
N-BEST ERROR SIMULATION FOR TRAINING SPOKEN DIALOGUE SYSTEMS

Blaise Thomson, Milica Gasic, Matthew Henderson, Pirros Tsiakoulis, and Steve Young

Engineering Department, University of Cambridge, CB2 1TP, UK.

ABSTRACT
A recent trend in spoken dialogue research is the use of reinforce-
ment learning to train dialogue systems in a simulated environment.
Past researchers have shown that the types of errors that are sim-
ulated can have a significant effect on simulated dialogue perfor-
mance. Since modern systems typically receive an N-best list of
possible user utterances, it is important to be able to simulate a full
N-best list of hypotheses. This paper presents a new method for
simulating such errors based on logistic regression, as well as a new
method for simulating the structure of N -best lists of semantics and
their probabilities, based on the Dirichlet distribution. Off-line eval-
uations show that the new Dirichlet model results in a much closer
match to the receiver operating characteristics (ROC) of the live data.
Experiments also show that the logistic model gives confusions that
are closer to the type of confusions observed in live situations. The
hope is that these new error models will be able to improve the re-
sulting performance of trained dialogue systems.

Index Terms— Spoken dialogue systems, reinforcement learn-
ing, POMDP, error simulation.

1. INTRODUCTION

One promising framework for building spoken dialogue systems is
the use of reinforcement learning to optimise what decisions are
made. Reinforcement learning algorithms formalise the design cri-
teria of the system as objective reward functions and then optimise
the system’s decisions to maximise the expected rewards. Previous
research has shown that this approach outperforms standard alterna-
tives [1, 2].

When optimising the rewards, most reinforcement learning al-
gorithms require many more dialogues than are available in corpora.
An even more significant issue is that most algorithms learn online
by interacting with the environment. The standard solution to this
is to build a simulation environment, which is used to train the dia-
logue system [3]. The simulation environment can then be used to
generate as many dialogues as necessary.

The simulation environment consists of two main parts. First is
the user simulator, which simulates how a user would respond in a
given situation. The development of user simulators is an active area
of research and example approaches include n-gram models [1], goal
based models [4], and conditional random fields [5]. The second
component is the error simulator, which simulates how the user’s
response is corrupted. Building systems that are robust to errors is
particularly important because both speech recognition and spoken
language understanding are prone to mistakes. Previous research has
shown that error simulations do have an effect on simulated dialogue
performance [6]. Speech recognisers typically output an N -best list
of hypotheses along with confidence scores, and so the error simula-
tor should ideally be able to do generate similar outputs. This paper

e-mail: {brmt2,mg436,mh521,pt344,sjy}@eng.cam.ac.uk.

discusses methods for developing and evaluating such error simula-
tors.

A good error simulator should be consistent with the true envi-
ronment in several ways: for a given input, the resulting confusions
should be consistent along with the confidence scores, the length
of N -best lists and the position of the correct item in the list. In-
deed, one can consider the error simulator has being made of dif-
ferent components which each tackle different collections of these
goals.

The core component of the error simulator, named here the con-
fusion model, decides what output utterance a given utterance should
be confused to. A common approach to this task is to convert the se-
mantic representation obtained from the user simulator into text and
then generate confusions at a word level. One can then generate con-
fusions according to the past confusions observed for each word [7],
or from fragment-to-fragment confusions [8]. The word-level forms
can be further reduced to a phone level using a pronunciation dictio-
nary, with confusions then being generated at this level. Examples
include probabilistic phoneme conversion rules [9], weighted finite
state transducers [10] and linguistically motivated phone confusion
models [11, 5]. Once a confused word string is generated, the re-
sult can simply be passed through a natural language understanding
module to obtain the semantics that the system would have received.

The alternative to generating confusions at the word level is
to generate confusions directly at a semantic level. For simplicity,
some systems have used a framework where semantic items are ei-
ther dropped, added, or confused into other items with hand crafted
probabilities [12]. This is quicker to compute than many word-level
approaches but the resulting confusions are unlikely to behave sim-
ilarly to the real environment. If the number of possible user utter-
ances is limited it is also possible to estimate the confusions using
maximum likelihood estimates from a corpus [13]. This approach
becomes difficult when there are many combinations for what the
user might say and so this paper proposes a semantic-level method
based on logistic regression in section 3. The resulting method is
quick to compute and matches the data more closely than the other
methods tested here.

