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Abstract

This paper presents the results of a comparative user evaluation
of various approaches to dialogue management. The major con-
tribution is a comparison of traditional systems against a system
that uses a Bayesian Update of Dialogue State approach. This
approach is based on the Partially Observable Markov Decision
Process (POMDP), which has previously been shown to give
improved robustness in simulation experiments. Results from
this paper show that the benefits demonstrated in simulation ex-
periments are also obtained when testing a live system with real
users.

1. Introduction

Recent research on the theory of dialogue systems has sug-
gested the use of Partially Observable Markov Decision Pro-
cesses (POMDPs) as a suitable approach. At low error rates,
POMDP-based systems are expected to give equivalent perfor-
mance to traditional finite state approaches. In the presence of
noise, however, they should provide increased robustness to er-
rors by handling uncertainty in a more principled way.

The expected benefits of the POMDP approach have been
verified in simulation experiments by various researchers [1,
2, 3]. Unfortunately, this does not necessarily mean that the
POMDP-based systems are better with real users since it is well
documented that simulation results are not always reliable [4].
The aim of this paper is to show that the benefits shown in simu-
lated experiments are confirmed by experiments with real users.

Past efforts to evaluate POMDP-based systems have been
hindered by various obstacles. The POMDP relies heavily on
the confidence scores it obtains from the semantic processing
component. Unless the confidence scores give a good indication
of the true probability of the semantics of a user utterance, the
system has little information with which to update its beliefs.
It is also very difficult to scale POMDP systems to the num-
ber of states required by a real-world dialogue manager. With-
out efficient approximation techniques the updating and learn-
ing quickly becomes intractable. Several approaches have been
suggested to overcome this including the Composite Summary
Point Based Value Iteration (CSPBVI) algorithm and the Hid-
den Information State model [5, 6].

This paper presents a user evaluation of an alternative to
these scaling techniques called the Bayesian Update of Dia-
logue State (BUDS) model [3]. The paper is organised as fol-
lows. Section 2 explains the POMDP model as well as the
BUDS approach to scaling. The following section then explains
the details of the dialogue manager implementations along with
simulated results. Section 4 gives a user-based evaluation of the
system and section 5 concludes the paper.
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2. Bayesian Update of Dialogue State

A standard model for dialogue management is that the system
consists of a set of internal states, allowable machine actions
A and a set of observations 0. The machine actions, m € A,
represent the allowable machine utterances while the observa-
tions, o € O, give the possible results after semantic processing
of the user’s speech. Decisions about which action to take are
dependent on the internal state of the system.

When using a POMDP approach, the concept of internal
system state is equated to the system’s beliefs about the user and
environment. The true state of the user and environment, s € S,
is considered hidden and must be inferred from the observa-
tions received. This inference is done under the Markov as-
sumption: states are conditionally dependent on only their pre-
vious value and the last machine action. Given an observation
function P(o|s) and a state transition function P(s’|s,m), a
belief distribution over states can then be updated using Bayes’
Theorem [2]. The set of internal system states is then the set
of probability distributions over S, sometimes called the belief
space.

To make this update equation more tractable the Bayesian
Update of Dialogue State (BUDS) framework makes several
further assumptions. As suggested by [2], the system state is
factored into three components: the user goal g, the true user
action u and the dialogue history . The BUDS approach then
further factorises according to a set of slots, ¢ € Z. The goal be-
comes g = (gi)iez, the user act u = (u;);ez and the dialogue
history h = (h;)iez. Next some conditional independence as-
sumptions are taken and are modeled as a Bayesian Network.
Figure 1 shows the resulting network for two time-slices of a
two-slot system based on this idea.
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Figure 1: The two time-slice network for a BUDS based system with
two slots: type of venue and food. The food slot only applies if the type
of venue is restaurant and is assumed to take the value “N/A” otherwise.

