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Abstract
This paper extends our recent work on rich context utilization
for expressive speech synthesis in spoken dialogue systems
in which significant improvements to the appropriateness of
HMM-based synthetic voices were achieved by introducing
dialogue context into the decision tree state clustering stage.
Continuing in this direction, this paper investigates the
performance of dialogue context-sensitive voices in different
domains. The Context Adaptive Training with Factorized
Decision trees (FD-CAT) approach was used to train a
dialogue context-sensitive synthetic voice which was then
compared to a baseline system using the standard decision tree
approach. Preference-based listening tests were conducted for
two different domains. The first domain concerned restaurant
information and had significant coverage in the training data,
while the second dealing with appointment bookings had
minimal coverage in the training data. No significant preference
was found for any of the voices when tested in the restaurant
domain whereas in the appointment booking domain, listeners
showed a statistically significant preference for the adaptively
trained voice.
Index Terms: HMM-based expressive speech synthesis, dia-
logue context-sensitive speech synthesis, context adaptive train-
ing, factorized fecision trees

1. Introduction
Spoken Dialogue Systems (SDS) offer the potential for more
natural human-machine interation by using speech as the pri-
mary modality[1]. However, public acceptability of spoken in-
terfaces is still limited by weaknesses in the technology. Apart
from the challenges of robust recognition and dialogue manage-
ment, the quality of speech generation remains a critical factor,
since this is what the user perceives most directly.

Traditionally, a general purpose synthetic voice with neu-
tral characteristics has been used for such applications. Recent
effort has focused on making the discourse more natural by in-
corporating spontaneous responses, backchannel and fillers, as
well as incremental processing [2, 3, 4, 5, 6, 7]. Expressive
speech synthesis that is aware of the discourse context is an es-
sential requirement in natural conversational dialogue. HMM-
based speech synthesis has recently become a popular paradigm
for expressive speech synthesis providing high quality synthetic
speech and offering flexible control over both the acoustic and
prosodic cues of the speech signal [8]. Moreover, adaptation
techniques are inherently supported by the HMM approach en-
abling a variety of emphatic effects to be incorporated.

In a recent study, we have shown that a voice trained with
dialogue context questions included in the decision tree state
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clustering was significantly preferred over the baseline voices
for dialogue applications [9]. More specifically, an expressive
dialogue corpus was collected for the tourist information do-
main (TownInfo), designed to include a rich set of styles appro-
priate for dialogue prompts including emphasized slots. Using
this expressive dialogue corpus (in conjunction with a general
purpose text-to-speech corpus recorded by the same speaker)
an HMM-based voice was trained using emphasis context fea-
tures, as well as context features extracted from the dialogue
act semantic representation. A listening experiment designed
for dialogue appropriateness in the restaurant domain showed
that the dialogue context-sensitive voice was significantly pre-
ferred over baseline alternatives that were trained on the same
data but did not include dialogue context features.

An expressive dialogue corpus consisting of prompts for
a specific domain is inevitably phonetically unbalanced. Con-
sequently, the use of a simple decision tree for this data leads
to unbalanced modeling of the contextual factors, e.g. the
phoneme sequence of a specific slot value that appears empha-
sized several times can be modeled adequately, while other se-
quences of phonemes may lack emphatic context and cannot
be modeled as such. The context-sensitive voice may still be
preferred for the in-domain dialogue task, however it may not
extrapolate well if applied to a different domain.

In this paper, we investigate this issue by evaluating the per-
formance of our dialogue context-sensitive TownInfo voice in a
significantly different dialogue domain. For the latter, the ap-
pointment booking domain was selected since this is an ap-
plication for which we have a working dialogue system but
which has little overlap with the TownInfo response genera-
tor and hence minimal coverage in the domain specific training
data. Initial experiments using standard decision tree clustering
suggested that the phonetically unbalanced training data does
indeed lead to degradation in the out-of-domain task. Hence,
in an attempt to mitigate this, a voice was also built using
Context Adaptive Training with Factorized Decision trees (FD-
CAT)[10].