The other component of the error simulator, called here the con-
fidence score generator, decides the length of the N -best list, what
the confidence scores are, as well as where the correct hypothesis
should occur (if at all). Many early dialogue systems were only able
to make use of one hypothesis and so there was not much focus on
generating full lists of confusions. The focus instead was simply
on choosing the confidence score for a single generated confusion.
More recently there has been growing interest in partially observable
Markov decision processes, which are able to improve performance
by using N -best lists of hypotheses [13, 14]. These systems directly
exploit the extra information in the N -best list in order to provide
more robust interaction. For these systems it is particularly impor-
tant to have good simulations of the N -best list.

When focusing on a single confusion, the standard approach is

Dialogue act Example sentence
inform(area=centre) I want the centre.
inform(area=centre) Is there something in the centre?
request(phone) What’s the phone number?
confirm(food=Chinese) Do they serve Chinese food?

Table 1. Table of example dialogue acts.

to start by deciding whether the hypothesis should be correct or not,
based on a given probability [13]. The confidence scores are then
sampled from two different distributions, one for the correct hy-
potheses and one for the incorrect. These distributions can be learned
from data in various ways, including binning [8] and approximation
as a sum of exponentials [11]. Moving to the case of N -best lists,
one simple method is to repeatedly generate confusions as for the 1-
best case, and then simply assign each confusion a probability pro-
portional to the count of times it appears [15]. Another option is to
generate confidence scores from a parameterised Dirichlet distribu-
tion [14]. In section 4, this paper will propose an approach based on
a collection of Dirichlet models trained from data.

Past evaluation of error simulators has typically been limited
to evaluation of the overall statistics generated by the error simula-
tor. For example, one might compare the distribution of confidence
scores for correct and incorrect hypotheses on real and simulated er-
rors [8, 11], or plot the word error rates against acoustic perplexity
[11]. To the authors’ knowledge there has been no attempt to develop
a metric that measures how close the simulated confusions are to the
true confusions. This paper discusses a possible metric in section 5.

In summary, the main contributions of this paper are:

• A confusion model based on logistic regression,

• A model for generating N -best lists of confusions, based on
a collection of Dirichlet distributions,

• A metric for offline evaluations of the effectiveness of an error
simulator.

2. ERROR SIMULATION FRAMEWORK

Before discussing the details of the proposed error simulators, it is
worth spending some time on the framework used here for error sim-
ulation. The input to the error simulator is a user act, which is la-
belled u. This is obtained from the user simulator, and will be a high
level representation of the semantics (i.e. the meaning) of the utter-
ance. All experiments in this paper use the Cambridge dialogue act
set [12], where user acts consist of a dialogue act type followed by a
sequence of attribute value pairs (Note that the value may be empty).
The attribute-value pairs are sometimes called semantic items. The
general form of these user acts is:

acttype(slot1 = value1, . . . , slotn = valuen). (1)

The dialogue act type represents the underlying purpose of the
utterance, sometimes called the illocutionary act [16]. Example act
types include request, inform and confirm. The values in the
attribute value pairs can also be empty in which case the equals sign
is omitted for simplicity. Some example dialogue acts with possible
text forms are given in table 1. All examples in this paper will be
in the context of a dialogue system built for providing restaurant
information to tourists. Further details on the domain are given in
section 5.

Given such a user act, the task of the error simulator is to com-
pute a sequence of output acts, labelled ei, with associated confi-
dence scores ci. The number of output acts,N , must also be decided
by the error simulator.

In order to simplify the process, many of the models discussed
below will split this generation into several steps. First, the num-
ber of output acts, N , is decided. Given this, a distribution of con-
fidence scores is chosen along with a set of probabilities pi, i =
1, . . . , N+1. This will usually be based on some generation param-
eter, αN . The correct hypothesis is then placed at position i of the
list with probability pi, where i = N + 1 corresponds to the correct
hypothesis not being on the list. All other positions are provided with
a confused hypothesis along with the confidence score for that posi-
tion. Confusions are generated by a separate confusion model. This
approach allows us to separate the confidence score generation from
the confusion component. Figure 1 gives a example of the process.

Choose N

Choose p

Sample confused user acts

2

(0.7, 0.1,0.2)

inform(price=expensive) 0.7
inform(price=cheap) 0.1

Fig. 1. Example sample from the N -best confidence scoring frame-
work. Note that although N = 2, three probabilities are generated,
with the final probability giving the probability that the correct hy-
pothesis is excluded from the list.

