
Scaling POMDPs for dialog management with
composite summary point-based value iteration (CSPBVI)

Jason D. Williams∗
AT&T Labs – Research

180 Park Ave, Florham Park, NJ, USA
jdw@research.att.com

Steve Young
Engineering Department, Cambridge University
Trumpington Street, Cambridge CB2 1PZ, UK

sjy@eng.cam.ac.uk

Abstract

Although partially observable Markov decision pro-
cesses (POMDPs) have shown great promise as a frame-
work for dialog management in spoken dialog systems,
important scalability issues remain. This paper tackles
the problem of scaling slot-filling POMDP-based dialog
managers to many slots with a novel technique called
composite point-based value iteration (CSPBVI). CSP-
BVI creates a “local” POMDP policy for each slot; at
runtime, each slot nominates an action and a heuris-
tic chooses which action to take. Experiments in dia-
log simulation show that CSPBVI successfully scales
POMDP-based dialog managers without compromising
performance gains over baseline techniques and pre-
serving robustness to errors in user model estimation.

Introduction
Partially observable Markov decision processes (POMDPs)
provide a principled formalism for planning under uncer-
tainty and past work has argued that POMDPs are a suit-
able framework for spoken dialog management. POMDPs
have been shown to outperform simpler techniques such as
(fully-observable) Markov decision processes (MDPs) and
handcrafted dialog managers, especially in the face of higher
speech recognition error rates, and to make better use of
confidence score information (Roy, Pineau, & Thrun 2000;
Williams, Poupart, & Young 2005b; 2005a; 2005b).

Despite their advantages, POMDPs are notoriously diffi-
cult to scale. Within the class of so-calledslot-fillingdialogs,
the Summary POMDPmethod has enabled the number of
values taken on byone slot(such as the number of airports
in a travel system) to be scaled, but the problem of how to
scale thenumber of slotsremains (Williams & Young 2005).
This paper proposes a novel POMDP optimization technique
tailored to spoken dialog systems calledcomposite sum-
mary point-based value iteration(CSPBVI) which scales to
many slots, each with many slot values.CSPBVI keeps opti-
mization tractable by optimizing a dialog manager for each

∗Work performed while at Cambridge University Engineering
Department. Supported in part by EU FP6 Talk Project. The au-
thors would like to thank Pascal Poupart for helpful comments.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

slot locally and combining these at run-time using a simple
heuristic.

This paper first reviews the definition of POMDPs and the
SDS-POMDP model. Next, the intuition and details of the
CSPBVI method are presented, followed by an example spo-
ken dialog system simulator called MULTI SLOT. After il-
lustrating the operation ofCSPBVI on MULTI SLOT, CSPBVI
is compared to a variety of baseline techniques, and finally
brief conclusions are made.

Background
Formally, a POMDPP is defined as a tupleP =
(S, A, T, R, O, Z, γ, b0) whereS is a set of statess describ-
ing the machine’s world withs ∈ S; A is a set of actions
a that an machine may takea ∈ A; T defines a transition
probabilityP (s′|s, a) ; R defines the expected (immediate,
real-valued) rewardr(s, a) ∈ ℜ ; O is a set of observations
o the machine can receive about the world witho ∈ O; Z

defines an observation probabilityP (o′|s′, a) ; γ is a geo-
metric discount factor0 < γ < 1; andb0 is an initial belief
state, defined below.

The POMDP operates as follows. At each time-step,
the machine is in some unobserved states. Sinces is not
known exactly, adistribution over possible states called a
belief stateb is maintain whereb(s) indicates the proba-
bility of being in a particular states. Based onb, the ma-
chine selects an actiona, receives a rewardr, and transi-
tions to (unobserved) states′, wheres′ depends only on
s and a. The machine then receives an observationo′

which is dependent ons′ and a. At each time-step,b is
updated asb′(s′) = η · P (o′|s′, a)

∑
s P (s′|s, a) where

η is a normalization constant (Kaelbling, Littman, & Cas-
sandra 1998). The process of maintainingb at each time
step is calledbelief monitoring. The cumulative, infinite-
horizon, discounted reward is called thereturn and written
V =

∑
∞

τ=1 γτ
∑

s bτ (s)r(s, aτ), and the goal of the ma-
chine is to choose actions so as to maximize this quantity.

