of modelling approaches.” We believe this to be equally true for user modelling in the context of dialogue
strategy learning.

4.3.2 Concept Drift

A second concept from the realm of machine-learning for statistical user modelling which may be of
use for future research on simulation-based strategy learning is Concept Drift (Widmer and Kubat, 1996;
Webb et al., 2001). Concept drift describes the problem that user attributes change over the course of
interaction with a system. Traditionally, this has been of particular relevance for user modelling in the
areas of information retrieval and personalized news recommender systems. Systems of this type typically
attempt to recommend documents to the user based on previously requested documents. The underlying
assumption of “persistence of interest” (Lieberman, 1995), however, is often flawed because a user’s
interests, preferences and behaviour can change. A person who has read several news articles concerning
a certain current event, for example, may be dissatisfied if the system recommends yet another article on
the same topic a week later.

A similar problem applies to simulation-based learning. Some of the user models currently available
for modelling user dialogue behaviour include the notion of a user goal, but they all assume that the user
goal stays fixed over the course of a dialogue. This assumption is of course simplistic. In reality, a user
might start a conversation (say with a flight booking system) with a vague idea of booking “a low-cost
flight from London to Madrid for the Christmas Holidays”. It is only as the dialogue evolves that the user
goal becomes more concrete, for example as details regarding the exact departure date and time are added.
The user may not have a specific airline in mind at the start of the conversation but may still express a
preference when reminded about a frequent-flyer programme. The user goal may also change as the user



User Simulation for Reinforcement-Learning of Dialogue Strategies 21

becomes aware of system limitations: For example, the user may have a priority for sitting at a window-
seat, but may change his mind when he realizes that the system cannot accommodate his request. He may
also decide to drop this priority if only aisle seats are available on a significantly cheaper flight option.

In research on statistical user modelling outside of spoken dialogue systems, suggestions have been
made to address the problem of concept drift. One approach is to weight recent observations more strongly
than old observations (Webb and Kuzmycz, 1996), another idea is to use windowing techniques to adjust
the span of training data which is used to make a prediction (Klinkenberg and Renz, 1998). A common
problem is that the amount of relevant recent training data is small, so that the use of back-off models
has been suggested in instances when no reliable prediction can be made using the recent data (Chiu and
Webb, 1998; Billsus and Pazzani, 1995).

However, all of the above suggestions apply to purely content-based forms of user modelling and are
likely to require significant modifications to be useful for the primarily collaborative modelling techniques
used for simulating user dialogue behaviour. One may also argue that the challenge of modelling changes
in the user goal over the course of a dialogue is potentially even more complex than modelling the lack of
persistence in user interests in other user modelling applications because it is not just a temporal problem.
The key issue is that we require a better understanding and a better model of how the system’s behaviour
causes changes in the user goal. This is especially an issue in spoken dialogue systems where recognition
performance can vary significantly over time thereby having a significant impact on the dialogue.

5 Evaluation Techniques

The evaluation of statistical user models is an ongoing area of research and a variety of techniques can
be found in the literature. As described in (Zukerman and Albrecht, 2001), these are typically methods
adapted from other fields of research such as Information Retrieval or Machine Learning. A distinction
can be made between direct methods of evaluation using metrics such as Accuracy or Precision and Recall
and indirect methods which employ metrics such as Utility.

Direct evaluation methods assess the user model by testing the quality of its predictions. Precision
and Recall for instance can be used to test a Recommender system by measuring what proportion of
recommended items is relevant and what proportion of the relevant items is recommended (Raskultti et al.,
1997). Similarly, Accuracy measures what percentage of predicted events actually occur. Accuracy is a
well-known measure in Spoken Dialogue Systems for measuring the performance of speech recognizers
and it is also widely used in User Modelling for measuring the performance of predictive models (Gervasio
etal., 1998).

Indirect evaluation metrics such as Utility attempt to measure the quality of a user model by evaluating
the effect of the model on the system performance. The goal is to obtain a measure of the benefit or penalty
involved in making a “good” or “bad” prediction. Indirect methods can be said to be closer to studies with
real users, because they take the user model’s impact on the user into account (Zukerman and Albrecht,
2001).

Simulation-based strategy learning is an interesting application from a statistical user modelling
viewpoint, because it has been approached using both direct as well as indirect methods of evaluation.
Direct methods have been used to evaluate the quality of the simulated user output, and indirect methods
have been used to evaluate the performance of the strategies that we can learn with the available user
models. The latter part is particularly interesting, because it is one of the applications of statistical user
modelling where the utility of some user model A has been evaluated by testing the system performance
on a competing user model B.