3. CONFUSION MODELS

The task of the confusion model is to generate a confused user act
ũ, from a true user act, u. Ideally, the type of confusions for a given
act will match the confusions being obtained by the speech recog-
nition and spoken language understanding components. The three
approaches which will be evaluated later in this paper are discussed
below.

3.1. Handcrafted confusion model

One particularly simple approach is to iterate through the slot-values
of the given act and independently confuse each one with a pre-
determined probability. This approach is used in various past frame-
works [12, 2]. When a slot-value pair is confused there is a fixed
probability that it will be deleted completely; otherwise the value
is confused uniformly to one of the other values of the slot. There
is also a fixed probability that extra items are added or the act type
is confused. Exactly which items are added or which act type is
generated is determined by a uniform distribution over the available
options.

Clearly the resulting confusions are unlikely to match the type
of confusions obtained in live situations. The approach does have
one advantage, however, in that it requires no data to work and it
has in fact resulted in relatively effective trained dialogue systems
[2]. It will be used here as the baseline approach, and is labeled the
Handcrafted confusion model.

I WANT AN EXPENSIVE HOTEL PLEASE
1 2 3 3 4 5

1 2 3 4 5
ONE INEXPENSIVE HOTEL PLEASE

Fig. 2. A sample source and target alignment.

3.2. Word-level confusion model

The second confusion model evaluated here is the fragment-to-
fragment model of [8]. This model starts by generating a word-level
form of the user act semantics using a maximum likelihood ap-
proach. A corpus of user utterances is collected and each utterance,
i, is annotated with both an orthographic transcription, wi, and the
true user act, ui. Maximum likelihood estimates are then obtained
by counting:

p(w|u) = Count(wi = w, ui = u)

Count(ui = u)
. (2)

Simple back off rules can be used by building templates, where
slot values in both the user acts and the word-level forms are re-
placed by tokens. The probabilities computed in this case are then a
probability of the token sequence. When generating, the slot values
in the given act are replace by tokens, a word sequence is generated
with token values, and the token values are replaced by their given
words. This helps to alleviate data sparsity issues.

Once the word-level form is obtained it must be confused with
an automatic speech recognition (ASR) confusion model. The ASR
model is trained from the corpus of orthographic transcriptions, wi,
with their most likely ASR results, w̃i. The two word sequences
are aligned to minimise the Levenshtein distance, and corresponding
word fragments are matched. The alignments are described by the
alignment vectors γi, where γi,j is the index of fragment assigned
word j of the transcription. γ̃i is defined similarly for the most likely
ASR hypothesis. Figure 2 shows an example alignment taken from
[8].

An alignment model is then built by assuming that the probabil-
ity a word belongs to a fragment depends only on the word and the
words in the current fragment. Formally

P (γ|w)=P (γ1|w1)

S∏
i=2

P (γi|wi, w
i−1
start, γi−1), (3)

where wi−1
start are the words assigned to γi−1. The first word w1 is

forced to be in the first fragment and so P (γ1|w1) = 1 iff γ1 = 1
and 0 otherwise. For subsequent words, the probability of assigning
wi to fragment γi is given by:

P (γi|wi, w
i−1
start, γi−1) =

 φ if γi = γi−1

1− φ if γi = γi−1 + 1
0 otherwise

(4)

where φ is the maximum likelihood estimate of seeing wi follow
wi−1 in the fragment starting with wstart

φ =
Count(wstart . . . wi−1wi)

Count(wstart . . . wi−1)
. (5)

This alignment model is used at run time to decide how to break
up the chosen word-level form,w, into fragments. The fragments are

then confused using maximum likelihood estimates based on how
the fragments were confused in the corpus. The resulting word se-
quence is passed through the system’s semantic decoder to obtain
the confused user act, ũ. The full process of generating a word-
level form, choosing fragments, confusing the fragments and pass-
ing through the semantic decoder gives the confusion model of [8].
In the later experiments it is labelled the Word-Level model.