Previous work has cast a spoken dialog system (SDS)
as a POMDP to produce a model called the SDS-POMDP
(Williams, Poupart, & Young 2005a; 2005b). In the SDS-
POMDP, the POMDP state variables is separated into three
components,s = (su, au, sd). The componentsu ∈ Su

gives theuser’s goal, such as a complete travel itinerary.
This paper is concerned with so-called slot-filling dialogs

in which the user’s goalsu is composed ofW slots, su =
(s1

u, . . . , sW
u), wheresw

u ∈ S
w
u . For example, in the air

travel domain, a user goalsu might be composed ofsu =
(sFROM

u , sTO
u , sCLASS

u , sAIRLINE
u , sTIME

u , sDATE
u). The compo-

nentau ∈ Au gives the most recentuser actionat the con-
cept level, such as stating a place the user would like to travel
to, responding to a yes/no question, or a “null” response in-
dicating the user was silent. Finally the componentsd ∈ Sd

records relevantdialogue history, such as the grounding sta-
tus of a slot, or how many times a slot has been queried.
None of these components is observable directly by the ma-
chine and the SDS-POMDP belief state is formed of a dis-
tribution over these componentsb(su, au, sd). The POMDP
action a corresponds to the machine action in the dialog,
such as greeting the user, asking the user where they want
to go “to”, or confirming a user goal. Finally, the POMDP
observationo is separated into two componentso = (ãu, c),
where ãu ∈ Au gives the hypothesis of the user’s action
provided by the speech recognition process, andc is a confi-
dence score.

By substitution and making reasonable conditional in-
dependence assumptions, the POMDP transition func-
tion P (s′|s, a) and observation functionP (o′|s′, a) can
be re-written in SDS-POMDP terms asP (s′|s, a) =
P (s′u|su, a)P (a′

u|s
′

u, a)P (s′d|a
′

u, sd, a) and P (o′|s′, a) =
P (ã′

u, c′|a′

u). These individual probability functions cor-
respond to intuitivemodelswhich can either be estimated
from data or handcrafted. For example,P (a′

u|s
′

u, a) pro-
vides a model of user behavior which can be estimated from
dialog data, andP (s′d|a

′

u, sd, a) could be handcrafted fol-
lowing e.g., the Information State Update approach (Lars-
son & Traum 2000). The design of the reward function
r(su, au, sd, a) is left to the application designer as it imple-
ments the design objectives of a given system. In generalr
encodes trade-offs between speed, appropriateness, and ac-
curacy, and one would expect these to be different in (for
example) the banking and entertainment domains.

Optimization of an SDS-POMDP faces severe scalabil-
ity issues. The setSu contains all possible user goals and
as a result the cardinality of the SDS-POMDP state space
grows as more user goals are added. For example, if the
size of each slot is|Sw

u | = 1000, then there are a total of
|Su| =

∏
w |S

w
u | = 1000W distinct user goals. Because

the set of user actionsAu and machine actionsA often refer
to specific user goals, the SDS-POMDP action and observa-
tion sets all grow with the number of user goals. As a result,
straightforward optimization of the SDS-POMDP model us-
ing general-purpose techniques is only possible with an un-
realistically small number of user goals.

One approach to scaling POMDPs in the dialog domain
is theSummary POMDPmethod (Williams & Young 2005).
The intuition here is to constrain machine actions which re-
fer to a user goal (such asconfirm-to-london) to always re-
fer to themost likelyuser goal. This simplifies the plan-
ning task considerably by reducing the size of the action
and observation sets, and by allowing the planner to con-
sider just theratio of belief mass held by the most likely
user goal in each slot. That is, rather than planning over
|Su| =

∏
w |S

w
u | user goals, the Summary POMDP method

plans over
∏

w 2 = 2W possible user goal summarizations.
This represents a significant improvement and results have
shown that the summary POMDP method can effectively
scale the SDS-POMDP model to problems with two slots
and an arbitrary number of values for each slot (Williams &
Young 2005). However,2W is of course still exponential in
the number of slots and the summary POMDP method can-
not handle many slots.

CSPBVI method description

Composite summary point-based value iteration (CSPBVI)
extends the Summary POMDP method to handle many slots.
In a recent data collection (Williams & Young 2004), it was
noticed that when users are asked about a certain slot, they
most often provide a value for just that slot, and only some-
times provide values for other slots.CSPBVI capitalizes on
this insight by assuming that cross-slot effects are unimpor-
tant for planning: it first estimates system dynamics locally
for each slot, then uses these estimates to produce a distinct
dialog manager (i.e., POMDP policy) for each slot. At run-
time, each dialog manager nominates an action appropriate
for its slot and a handcrafted heuristic chooses which one of
these to take.CSPBVI still performs belief monitoring over
all user goals, so when a userdoesprovide extra informa-
tion it is properly incorporated into the belief state – the key
idea is that actions are nominated by each slot based on the
expectation that user responses will not provide information
about other slots.