One of the advantages of factoring the belief state is that
handcrafted policies are reasonably simple to implement. The



system designer specifies which action to take as a function of
the belief distributions over each node in the network. As an
example, the system might request information about a node
whenever there is no single value with a high probability. Once
a sufficient number of nodes have highly probable values the
system will offer information about a relevant database item.

An alternative to handcrafting the policy is to learn it au-
tomatically. One assigns rewards to the various stages of the
dialogue and learning proceeds using the episodic Natural Ac-
tor Critic algorithm [7]. This algorithm follows a parametric
stochastic policy which is updated by calculating a natural pol-
icy gradient and performing gradient descent. The parameters
are factored so that each node in the network has its own param-
eters which contribute to the overall choice of action. Further
details may be found in [3]

3. System implementation

Four dialogue systems were built for the Tourist Information
domain to compare the POMDP approach against traditional
alternatives and to compare handcrafted policies with learned
ones. The task in this domain is to provide information and
recommendations for restaurants, hotels and bars in a fictitious
town. Users may request specific values for nine different slots:
type of venue, number of stars, cuisine, area, drinks, music,
price range, name and nearness to a specific location. They may
also then ask for information about the address, phone number
and a comment on the venue.

The first system is based on the BUDS approach using a
handcrafted policy (BUDS-HDC). The system starts by check-
ing the number of venues that are likely to match the user’s
requirements by checking the probabilities of the venue’s slot
values. If the total number of likely matches is below a thresh-
old then one of these venues is offered to the user. Alternatively,
the system finds a slot where there is high uncertainty and re-
quests the slot, confirms the most likely value or asks the user to
select between two options. The choice between these actions
is decided by simple heuristics based on the probabilities of the
most likely value and second most likely value.

A trained policy (BUDS-TRA) was implemented for the
BUDS approach as described previously [3]. Policy learning re-
quires several thousand interactive dialogues so it is infeasible
to do this with real users. Instead an agenda based simulated
user was built for the task [8]. The user simulator assumes a
predefined user goal and then interacts with the dialogue man-
ager at a semantic level. Planned dialogue acts are pushed and
popped from a stack according to the actions of the dialogue
manager, providing a mechanism for the simulator to maintain
consistency through the dialogue.

‘When running simulations on a dialogue manager another
important issue is the simulation of errors. In order to handle
errors appropriately the system must experience them during
training. For a given dialogue act decided by the user simula-
tor, three confused acts were generated. A confusion rate, e,
was chosen and for each output act the original act was chosen
with probability (1 — e). Otherwise the act was corrupted by
changing the dialogue act type, substituting attribute values or
types and / or inserting or deleting attribute-value pairs. Based
on the number of times an act appeared in the confused list, a
confidence score was generated and this was then passed on to
the dialogue manager.

The third and fourth systems implemented are based on the
traditional approach of using a finite number of states to repre-
sent the dialogue state. The handcrafted system (MDP-HDC),

fills a set of slots with dialogue acts as they are received and
requests unfilled slots until it finds a suitable venue. Note that
this approach can only make use of one hypothesis at a time
so any additional information regarding the uncertainty is lost.
Using the same internal state with a standard Markov Decision
Process model allowed the implementation of a learned policy
for this system (MDP-TRA) [9]. Policy learning used the same
user and error simulator as the BUDS trained system.
Preliminary testing used simulations to compare the four
approaches by using the same user simulator and error chan-
nel as for training. The confusion rate was varied between 0%
and 50%, with 5000 dialogues simulated at each rate. As can
be seen from Figure 2, the systems perform equally well when
there is no confusion but as the error rate increases differences
begin to develop. The two BUDS systems significantly outper-
form the traditional approaches and the learned policies give
slight improvements over their handcrafted counterparts'. The
next section discusses an evaluation based on real user data.
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Figure 2: Simulation results of the four systems. The objective reward
is calculated by assigning 20 points for a successful dialogue and sub-
tracting one for each turn. Dialogues are grouped into bins according
to the semantic accuracy using only the top hypothesis for each turn.
Error-bars show one standard error on each side of the mean.