3.3. Logistic confusion model

Logistic regression provides a simple method of modelling the con-
fusions directly at the semantic level instead of having to resort to
word-level forms. The user acts, u, are separated into their type, τ ,
and a binary vector of semantic items, s. For each possible index, j,
sj is set to 1 if a semantic item (i.e. a slot-value pair) is in the act
and to 0 otherwise. In this way, the user act can then be represented
as u = (τ, s). An extra value is also added to s and always set to 1
to add a constant term for the logistic regression, hence the number
of indices j equals the number of semantic items plus one. Figure 3
shows an example mapping to s.

item s
constant 1
area=centre 1
area=north 0
price=cheap 1
price=expensive 0
.

Fig. 3. Example mapping for u=inform(area=centre,price=cheap).

During training the user acts are matched with the result from
the most likely output of the spoken language understanding unit,
ũ = (τ̃ , s̃). The corpus now consists of a collection of binary vec-
tors and so standard classification techniques can be used to build a
suitable confusion model. In the case of logistic regression, a sep-
arate logistic regression model is built for each semantic item. The
output type and items are considered independent. Given parame-
ters, θk,j (with k iterating over the semantic items), the probability
of outputting a semantic item in the confused utterance is:

p(s̃k = 1|s) = 1

1+ exp(−
∑

j θk,jsj)
. (6)

The θk,j parameters are chosen to maximise the likelihood of the
examples in the corpus. Although there is no closed form for these
maximum likelihood estimates, standard techniques can be used to
obtain a numerical solution and these are implemented in many stan-
dard software packages [17].

The act types, τ , are confused using a confusion matrix, with the
probability of confusion estimated using the counts in the data:

p(τ̃ |τ) = Count(τ̃i = τ̃)

Count(τi = τ)
, (7)

where i again indicates the utterances in the corpus.
Since the τ and sj are considered independent, the output con-

fusion can be sampled by generating each of these terms separately.
The combined probability of an output confusion for this model,
called the Logistic model, is:

p(ũ = (τ̃ , s̃)|u = (τ, s)) = p(τ̃ |τ)
∏
j

p(̃sj|s). (8)

4. CONFIDENCE SCORE GENERATORS

As well as generating confusions for the user acts it is important to
generate realistic confidence scores andN -best lists. The component
that does this is called the confidence score generator. Four different
generators are discussed below.

4.1. No confusions

One trivial approach to confidence score generation is to pass the real
user act directly through to the dialogue system with a confidence of
1. The output N -best list for u is simply (u, 1). This approach gives
a trivial baseline to measure the metric of section 5 with and will be
labelled NoConfusions.

4.2. Uniform

Another simple approach begins by choosing a length for the N -
best list and a confusion rate e. For a given user act, the model
iterates N times and decides each time to confuse the given user
act with probability e, with duplicate confusions ignored. Each of
these output user acts is assigned a confidence of 1/N , and output
acts that are equal have their confidences added together. This is
similar to the approach taken in [15] and is labelled the Uniform
confidence score generator.

4.3. Dirichlet

In the case of a probabilistic system, it is helpful for the confidence
score to represent some kind of probability. The Dirichlet distri-
bution is a standard distribution over probability distributions so it
is reasonable to use this as a first model for the confidence scores.
This was the approach taken in [14] where a fixedN -best length and
confusion rate e are again chosen. An extra parameter, called the
variability, V , is also introduced (in later experiments V = 32). A
confidence score parameter vector, α, of size N + 1 is defined by

α>r =

(
V e,

V (1− e− e2)
N − 1

, . . . ,
V (1− e− e2)

N − 1
, V e2

)
.

For each turn, a vector of confidence scores is drawn from the Dirich-
let distribution with parameters αr . These confidence scores are
used as probabilities to draw a position between 1 and N + 1. The
true user act is placed at this position in anN +1-best list and all re-
maining positions are assigned a confused user act, using the chosen
confusion model to alter it. The item at position N + 1 is dropped
and the list is passed to the dialogue manager. Note that the sample
from the Dirichlet distribution is used for both deciding the posi-
tion in the N best list and for the confidence scores. This model is
labelled Dirichlet.

4.4. Dirichlet collection

A problem with the parameterised Dirichlet model is that the exact
structure of the Dirichlet distribution is predefined by a functional
form. The DirCol model attempts to overcome this by learning the
Dirichlet distribution used for the confidences from data. The length
and position in the N -best list are also learned.