CSPBVI consists of four phases: construction, sampling,
optimization, and execution. In theconstructionphase, first
the masterPOMDP is created, which is an SDS-POMDP
with several constraints and additions. The user’s goal
su ∈ Su is decomposed intoW slots,su = (s1

u, . . . , sW
u)

wheresw
u ∈ S

w
u and whereSw

u refers to the set of values
for slot w. The dialog historysd ∈ Sd is similarly decom-
posed intoW slots, sd = (s1

d, . . . , s
W
d) wheresw

d ∈ S
w
d

and whereSw
d refers to the set of possible dialog histories

for w. Machine actions are formed of predicates which
take arguments that encode the slotw and the value (or val-
ues)sw

u which the action that refers to. Machine actions
are writtenpredicate[w](x), wherepredicaterefers to the
illocutionary force of the action,w refers to a slot index,
andx refers to the slot value(s) referred to by the action,
if any. For example, the SDS-POMDP machine actionsask-
fromandconfirm-to-londonwould be restated asask[from]()
andconfirm[to](london). A special meta-slotw = all de-
notes an action refers to all slots, such assubmit[all](sfrom

u =
london, sto

u = paris) andgreet[all](). Finally, in the mas-
ter POMDP a modified reward function is createdrw(s, a)
which removes conditioning on all but the slotw. For ex-
ample, if the rewardr for incorrectly/correctly submitting
a user’scompletegoal is−25/+25, thenrw would assess
−25/+25 for incorrectly/correctly submittingonly slot w,
ignoring all others. Also, belief monitoring must be tractable
in the master POMDP, and this may require approximations
in the observation function; an example of this is shown in
the next section.

After the master POMDP is formed,W summary belief

Markov decision processes (BMDPs) are constructed.1 Each
of these has a state space with two components,Ŝw

u andŜw
d ,

whereŜw
u = {best, rest} andŜw

d = Sw
d . The action set of

each of these summary BMDPs consists of the predicates of
A and take one argument,ŵ ∈ {this, other}, whereŵ = this
indicates that an action in master spacea refers tothis slot
and ŵ = other indicates thata refers tosome otherslot.
(If the actiona operates onall slots,ŵ is set tothis.) For
example, in a slot-filling SDS-POMDP with two slotsfrom
andto, a master POMDP actiona = confirm[from](london)
would be mapped tôafrom = confirm[this] in the summary
BMDP for the from slot, andâto = confirm[other] in the
summary BMDP for theto slot.

The samplingphase ofCSPBVI consists of two stages.
The first stage iterates over each slotw = 1 . . .W . For each
w the machine takes actions randomly to sampleN points
in summary space, written as the setB̂w = {b̂w,n}. Initially
B̂w is empty and at each stepn = 1 . . .N , the current belief
pointb is mapped into summary space for slotw to produce
b̂ by settinĝb(ŝw

u = best)← maxsw

u

b(sw
u), b̂(ŝw

u = rest)←

1− b̂(ŝw
u = best), andb̂(sw

d)← b(sw
d), ∀sw

d ∈ S
w
d . If b̂ is not

already contained in̂Bw, then it is added and two other quan-
tities are sampled. Fromb, the machine takes each summary
actionK times,k = 1 . . .K, resetting tob after each, and
recording the resulting reward in̂râ,k

w,n and successor point

in summary space in̂bâ,k
w,n. After N points are sampled in

this way for slotw, this first stage is repeated for thecorners
of summary space for each slot to help ensure coverage of
summary space.

In the second stage of the sampling phase, for each point
b̂â,k
w,n, the closest point in̂bw,n is located and its index is

recorded inl(w, n, â, k).
CSPBVI optimizationis run W times, once for each slot

w using that slot’s dynamics and reward. Back-ups are per-
formed on the belief MDP estimated for each slotw. The
backups run fromt = 1 . . . T , whereT is the plan horizon.
Each back-up first computeŝqâ,n, which estimates the value
of taking action̂a from point b̂w,n, then from this compute
âw,n

t (the optimalt-step action at̂bw,n) and v̂w,n
t (the ex-

pected value of the optimalt-step policy starting from̂bw,n).
v̂w,n
0 is initialized to0 for all w andn.

q̂â,n ←
1

K

∑

k

r̂â,k
w,n +

γ

K

∑

k

v̂
l(w,n,â,k)
t−1

â∗ ← arg maxâq̂â,n

âw,n
t ← â∗

v̂w,n
t ← q̂â∗,n

Summary actions selected in each iteration arerestrictedto
ŵ = this: that is, only actions which operate onthisslot (or
all slots) are incorporated into conditional plans. Optimiza-
tion ultimately produces an optimal summary actionâw,n

for each point̂bw,n.