5.1 Evaluation of Simulation Quality

The quality of the simulated user actions generated by the user model has been assessed using a variety
of different direct evaluation methods, including Perplexity and Precision and Recall. One may argue that
it is ideal to use these measures complementarily rather than alternatively, because each of them answers
a slightly different question.
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5.1.1 Precision and Recall

A possible starting point for evaluating a statistical model of user dialogue responses is to assess whether
the model can generate human-like output. In other words, does it produce responses that a real user
might have given in the same dialogue context? If human-computer dialogue data from the same domain
is available, this can be tested by comparing real and simulated user responses using precision and recall
as suggested in (Schatzmann et al., 2005a).

A corpus of real human-computer dialogues is split into a training and a test set and each dialogue is
annotated as a sequence of turns, with each turn consisting of a variable number of actions, as shown in
Figure 9. Evaluation is then carried out on a turn by turn basis. Each of the system turns in the test set is
separately fed into the simulation, together with the corresponding dialogue history and the current user
goal. The response turn generated by the simulated user is then compared to the real response given by
the user in the test set.

Dialogue

System: greeting
requ_info orig_city

Real Usr: unknown
prov_info orig_city

Train prov_info dest_city
A4
Test Sim Usr: prov_info orig_city
User Model > prov_info depart_time

Recall: 33%
Precision: 50%

Figure9 To evaluate how well the user model predicts the actions of a real user, dialogue scenarios are extracted
from the unseen test set and presented to the simulated user. The generated user responses are compared to the real
user responses and the accuracy of the predictions is evaluated using Precision and Recall.

Precision and Recall are used to quantify how closely the synthetic turn resembles the real user
turn. These metrics are a common measure of goodness in user modelling outside SDS (Zukerman and
Albrecht, 2001). Recall (R) measures how many of the actions in the real response are predicted correctly.
Precision (P) measures the proportion of correct actions among all the predicted actions. A simulated
action is considered correct if it matches at least one of the actions in the real user response.

Correctly predicted actions

P =100 = (19)

All actions in simulated user response turn

R =100 Correctly predicted actions

20

All actions in real user response turn (20)

To rank approaches using a single measure, the balanced F'-measure (van Rijsbergen, 1979) can be
used which represents the harmonic mean of P and R:

2PR

“PiR @)

As reported in (Schatzmann et al., 2005a), some of the better currently available user models achieve
Precision and Recall scores of around 35%, while the Bigram baseline achieves a score of 20%. It is of
course not possible to specify what levels of Precision and Recall need to be reached in order to claim
that a simulated user is realistic, but the metrics provide an intuitive feel for the accuracy of the predicted
responses and they can be easily used to rank competing user models. A valid criticism of Precision and
Recall, however, is that they place a high penalty on unseen user responses, even if the generated responses
are in fact acceptable and believable.
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5.1.2 Statistical metrics for comparing corpora

Precision and Recall deliver a rough indication of how realistic the best response is that the simulated user
can generate, i.e. the response with the highest likelihood. On its own however, this form of evaluation is
not sufficient because it does not evaluate whether the simulated user covers a variety of user behaviour.
A dialogue strategy must perform well for all kinds of possible user responses, not just the one with
the highest probability. It is thus necessary to produce a large number of dialogues through interaction
between the dialogue manager and the simulated user in order to assess if the synthetic dataset has the
same statistical properties as the training data set. It is of course important to use a dialogue manager with
the same strategy as the one used to record the real dialogues. The process is illustrated in Figure 10.

Train DiangLes Evaluation using
i statistical metrics
U voder 1 -, Dialogue length and turn length
ser Mode - Proportion of user vs. system talk
‘ * Frequency of different user and
Generat_e Sited system speech acts
Synthetic o Dialogues Proportion of goal-directed vs.
Corpus grounding actions vs. dialogue
v formalities vs. misrecognitions
DM Number of times information is
requested, provided, re-requested,
Handcrafted and re-provided
Strategy Average goal achievement rate
Goal completion time

Figure 10 To assess how well the user model reproduces the variety in human user behaviour, a synthetic corpus
is generated through interaction between the simulated user and the dialogue manager. Metrics such as the average
length of a dialogue can then be used to evaluate how well the simulated dialogues match the statistical distribution
of thereal dialogue corpus.

A number of different statistical metrics have been proposed for this form of evaluation (Scheffler and
Young, 2001; Schatzmann et al., 2005a). These may be divided into three groups:

1. High-level features of the dialogue: Average length of the dialogue (in humber of dialogue turns),
average number of actions per dialogue turn, proportion of user vs. system talk (ratio of user vs.
system actions), etc.

2. Style of the dialogue: Frequency of different speech acts, ratio of goal-directed actions vs. grounding
actions vs. dialogue formalities vs. misunderstandings, user cooperativeness (proportion of slot values
provided when requested), etc.