4. User Evaluation

The four dialogue managers discussed above were evaluated by
36 human subjects in an attempt to investigate system perfor-
mance on real users. Subjects were asked to complete three
tasks on each of the four systems. Each task consisted of find-
ing a venue matching a set of constraints, along with some in-
formation about it. For each system, every user was given one
task where there was no suitable venue, one where there was
more than one and one where there was exactly one matching
venue. A total of 108 dialogues was recorded for each system.
To investigate system robustness varying levels of synthetic
noise were added to the speech signal before speech recogni-
tion. Three levels of zero, medium and high noise were used,
corresponding to signal to noise ratios (SNR) of 35.3db, 10.2db
and 3.3db. The users were given a different noise level for each

INote that the difference between the BUDS trained and handcrafted
policies is smaller than in previous experiments because of a change in
evaluation metric[3]. In the case of tasks with no matching venue, a
dialogue is considered successful if the system says there is no matching
venue. In previous experiments the user simulator would change its goal
and require a venue matching the new goal but this is difficult to test in
a real environment.



of the three tasks for each system.

Three metrics were used to evaluate the system performance.
At the end of each dialogue users were asked whether they felt
they had found what they were looking for, resulting in a sub-
jective success rate (SSR). An objective success rate (OSR) was
calculated by examining the transcripts and checking if the task
requirements had been met. From this the reward was calcu-
lated by giving twenty points for a successful dialogue, zero for
an unsuccessful one and subtracting the number of turns until
success or dialogue completion.

It was important to try and eliminate as much extra variabil-
ity as possible so all systems used the same speech recogniser,
semantic decoder, output generator and text-to-speech engine.
The speech recogniser uses the ATK toolkit with a tri-phone

acoustic model and a dictionary of around 2000 in-domain words.

A 10-best list is output and passed to the semantic decoder along
with sentence-level inference evidence scores, which are the
sum of the sentence arc log-likelihoods in the confusion net-
work. Semantic decoding is implemented using a hand-crafted
Phoenix-based parser which computes for each sentence a dia-
logue act type along with a sequence of attribute value pairs. A
confidence for each resulting dialogue act is calculated by ex-
ponentiating the inference evidence, adding the score for sen-
tences that result in the same dialogue act and renormalising
so that they sum to one. Output generation is handcrafted and
text-to-speech is implemented with the FLite synthesis engine.
The overall results of the trial are given in Table 1. As was
the case in simulations, the BUDS systems significantly outper-
formed the MDP-based systems in this trial. Interestingly, the
BUDS trained policy fared significantly better than the hand-
crafted policy in terms of subjective success but worse on the
objective metrics. Preliminary investigation of the transcripts
seems to indicate that this was because the trained policy some-
times offered venues before all the information had been given.
While the simulated user always ensured its constraints were
met, the real users did not necessarily do this. This may be one
reason for the reduced performance of the trained policy.

System OSR Reward SSR
BUDS-HDC | 0.844+0.04 | 11.83 +0.94 0.84 +0.04
BUDS-TRA | 0.7540.04 8.89+ 1.09 0.88 £0.03
MDP-TRA 0.66 + 0.05 6.97+1.23 0.81 +0.04
MDP-HDC 0.65 £ 0.05 7.10+1.21 0.78 £ 0.04

Table 1: Objective Success Rate (OSR), Objective Reward and Sub-
jective Success Rate (SSR) for the different systems. Error values give
one standard error of the mean. They are calculated by assuming that
success rates and rewards follow binomial and Gaussian distributions
respectively.