1A Belief MDPis a Markov decision process with a continuous
state corresponding to a POMDP belief state (Kaelbling, Littman,
& Cassandra 1998).

To executea policy, belief monitoring is performed in the
master POMDP. For a given belief pointb, the corresponding
set of summary belief pointŝbw is computed for all slotsw.
For each belief point̂bw the index of the closest pointn∗

in the set{b̂w,n} is found, and its summary action (âw,n∗

)
is mapped to a master actionaw. This process is repeated
for each slotw and produces a vector of nominated master
actions,aw. Finally, a handcrafted heuristic, which must
be created for each application, selects an action from this
vector to take. Because the number of summary actions and
summary states are constant with respect to the number of
slots (and the number of values for each slot),CSPBVIscales
to handle many slots. The quality of the solution produced is
a function of the optimization parametersT , N , andK, and
of the quality of the handcrafted action selection heuristic.

Example spoken dialog system
A POMDP-based dialog manager called MULTI SLOT was
created. MULTI SLOT is an SDS-POMDP withW slots,
where each slot contains100 values and whereW can be
varied. To keep belief monitoring tractable, some indepen-
dence assumptions between slots are made. User actions are
decomposed by slot intoau = (a1

u, . . . , aW
u), and each per-

slot user action elementaw
u is decomposed into three com-

ponentsaw
u = (aw

state, a
w
stateSlot, a

w
yesNo), whereaw

state∈ A
w
state,

aw
stateSlot∈ A

w
stateSlot, andaw

yesNo ∈ A
w
yesNo. A

w
stateconsists of

state[w](sw
u) and indicates the user said their goalwithout

identifyingwhich slot it corresponds to – for example, “Lon-
don” or “10:00 AM”. Aw

stateSlotconsists ofstateSlot[w](sw
u)

and indicates the user said their goaland identifiedwhich
slot it corresponds to – for example, “to London”, “from
London”, “leaving at 10:00 AM”, or “arriving at 10:00”. Fi-
nally Aw

yesNo includes actionsyesand no. The setsAw
state,

Aw
stateSlot, andAw

yesNoeach also containnull.
Next, the user action modelp(a′

u|s
′

u, a) was extended to
support this formulation. Each slot contains a slot-specific
user model, conditioned on whether the machine is asking
about this slot or another (i.e.,any other) slot. To make
the user action model as realistic as possible, real dialog
data from the SACTI-1 corpus was employed (Williams &
Young 2004). The SACTI-1 corpus contains 144 human-
human dialogs in the travel/tourist information domain us-
ing a “simulated ASR channel” (Stuttle, Williams, & Young
2004). The corpus contains a variety of word error rates,
and the behaviors observed of the subjects in the corpus are
broadly consistent with behaviors observed of a user and a
computer using a real speech recognition system (Williams
& Young 2004). The corpus was segmented into a “training
sub-corpus” and a “test sub-corpus,” which are each com-
posed of an equal number of dialogs, the same mix of word
error rates, and disjoint subject sets. Wizard/User turn pairs
were annotated, and one user model was then estimated from
each sub-corpus, called thetraining user model and thetest-
ing user model.

A key property of spoken dialog systems is that speech
recognition errors may be made bothwithin and between
slots. To model this as closely as possible, the observation
model was separated into agenerationmodel and aninfer-

encemodel. An important goal in this work is to allow the
user to say anything at any point, and so we assume that the
same recognition grammar is active throughout. To model
this, the generation model makes concept confusions with
a constant probabilityperr, where a confusion substitutes
a non-null user action component to any other component
in any slot. For example, if one concept error is made, the
user action “Yes, London” might be changed to “Frankfurt
London” or even “Yes No”. Sincenull is one type of user
action, the generation model also simulates deletion errors
– for example, “Yes, London” could be changed to “Yes”,
“London” or null. The model does not simulate insertion er-
rors. Also, each observation component (such as “London”
or “To Edinburgh” or “Yes”) carries with it aper-concept
confidence score. Confidence scores for correct recognitions
are sampled fromph(c) and incorrect recognitions are sam-
pled fromph(1−c), whereph(c) = (hehc)/(eh−1). When
h = 0, the confidence score is random noise, and ash in-
creases the confidence score becomes more reliable. Ideally
the observation inference model should express the proba-
bility of the entire observation given the entire user action
P (ã′

u, c′|au), but this formulation would complicate belief
monitoring significantly. Instead, the observation model es-
timatesP (ã′

u, c′|aw
u
′) separatelyfor each slot: ifaw

u exists in
the observatioña′

u, thenP (ã′

u, c′|aw
u
′) = ph(c′i) ·(1−perr);

otherwiseP (ã′

u, c′|aw
u
′) = perr/(|Aw

u | − 1).
The reward function provided a large positive reward

(+12.5 · W) for taking a correct submit action; a large
penalty (−12.5 ·W) for taking an incorrect submit action;
and a host of smaller penalties ranging from−1 to −3 de-
pending on the appropriateness of information gathering ac-
tions and the grounding state given insd.