3. Success rate and efficiency of the dialogues: Goal achievement rates, goal completion times, etc.

Again, it must be noted that any set of statistical metrics can only be a rough indicator of how good
a simulation technique is. It is not possible to specify what range of values a synthetic corpus needs
to satisfy in order to be sufficiently realistic. Moreover, no guarantee can be given that a simulated
dialogue is realistic even if all of its properties are identical to the training data. Yet, an extensive set of
evaluation measures forms a helpful toolkit for comparing simulation techniques and identifying possible
weaknesses. The metrics described above, for instance, cover important features such as dialogue length,
style and efficiency. By using a sufficiently large variety of measures we can ensure that a user model
cannot be easily trained so as to achieve perfect scores on each of them.

5.1.3 Perplexity

Perplexity is a commonly used evaluation metric in the field of statistical language modelling for testing
how well a given model predicts the sequence of words in a given test dataset (Young et al., 2002). It
has been suggested as a means of user model evaluation by (Georgila et al., 2005a) and it is a useful
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metric for determining whether the simulated dialogues contain similar action sequences (or dialogue
state sequences) as real human-computer dialogue data. The definition of Perplexity (P P) is based on the
per-action (per state) entropy H representing the amount of non-redundant information provided by each
new action (state) on average. )

pPp =21 (22)

The latter can be approximated (Young et al., 2002) as
- 1
H=——log, P(a1, az,...,am) (23)
m

where P(aq, aq, . . ., a,,) s the probability estimate assigned to the action sequence a1, as, . . . , a,, by
a user model.

However, Perplexity is not necessarily a good indicator for how likely the user model is to predict a
realistic response in the context of an unseen dialogue situation. In simulation-based learning, our goal
is to apply new strategies to the user model, and no guarantee can be given that a user model with a low
perplexity would indeed produce reasonable user responses in such a situation.

5.1.4 HMM Similarity

Another interesting method for measuring the similarity between real and simulated dialogues has recently
been presented by Cuayahuitl et al. (Cuayahuitl et al., 2005). As described in Section 4.2.5 of this paper,
Cuayahuitl et al. use Hidden Markov Models trained on human-computer dialogues to generate simulated
dialogues. To evaluate the realism of a generated corpus with respect to a real corpus, the authors propose
to train HMMs on both corpora and to compute the similarity between the two corpora in terms of the
distance between the two HMMs. The assumption is of course that the smaller the distance between the
two HMMs, the greater the similarity between the two corpora, and hence the greater the realism of the
simulated dialogues. To compute the distance D(w; A, w; As) between the HMMs A, (trained on the real
dialogues) and A, (trained on the simulated dialogues), Cuayahuitl et al. use the symmetrised Kullback-
Leibler divergence which is defined as

Drrn(P|Q) + Drr(Q || P)

D(PaQ): D)

(24)

where D, is the distance between the probability distributions P and Q.

The variable w can be either the state ¢, the system action a or the user action a,, (using the notation
from Section 4.2.5). Cuayahuitl et al. measure the distance using each of the above and average the result
over all three variables.

5.2 Evaluation of Learned Strategies

Indirect methods of evaluating statistical user models assess the Utility of a user model in terms of its effect
on the performance of the system as a whole. In the context of strategy learning this involves measuring
the performance of the learned strategies. A strategy on its own, however, is difficult to evaluate - it is
preferable to evaluate the quality of dialogues carried out with the given strategy®. Ideally, it would be
preferable to do this by recording dialogues between real users and a system using the learned strategy.
Unfortunately, user studies are usually time-consuming and expensive and they require a working system
which is often not available during the development phase of a project.

The standard evaluation practice used by research groups in strategy learning is thus to test the learned
strategy by running it against a user model and measuring the “quality” or “success” of the generated
dialogues. Some metric such as the number of filled and grounded slots is typically used, with penalties
for excessively long dialogues. The score obtained with the learned strategy is then compared to the score

51t is possible to compare learned strategies based on the Q-value of the initia state, but this does not alow for
comparisons with dialogue data recorded using handcrafted strategies, because the Q-value of the handcrafted strategy
is not known.
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that a handcrafted strategy achieves when tested against the user model (Levin et al., 2000; Pietquin,
2004; Henderson et al., 2005). Interestingly, the current standard practice in the field is to test the learned
strategy on the same user model that was used during the learning process. The user model used for testing
is typically trained on a held-out portion of the dialogue corpus which was not used for training the user
model used for learning the strategy. Nevertheless this appears to be a somewhat questionable method of
evaluation since it cannot detect when a strategy is merely fitted to a particular type of user model.

——
Training W

Bigram Model Levin Model Pietquin Model
Y A
Learning
A v
DM DM DM
Bigram Pl Levin > Pietquin Pl )
Strategy Strategy Strategy
Testing ; iz
A 4 A 4 A 4
Bigram Model Levin Model Pietquin Model

Figurell Inthecross-model evaluation described in (Schatzmann et al., 2005b), competing user models are trained
on an identical corpus of human-computer dialogues. Strategies are then learned with each user model using identical
learning setups and the results are tested by running the learned strategies against each of the user models.