The model consists of three components. First is a probability
over the length of the list, which is learned via maximum likelihood
on the corpus. Given the length of the list, a Dirichlet distribution
with parameters αN is used to compute the confidence scores for
each index in the list. Finally, the correct position in the N -best list

is sampled from a discrete distribution with parameters βN . This
distribution has size N + 1, where the N + 1th index corresponds
to the relevant value being excluded from the N -best list. The joint
distribution of the output confidences, c, length N , and position in
the N -best list, x, is:

p(c, x,N |β,α) = p(N)Dir(c;αN)βN,x,

where Dir is the Dirichlet distribution.
The αN can be computed using a numerical optimiser to obtain

maximum likelihood estimates [18]. The βN,x are estimated as the
number of times the true act appeared at position x in an N best list,
while p(N) simply uses counts that a list of size N appeared.

5. EVALUATION METRICS

The error simulator aims to reproduce the kinds of error obtained in
live situations. One way to evaluate the performance of the simulator
is to compare the errors produced in simulations with errors obtained
in a corpus of dialogues with human users. Past work has often
compared overall statistics, such as the distributions of act types,
number of semantic items and confidence scores [8, 11]. While this
allows the system designer to check that overall trends are correct, it
does not check whether specific acts are being confused in the right
way. This section will propose a new metric for this purpose.

All experiments in this section are computed on a subset of the
CamRestInfo corpus collected in [19]. This corpus was collected
via Amazon Mechanical Turk, with users given a task on a web-
site and then asked to call a toll-free US number to interact with the
system. The task for these calls is for users to find a restaurant in
Cambridge subject to some constraints. The system allows for con-
straints on nine goals: name of the venue, type of venue, area, price
range, nearness to a particular location, type of drinks, food type,
number of stars and type of music. Users are allowed to ask for the
value of four further attributes: address, telephone number, a com-
ment on the venue and the price. All tasks were chosen so that there
was a venue in the database matching the given constraints.

Overall statistics for the corpus are given in table 2 and the cor-
pus logs are available online1.

Number of calls 1661
Number of turns 16348
Number of users 100

Table 2. Overall statistics of the CamRestInfo corpus

In each of the offline experiments, the corpus was repeatedly
split into a training and testing corpus, with 50 dialogues chosen ran-
domly for the test set each time. The error models were then trained
on the training set and run on the user acts known to have occurred
in the test corpus. These were then compared with the confusions
actually obtained and evaluated using the metrics defined below.

5.1. Receiver Operating Characteristics

One of the most important characteristics of a confidence score is the
relationship between the score given and the likelihood of an error.
This relationship can be plotted graphically with a Receiver Operat-
ing Characteristics (ROC) curve [20]. Each point on the ROC curve
gives the percentage of correct hypotheses obtained if all hypotheses

1Corpus available at http://mi.eng.cam.ac.uk/research/dialogue/corpora/

having a confidence above a given threshold are included, with the
threshold plotted on the x-axis and the percentage correct on the y-
axis. In the case analysed here, confused acts with confidence above
the threshold are compared to the true user act and must match both
the act type and all semantic items. When any confused acts above
the threshold for a given utterance can be correct, the resulting metric
is called the oracle act accuracy. If the list of confusions is first re-
duced to the most likely act and its confidence, then the metric is the
top act accuracy. As mentioned above, the accuracy for each thresh-
old was computed repeatedly for different test sets (after training on
different test sets), with the results averaged to give an average ROC
curve.

A good error simulator should have confidence scores which
have a similar amount of information to the live case. It therefore
makes sense to consider the operating characteristics obtained by
the different confidence score generators, and compare them with
the test corpora. The results of the different generators on the
CamRestInfo corpus are shown in figure 4. These results are
independent of the confusion model used, since the ROC curves
only check whether the act is correct, not how it is incorrect. The
error rates for all approaches are set so that the oracle error rate
matches the test data.

0 20 40 60 80 1000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 1000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

DirCol
Dirichlet
Test
Uniform

Fig. 4. ROC plot of the oracle act accuracy (left) and top act accuracy
(right). The x axis gives the percentage used for the confidence score
threshold (e.g., a threshold of 50 will include any hypotheses with
confidence scores above 0.5).

It is easy to see that the DirCol confidence generator most
closely matches the ROC curve of the test data. The Uniform con-
fidence generator gives a step function because it always generates
three hypotheses with equal score and adds confidences for equal
acts. The confidence scores in this case will always be 0.33, 0.67
or 1. The Dirichlet model gives a smooth curve which does not
match the true data because the functional form chosen is simply
unable to give the required structure.