The remainder of this paper is structured as follows. Sec-
tion 2 reviews related work in integrating dialogue context in-
formation with text to speech in order to generate contextually
appropriate system responses. Section 3 then briefly reviews the
FD-CAT approach to HMM synthesis. Sections 4 and 5 then de-
scribe the data used, the experimental procedure and the results.
Section 6 presents conclusions.

2. Contextually-sensitive TTS
The term Concept-To-Speech (CTS) is used to describe methods
that combine joint natural language generation (NLG) and text-
to-speech (TTS) functionality, i.e. using semantic information
as input to the speech synthesizer [11]. One approach to CTS
involves an annotation schema which is applied to the generated



text and affects the prosody of the rendered speech [12]. A sim-
ilar technique applies prosodic annotations to a template-slot
based generation system [13]. Another approach is to jointly
optimize text and prosody generation in the framework of unit
selection TTS [14, 15]. Others have focused on prosody models
driven from semantic as well as linguistic input [16, 17, 18].

The HMM based statistical speech synthesis framework
(HTS) facilitates data-driven approaches for building voices of-
fering high quality synthetic speech in addition to flexible con-
trol over both the acoustic and prosodic cues of the speech
signal [8]. HTS uses decision trees to cluster and model the
acoustic-prosodic space. The decision trees are built in a data-
driven manner using linguistic information extracted from text.
Any paralinguistic or non-linguistic information can be used as
long as it can be predicted from text or input otherwise. Adap-
tive training and acoustic factorization originally introduced for
acoustic modeling in the context of automatic speech recogni-
tion (ASR) have been recently applied for a variety of applica-
tions such as voice morphing, multi- and cross lingual speech
synthesis, emotional speech synthesis and style control, etc.
[19, 20, 21, 22].

Several efforts for modeling emphasis have been proposed
in the framework of HMM-based speech synthesis. In most
cases, a data-driven approach is followed, either by detect-
ing/annotating emphasized words in existing corpora [23, 10] or
by collecting speech corpora specifically designed for emphasis
modeling [24]. Emphasis context features are then used for de-
cision tree state clustering. More elaborate techniques have also
been proposed that can tackle data sparsity issues when the em-
phasis data is limited, such as factorized decision trees [10, 20],
hierarchical modeling [25], and phrase level modeling [26].

In our recent work, the HTS framework was successfully
utilized to introduce dialogue context information in addition
to emphasis in order to train a synthetic voice tailored to the
needs of spoken dialogue systems [9]. The approach is not
strictly a CTS one since it does not require any complex an-
notation schema or strong coupling between NLG and TTS. In-
stead, the semantic representation of the dialogue acts is used
to extract context features for decision tree state clustering. The
work reported here continues in this direction by demonstrating
that dialogue context sensitive speech synthesis can be applied
to different domains without needing to record domain specific
training/adaptation data.

3. Context Adaptive Training with
Factorized Decision Trees

The acoustic and prosodic realization of an utterance is gov-
erned by a number of strong contextual factors such as the pho-
netic content and coarticulation context which affects the spec-
trum and the stress, accent and tone allocation which affects the
fundamental frequency. However, the realization of an utter-
ance is also affected by weak contextual factors such as style
and emphasis.

All such contextual factors must be considered for HMM-
based speech synthesis in order to achieve a high quality out-
put. However, when a decision tree is used to cluster and model
similar realizations, the influence of each context factor may not
be modelled accurately due to sparsity of the available data for
some of the contextual factors.

Context Adaptive Training with Factorized Decision trees
(FD-CAT) was introduced to jointly model the influence of both
strong and weak context factors [10]. The contextual factors are
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Figure 1: Factorized Decision Trees.

divided into two sets, one comprising the more influential fac-
tors (usually the normal set of HTS contexts) while the other
contains the weak factors that contribute less to the likelihood
of the data. Full context-dependent HMMs are trained using the
normal set of contexts, and then adapted using the weak-context
specific transformations. Two separate decision trees are trained
on the same data set using the normal and weak context factors.
These are then combined into a single decision tree with inter-
sected leaf nodes as shown in Fig. 1.