In recent work by (Schatzmann et al., 2005b), this practice has been re-assessed by performing
comparative studies between different modelling techniques and by testing learned strategies on user
models not used during learning. As shown in Figure 11, three prominent user models are trained on the
same dialogue corpus, and strategies are then learned with all three user models using the same learning
setup. The learned strategies are then tested on the user models used during learning to reproduce the
results of previous evaluation studies but also on other user models to obtain a cross-comparison.

The results of the “traditional” form of evaluation appear very promising. All of the learned strategies
appear to outperform handcrafted strategies, even those learned with relatively unsophisticated user
models. When performing the cross-model comparison, however, the results (see Figure 12) show that
strategies learned with a poor user model may appear to perform well when tested on the same user
model, but fail when tested on good user models.” One may conclude that the quality of a learned strategy
heavily depends on the quality of the user model and that the current standard evaluation practice of
learning and testing strategies with the same user model can produce highly misleading results.

Moreover, even the good results obtained with strategies learned with user models of better quality
must be challenged. Further analysis of the learned strategies in (Schatzmann et al., 2005b) indicates
that strategies often perform well because they exploit deficiencies in the user model. Indeed, all of
the learned strategies attempt to fill all of the unfilled slots in a single turn because none of the user
simulations include a good model of user cooperativeness. The models currently do not acknowledge
that users are less likely to respond positively to a high number of simultaneous requests. They also do
not model well the fact that the number of misunderstandings is likely to increase with the number of
simultaneous requests. This can lead to rather unnatural dialogues, as illustrated by the snippet below:

System Were would you like to fly fromand where would you like to
fly to? On what date would you like to fly and at what tine? Wat is your

"See (Schatzmann et al., 2005b) for further details on the performance metric used to eval uate the performance of the
strategies and note that the results shown here are computed on a more recent extended dataset.
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B BIG Strategy LEV Strategy OPTQ Strategy ‘

200
175 ~
150 ~
125 ~
100 ~
75 4
50 1
25 4

———

Tested on BIG Tested on LEV Tested on PTQ

Figure 12 A crossmodel evaluation of user models shows that a strategy learned with a poor user model may
appear to perform well when tested on the user model used during learning but fails when tested on a different user
model. The height of the shaded bars shows the performance of the learned strategies and the thin lines indicate 95%
confi dence intervals.

preferred airline and would you like to sit at a wi ndow or an aisle seat?

User nodel: | would Ilike to fly fromBoston to London. | would like to fly
on Novenber 14 at 2pm M preferred airline is BAand | would like to sit at
a w ndow seat .

When tested on human users, the strategies are of course likely to perform much worse than the eval-
uation results indicate. Significant improvements are certainly needed in modelling user cooperativeness,
recognition errors and dialogue misunderstandings but also in modelling user goals and user expertise as
explained in (Schatzmann et al., 2005a,b).

6 Summary

This paper has provided a short summary of the role of the dialogue manager in a spoken dialogue
system (SDS) and explained how machine-learning techniques can be used to automatically learn dialogue
management strategies from dialogue data with the help of a simulated user. We have surveyed the recent
literature on predictive statistical user modelling in SDS, explained the motivation for work in this area,
and described the modelling techniques applied. The paper has also briefly discussed some of the current
research issues in simulation-based learning from a user modelling perspective and provided an overview
of the methods used and results obtained in recent evaluation studies.

Our aim has been to show that much could be gained by closer collaboration between researchers
in the two fields of Dialogue Strategy Learning and Statistical User Modelling. To date, the problem of
statistical user modelling for simulating user behaviour has been approached almost entirely by research
groups with a background in SDS design and references to related work in the User Modelling domain
are extremely rare. Vice versa, the User Modelling community has taken little notice of the work done in
Spoken Dialogue Systems although considerable overlap between the two areas of research clearly exists.

We have argued that an understanding of User Modelling concepts such as concept-drift will be needed
for future work on user simulation for strategy learning, for instance when modelling changes in the user
goal during a course of interaction with the system. We also argue that predicting user dialogue behaviour
is a prime example of an application that could benefit from combining collaboration-based and content-
based modelling approaches - a research problem that is also of current interest in other areas of Statistical
User Modelling.

Simulation-based Learning of Dialogue Strategies is still a nascent field of research and as our summary
of recent evaluation studies has shown many problems still persist despite good progress in recent years.
The lack of solid statistical user models for simulating dialogue behaviour currently remains a major
roadblock for future progress on automatic design of dialogue management components, but the evident
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benefits of learning optimal strategies from human-computer dialogue data warrant further research in this
area.
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