5.2. Corpus-level act KL-divergence

While the ROC curves give an indication of how useful the confi-
dence scores are, they do not measure whether the simulated confu-
sions are similar to the confused acts obtained in real situations. For
this purpose a new metric is required, as past research has focussed
on the overall statistics of the error simulator rather than checking
the individual confusions.

The key feature desired for this metric is that the distribution
of output acts for a given input utterance matches the distribution

{
inform(price=cheap) 0.2
inform(price=expensive) 0.8

}
+ inform(price=cheap) 0.2

inform(price=expensive) 0.4
inform(name="The Pensive") 0.4

= 2× inform(price=cheap) 0.2

inform(price=expensive) 0.6
inform(name="The Pensive") 0.2

Fig. 5. Averaging two confused distributions.

obtained in data. For example, one would hope that if the act
inform(price=expensive) is confused with probability 0.2,
and that it is always confused to the act
inform(price=inexpensive), then the same should happen
in simulations. This is the kind of feature that the Corpus-level act
Kullback-Leibler divergence (CAKL) metric tests.

CAKL starts by grouping together all cases with the same true
user act. EachN -best list is viewed as a probability distribution over
possible user acts, with the confidences representing the act’s prob-
ability. These confused output distributions for each group are then
averaged, giving an average confusion distribution. An example of
this averaging process is given in figure 5. When computing the
average confusion distribution for the test data, the distributions ac-
tually observed are added and divided by the number of occurrences.
The confusion distribution for the error simulator could be computed
directly from the model’s parameters but in practice it is simpler to
generate samples and compute an average from these. In the ex-
periments here, each user act was run through each error simulator
50 times to obtain a reasonable estimate of the simulated confusion
distribution.

The CAKL metric is based on the differences between the aver-
age confusion distribution for the errors observed in the corpus, p,
and the simulated confusions, q, for each group (i.e. for each input
user act). The KL divergence, KL(p||q) for these groups are com-
puted using equation 9. These KL values are averaged over all input
user acts to give the CAKL value.

KL(p||q) =
∑
x

p(x) log
p(x)

q(x)
(9)

Table 3 gives the CAKL metric for the different combinations of
confusion andN -best models described above. The results show that
the logistic regression approach consistently outperforms the word-
level method, which in turn outperforms the baseline system. Inter-
estingly, the three approaches to generating the confidence scores all
perform equally well. Unlike the ROC curve, the CAKL metric is
uninterested in the distribution of confidence scores as long as the
correct confusions are generated with the correct average probabil-
ity.

6. CONCLUSION

This paper has proposed various schemes for generating errors in a
simulation environment, as well a new metric for evaluating the ef-
fectiveness of an error simulator. A new method of generating con-

Handcrafted WordLevel Logistic
NoConfusion 5.52± 0.39 5.52± 0.39 5.52± 0.39
Dirichlet 4.77± 0.37 3.96± 0.33 3.69± 0.32
Uniform 4.86± 0.37 3.84± 0.32 3.64± 0.26
DirCol 4.74± 0.36 3.91± 0.33 3.69± 0.32

Table 3. Corpus-level act KL-divergence on CamRestInfo. Each
row corresponds to a different method of generating the N -best list
(i.e., confidence score generator). Each column represents a different
confusion model. Results are quoted as µ ± σ, where µ and σ are
the mean and standard error of the CAKL metric computed on 50
samples (each of which has 50 simulated outputs for each user act).

fidence scores based on a collection of Dirichlet distributions gave
confidences that were more closely aligned to the test data than other
approaches tested here. The logistic regression model for generat-
ing confusions was similarly shown to outperform alternative mod-
els based on random or word-level confusions.

Future work will need to assess whether the improved match be-
tween the simulator and the testing environment results in improve-
ments in the trained systems. When using the new error simulators
to train a system, one would expect that the resulting system should
then perform better with human users. Future work will evaluate the
resulting performance of systems trained on different error simula-
tors with human users.

One failing of the error models discussed here is that they all
assume that the errors generated at a given point in time are inde-
pendent of errors later in the dialogue. In practice, users will often
repeat exactly what they said previously, when asked the same ques-
tion twice. This can result in the same errors repeating over time,
which is not modelled by this independence assumption. In order to
accurately portray the environment, future error models will need to
allow for some dependence over time. Another issue is that the mod-
els require data from a particular domain for training. Future work
should attempt to build models which are less domain dependent.