Figure 3 shows the subjective success rates of the systems
when separating the various noise levels. The overall trend is
that the BUDS systems do outperform the traditional approaches
but these differences are not significant. Due to the small num-
ber of samples the results are difficult to interpret, particularly
as the trained systems performed better with medium noise than
they did with no noise added. The objective success rates gave
similar peculiarities; the main difference being that the BUDS-
HDC policy performed better than the BUDS-TRA policy. Part
of the reason for these peculiarities is that the added synthetic
noise did not always result in increased semantic errors. The
next subsection discusses how the error rates actually observed
during the trial affected the systems.
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Figure 3: Subjective success rates for the different systems at varying
noise levels.

4.1. Effect of Semantic Errors

The major claim of POMDP-based systems is that they are more
robust to errors than traditional approaches. Given sufficient
data and noting that semantic error rates are affected by the
choice of system actions, dialog performance should ideally be
plotted directly as a function of noise level. However, as shown
in the previous section, the correlation of error rates with noise
level can be very weak and when sample sets are small, the
results can be misleading. In this case, greater insight can be
obtained by plotting performance as function of the measured
error rate.

Error rates form a continuum so it is inappropriate to give
observed success rates for any given level of error. Either the
error rates must be grouped into bins or one must estimate a
functional form for the success. Both of these approaches are
presented in this section.

The results of binning the error rates are shown in figures
4 and 5. Accuracy rates are calculated for the top semantic hy-
pothesis only and are defined as one minus the sum of the num-
ber of insertions, deletions and substitutions of semantic items
divided by the reference total. Semantic items include the di-
alogue act type as well as the attribute-value pairs. Bins were
chosen to obtain approximately equal numbers of dialogues in
each bin and were split into accuracies less than 70%, between
70% and 85% and over 85%. Since the exact distribution of ac-
curacies for each may be different the figures plot the success
rate against the average top hypothesis semantic error rate for
the bin.

Assuming a constant probability of success for each bin and
system, the results show that the BUDS systems significantly
outperform the MDP at higher error levels. Based on subjective
success, the BUDS trained policy performs the best, while on
the objective metric the handcrafted approach is better. Perfor-
mance under medium error conditions has similar trends but the
differences are less significant.

One problem with grouping data into bins is that the success
rate for the bin may depend on the exact distribution of values
obtained. It may be preferable to assume that the probability of
success is some function of the semantic accuracy and estimate
this function instead. A standard approach for this is to use lo-
gistic regression but this restricts the particular form of function
allowed. A more flexible approach is to use a Gaussian Process
(GP) classification model, where the probability of classifica-
tion is replaced with the probability of dialogue success [10].
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Figure 4: Subjective success rates for the different systems in varying
semantic error bins. Error-bars show one standard error on each side of
the mean.
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Figure 5: Objective success rates for the different systems in varying
semantic error bins. Error-bars show one standard error on each side of
the mean.

In this model, the probability of success is a probit-normal link
of some latent function values which are jointly Gaussian dis-
tributed. Inference is done with the expectation propagation al-
gorithm and hyperparameters are chosen with type II maximum
likelihood.

Results using the GP approach are shown in figure 6 2.
The data is insufficient to draw any significant conclusions but
the trend gives some indication that the learned policies have a
smaller decrease in performance for a given drop in accuracy.

5. Conclusion

This paper has discussed the results of a comparative evalua-
tion of four dialogue systems, comparing the Bayesian Update
of Dialogue State (BUDS) approach with traditional finite state
techniques. Both simulations and a user evaluation indicate
that the POMDP-based BUDS approach improves performance,
particularly in the presence of errors. In the trial the BUDS sys-
tems were shown to significantly outperform overall as well as
when dialogues were binned as having low semantic accuracy.
The effect of noise is less significant, but is probably due to a
lack of test data. In future work we hope to test performance of
a deployed system, thereby both increasing the number of users

2GP models also require the choice of a covariance function for
which the Matern class (with v = %) was chosen.
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Figure 6: Graphs of the posterior probability of objective dialogue suc-
cess as a function of semantic accuracy. The horizontal lines show av-
erage success. The shaded area gives a 95% confidence interval for the
posterior probability of success.

and removing the need to simulate user task scenarios.
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