Following the notation in [20], each leaf node rp =
θ1, · · · , θNp from the normal-context decision tree is combined
with each leaf node re = θ1, · · · , θNe from the weak-context
decision tree into a leaf node rc in the combined decision tree

rc = rp ∩ re := {θ : θ ∈ rp ∧ θ ∈ re} (1)

where θ is a distinct state corresponding to a full-context model.
The leaf nodes of the combined tree rc form atomic adaptation
units on which both rp and re will have an effect. For the work
here, an implementation based on MLLR adaptive training was
used whereby the mean and covariance of the Gaussian compo-
nent m are given by

µ̂m = Are(m)µrp(m) + bre(m) , Σ̂m = Σrp(m) (2)

where rp(m) and re(m) are the leaf nodes of the normal and
weak context decision trees containing m, Are(m) and bre(m)

are the weak context transform parameters and µrp(m) and
Σrp(m) are the normal context Gaussian parameters. More de-
tails about the implementation of FC-CAT can be found in [20].

4. Data Description
The speech corpus used in this study consists of a general pur-
pose text-to-speech corpus combined with an expressive dia-
logue corpus specifically designed for the TownInfo domain.
The former was provided by Phonetic Arts for research pur-
poses [27] and is referred to in that corpus as the RJS voice.
The latter was recorded by the same RJS speaker using prompt
scripts derived from the logs of the Cambridge spoken dialogue
system in the TownInfo and TopTable restaurant domains[9].
The TownInfo domain includes restaurant, hotel and bar infor-
mation for a hand-crafted information database, while the TopT-
able domain contains restaurants provided by an online service
provider [28].
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Figure 2: F0 contours of a restaurant-domain utterance. The
blue solid contour corresponds to the sentence synthesized with
the baseline voice while the red dashed contour was produced
by the FD-CAT voice. Both contours were time-warped in order
to align the phoneme boundaries (the mean values were used as
the reference points). The original waveforms are also plotted
above for the baseline and below for the FD-CAT sentences.
Word boundaries and phoneme boundaries are shown with ver-
tical solid and dashed lines respectively.

Emphasis and style were selected as the primary expres-
sive patterns to be covered. In order to provide emphasis data
the dialogue corpus was annotated using emphasis tags at the
slot level using the following simple approach. For every dia-
logue the first encounter of each slot value was annotated with
an emphasis tag. Expressive style, on the other hand, is neither
precisely defined, nor is an annotation scheme available for it.
Hence, the style was modelled implicitly by including whole
dialogues in the corpus. The speaker was instructed to take on
the role of the system for each given dialogue task, as well as
to follow the emphasis annotations as closely as possible. The
collected expressive dialogue corpus contains 3158 wave files
totalling about 5 hours of audio. Each wave file corresponds
to a system-uttered prompt consisting of one or more sentences
and is associated with the emphasis-tagged text prompt, as well
as the dialogue act that was used to generate it.

Due to repetition of slot values and limited vocabulary, the
resulting corpus is not phonetically balanced. Consequently, as
noted in the introduction, the use of a simple decision tree for
this data leads to unbalanced modeling of the contextual fac-
tors, e.g. the phoneme sequence of a specific slot value that
appears emphasized several times can be modeled adequately,
while other sequences of phonemes may lack emphatic context
and cannot be accurately modeled.