Acknowledgements
This research was funded by St John’s College, Cambridge and by
the EU PARLANCE project under grant number 287615.

7. REFERENCES

[1] E. Levin, R. Pieraccini, and W. Eckert, “A stochastic model
of human-machine interaction for learning dialog strategies,”
IEEE Transactions on Speech and Audio Processing, vol. 8,
no. 1, pp. 11–23, 2000.

[2] B. Thomson and S. Young, “Bayesian update of dialogue state:
A POMDP framework for spoken dialogue systems,” Com-
puter Speech and Language, vol. 24, no. 4, pp. 562–588, 2010.

[3] R. Sutton and A. Barto, Reinforcement Learning: An Intro-
duction, Adaptive Computation and Machine Learning. MIT
Press, Cambridge, Mass, 1998.

[4] O. Pietquin, “Consistent Goal-Directed User Model for Re-
alistic Man-Machine Task-Oriented Spoken Dialogue Simula-
tion,” in Proceedings of the 7th IEEE International Confer-
ence on Multimedia and Expo, Toronto (Canada), July 2006,
pp. 425–428.

[5] S. Jung, C. Lee, K. Kim, M. Jeong, and G. Lee, “Data-driven
user simulation for automated evaluation of spoken dialog sys-
tems,” Computer Speech and Language, vol. 23, no. 4, pp.
479–509, 2009.

[6] O. Lemon and X. Liu, “Dialogue policy learning for com-
binations of noise and user simulation: transfer results,” in
SIGDIAL, 2006.

[7] O. Pietquin and S. Renals, “ASR system modeling for au-
tomatic evaluation and optimization of dialogue systems,” in
ICASSP, 2002, pp. 46—49.

[8] J. Schatzmann, B. Thomson, and S. Young, “Error simulation
for training statistical dialogue systems,” in Proceedings of
ASRU, 2007, pp. 526–531.

[9] Y. Deng, M. Mahajan, and A. Acero, “Estimating speech
recognition error rate without acoustic test data,” in 8th Euro-
pean Conference on Speech Communication and Technology,
2003.

[10] E. Fosler-Lussier, I. Amdal, and H. Kuo, “On the road to im-
proved lexical confusability metrics,” in ISCA Tutorial and
Research Workshop (ITRW) on Pronunciation Modeling and
Lexicon Adaptation for Spoken Language Technology, 2002.

[11] O. Pietquin and T. Dutoit, “A probabilistic framework for dia-
log simulation and optimal strategy learning,” IEEE Transac-
tions on Audio, Speech and Language Processing, vol. 14, no.
2, 2006.

[12] S. Young, M. Gasic, S. Keizer, F. Mairesse, J. Schatzmann,
B. Thomson, and K. Yu, “The hidden information state model:
A practical framework for POMDP-based spoken dialogue
management,” Computer Speech & Language, 2009.

[13] J. D. Williams and S. Young, “Partially observable markov de-
cision processes for spoken dialog systems,” Computer Speech
and Language, vol. 21, no. 2, pp. 231–422, 2006.

[14] B. Thomson, K. Yu, S. Keizer, M. Gasic, F. Jurcicek,
F. Mairesse, and S. Young, “Bayeian dialogue system for the
Let’s Go spoken dialogue challenge,” in SLT, 2010.

[15] F. Pinault, Apprentissage par renforcement pour la
généralisation des approches automatiques dans la con-
ception des systèmes de dialogue oral, Ph.D. thesis,
l’Université d’Avignon, 2011.

[16] D. R Traum, “20 questions on dialogue act taxonomies,” Jour-
nal of Semantics, vol. 17, no. 1, pp. 7–30, 2000.

[17] T. Minka, “A comparison of numerical optimizers for logistic
regression,” Tech. Rep., Microsoft Research, 2003.

[18] T. Minka, “Estimating a Dirichlet distribution,” Tech. Rep.,
MIT, 2003, http://research.microsoft.com/
en-us/um/people/minka/papers/dirichlet/.

[19] F. Jurcicek, B. Thomson, and S. Young, “Reinforcement learn-
ing for parameter estimation in statistical spoken dialogue sys-
tems,” Computer Speech and Language, 2011.

[20] T. Fawcett, “ROC graphs: Notes and practical considerations
for data mining researchers,” Tech. Rep., Intelligent Enterprise
Technologies Laboratory. HP Laboratories Palo Alto, 2003.