5. Experiments
5.1. Domain description

The in-domain task involves restaurant information system and
the out-of-domain task involves appointment bookings. The on-
tologies, i.e. the entities, slots and values, are widely different
for the selected tasks. However, both domains share the same
scheme for dialogue act specification. Dialogue acts take the
form dact(a1[= v1], . . . , aN [= vN ]), where dact is the dia-
logue act type, {ai, vi} is the i-th slot-value pair, and N is the
number of slots, e.g. confirm(pricerange=cheap,area=centre)
realized as “Do you want a cheap restaurant in the centre
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Figure 3: F0 contour of a booking-domain utterance synthe-
sized with the baseline and the FD-CAT voice. The same nota-
tion with Fig. 2 was used.

of town?”, or confirm(date=Saturday,hour=four,period=pm)
from the booking domain realized as “Did you say you are free
at four on Saturday afternoon?”. Minor differences exist in
the set of act types, e.g. confbook - confirming the appointment
date and time before asking whether to book it. Such act types
have similar counterparts in the training data and were mapped
accordingly.

5.2. Dialogue Context Sensitive Voices

As described above, two dialogue context sensitive voices were
built: a baseline using standard decision trees and one using FD-
CAT. The baseline uses standard decision trees with the empha-
sis and dialogue context features combined with the standard
set of linguistic features. The FD-CAT system split out the em-
phasis and dialogue features as a separate set of weak context
factors.

The weak context question set had a total of 23 questions,
six of which were derived from the emphasis context and the
rest from the dialogue act semantic representation [9]. Both
the baseline and the FD-CAT voices were trained on the same
dataset including the original RJS corpus and the expressive di-
alogue corpus. The following stream configuration was used:
25 Mel-Cepstral coefficients, five band aperiodic energy com-
ponents, continuous log F0 and voicing condition [29]. The
STRAIGHT vocoder was used for speech analysis and feature
extraction. A modified version of the HTS framework was used
for FD-CAT as described in [20].

Figs. 2 and 3 illustrate the differences between the two
voices for in-domain and out-of-domain utterances, respec-
tively. Each figure shows a sample sentence from the corre-
sponding domain synthesized with the baseline (top) and the
FD-CAT (bottom) voices. The F0 contours are shown after be-
ing aligned at the phoneme boundaries which are marked with
vertical lines. For the in-domain case (Fig. 2), there are few ob-
served differences with the duration patterns being very similar
and the F0 contours coincide most of the time. On the other
hand, there are significant differences in both the duration pat-
terns and the F0 contours for the out-of-domain case (Fig. 3),
e.g. the duration of the emphasized word FOUR is perceivably
longer for the FD-CAT voice, and the F0 contour is higher for
the initial words of the utterance. This suggests that the FD-
CAT approach has a greater effect for the out-of-domain task
while the effect for the in-domain case is limited because the



required realisations are already well represented in the training
data. This was also observed in the listening test presented in
the following section.

5.3. Evaluation

A preference listening test designed for dialogue appropriate-
ness was performed to evaluate the baseline and FD-CAT voices
for the in-domain and out-of-domain tasks. The listener was
presented with a dialogue script including both the system
prompts and the user responses. The top ASR hypothesis was
used as the user response instead of the actual user’s speech
transcription so that the listener is not affected by any misrecog-
nitions. The emphasized words were marked in bold-face and
listeners were instructed to take this into account in order to
factor out the effect of the emphasis assignment algorithm. The
listener was asked to choose the most appropriate between the
two alternative synthesized versions for each turn or indicate
“no preference”. The presentation order of the two alternatives
was randomized, and the listeners were allowed to playback the
audio multiple times.

A set of 20 previously collected dialogues were randomly
selected for the restaurant domain. The system used to collect
them integrated an emphasis assignment module so the prompts
already contained emphasis annotations. For the appointment
booking domain a set of 15 dialogues were selected from an
existing corpus and then annotated so that the first occurrence
of each slot value was emphasized. Each dialogue task was
evaluated three times using subjects recruited via the Amazon
Mechanical Turk crowd-sourcing service constrained to ensure
only one task per listener per domain. The listeners were also
asked to report if they were native or non-native English speak-
ers.

The results are summarized in Table 1; the upper section
refers to the restaurant domain and the lower section to the ap-
pointment booking domain. The table also shows the break-
down according to whether the prompt contained an empha-
sized slot (emphasis) or not (plain), as well as whether the lis-
tener reported being native or non-native. A breakdown accord-
ing to the dialogue act is also shown grouping them in three cat-
egories (confirm - the system is confirming, inform - the system
is informing, and request - the system is requesting informa-
tion). The number of judgements per comparison as well as
the statistical significance level estimated using a sign test are
shown.

As can be seen, there is no significant preference towards
either the baseline or the FD-CAT voice for the in-domain task.
This holds for both the plain and emphasis scenario, native and
non-native speakers as well as across dialogue act types. This is
in accordance with the observations made in Sec. 5.2 and ver-
ifies the presumption that adaptive training has little effect for
in-domain utterances since there is sufficient coverage in the
training data. In contrast, the FD-CAT voice is consistently pre-
ferred over the baseline voice for the out-of-domain task. The
preference is more evident for the plain scenario. This is partly
due to the request prompts which are usually questions without
emphasized slots. There is good agreement between the native
and non-native speakers’ judgements, although the difference
for the latter case is not statistically significant due to the lack
of samples.

Restaurant Information Task (in-domain)
Condition # Judg. Baseline No Pref. FD-CAT p-value
plain 198 29.3% 43.4% 27.3% 0.415
emphasis 201 39.3% 22.9% 37.8% 0.443
non-native 231 36.8% 27.7% 35.5% 0.447
native 168 31.0% 40.5% 28.6% 0.408
inform 258 34.1% 32.2% 33.7% 0.475
confirm 93 37.6% 25.8% 36.6% 0.500
request 48 29.2% 52.1% 18.8% 0.235
Total 399 34.3% 33.1% 32.6% 0.381

Appointment Booking Task (out-of-domain)
Condition # Judg. Baseline No Pref. FD-CAT p-value
plain 162 27.8% 24.7% 47.5% 0.007
emphasis 195 38.5% 15.9% 45.6% 0.158
non-native 132 32.6% 21.2% 46.2% 0.069
native 225 34.2% 19.1% 46.7% 0.030
inform 222 37.8% 18.5% 43.7% 0.191
confirm 63 31.7% 25.4% 42.9% 0.224
request 72 22.2% 19.4% 58.3% 0.001
Total 357 33.6% 19.9% 46.5% 0.007

Table 1: Preference results comparing the baseline to the FD-
CAT voice. Significant results are shown in bold (p<0.05).

6. Conclusions
The quality of the synthesised speech output from a Spoken
Dialogue Systems is critical to both intelligibility and natural-
ness. In addition to accurate articulation, the prosody and style
must be both realistic and appropriate to the changing dialogue
context. Recently, we introduced dialogue context features for
decision tree state clustering and observed significant improve-
ments in the perceived quality and contextual appropriateness
of the synthetic voice[9]. This approach relies on the use of
training data which includes all of the required emphases and
styles. The HTS decision trees are then trained to map the ex-
plicit dialogue context features, in this case dialogue acts and
emphasised words, onto the corresponding patterns in the train-
ing data.

An obvious limitation of this approach is the reliance on in-
domain training data. When used out-of-domain, the training
data is inevitably phonetically unbalanced and simple decision
trees cannot capture the expressive patterns in the data. Hence,
the work reported in this paper has sought to determine how
significant this problem is, and investigate the extent to which
the separation of strong and weak features using the FD-CAT
HMM synthesis approach can mitigate the problem.

Experiments have been conducted to compare a standard
voice trained using a simple decision tree to a voice trained us-
ing FD-CAT. Both voices were tested on an in-domain Restau-
rant information task and an out-of-domain appointments book-
ing task. The results show that both voices are equally prefer-
able for the in-domain task, whereas for the out-of-domain task
the FD-CAT voice is significantly preferred to the baseline.
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