A CSPBVI-based dialog manager requires a heuristic
which chooses among actions nominated by each slot. For
the MULTI SLOT application, this heuristic first looks for an
askaction by considering the slots in order; if it doesn’t find
one, it then looks for aconfirmaction again considering the
slots in order; and if it doesn’t find one then all slots must
have nominated thesubmitaction, which is selected.

TheCSPBVI optimization procedure takes a set of param-
etersK, N , andT . Experimentation found that no gains
in performance were achieved for values beyondN = 100,
K = 50, andT = 50, and these values were used for all
experiments, below. Figure 6 shows a conversation with a
2-slot version of MULTI SLOT with a typical concept error
rate (perr = 0.30) and a somewhat informative confidence
score (h = 2).

Results and discussion
First the performance ofCSPBVI on the 2-slot MULTI SLOT
dialog problem was compared to the Summary POMDP
method. WhereasCSPBVI constructs local policies, a Sum-
mary POMDP constructs a plan over all possible summary
states, and in this respect a Summary POMDP should con-
struct better policies. Results are shown in Figure 1. Error
bars (here and throughout) show 95% confidence interval for
the true average return for 10,000 simulated dialogs. Over-
all the two methods perform similarly, indicating that the as-
sumptions made byCSPBVI do not prevent it from attaining

good policies. The Summary POMDP method was also ap-
plied to a 3-slot MULTI SLOT but was unable to find a good
policy.

Next,CSPBVI was compared to two MDP baselineswith-
out confidence score information (i.e., withh = 0). Both
MDPs used a state estimator which received the speech
recognition hypothesis̃au as input and tracked whether each
slot wasnot-stated, unconfirmed, or confirmedusing basic
grounding rules. In all other respects the simulation envi-
ronment for the MDPs andCSPBVI were identical (e.g., the
MDP action set included the same actions as in theCSPBVI
action set). The first MDP baseline, “MDP-Full”, formed its
state space as the cross-product of all MDP slot-states and
the second MDP baseline, “MDP-Composite”, estimated a
separate MDP policy for each slot and used the same heuris-
tic to choose actions at runtime asCSPBVI. Both MDP
baselines were trained using Q-learning (Watkins 1989). A
variety of learning parameters were explored and the best-
performing set were selected: 100,000 training dialogs, ini-
tial Q values set to0, exploration parameterǫ = 0.2, and
learning rateα = 1/m, wherem is the number of visits to
the Q(s, a) being updated. This experiment was repeated
for w = 1 . . . 5 at a variety of error rates using the same
optimization parameters. Results are shown in Figure 2.
When no recognition errors are made (i.e.,perr = 0.00), the
POMDP and MDPs perform identically but where concept
recognition errors are made (i.e.,perr > 0), the POMDP
outperforms the MDP. As the number of slots increases,
average return declines slightly for all techniques, because
eliciting values for more slots results in longer dialogs.

Next, the effect of confidence score was investigated by
varyingh. For the MDP-Composite baseline, a “confidence
bucket” feature was added to the MDP state space repre-
senting “hi” and “low” observed confidence scores. A vari-
ety of confidence thresholds were explored and it was found
that using a threshold of0.5 produced optimal results for
the MDP. Where recognition is not perfect (i.e.,perr > 0),
CSPBVI outperforms the MDP-2 baseline, and as the confi-
dence score becomes more informative (i.e., ash increases),
performance at a given concept error rateperr increases for
both theCSPBVI and MDP policies.

CSPBVI optimization was then compared to two hand-

-5

0

5

10

15

20

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Concept error rate (p err)

A
ve

ra
ge

 R
et

ur
n

Summary POMDP

CSPBVI

Figure 1: Concept error rate vs. average return forCSPBVI
and Summary POMDP baseline.

-15

-10

-5

0

5

10

15

1 2 3 4 5
Number of slots (W)

A
ve

ra
ge

 r
et

ur
n

(p
er

 d
ia

lo
g,

 p
er

 s
lo

t)

CSPBVI (0.00)

CSPBVI (0.30)

CSPBVI (0.50)

MDP-Comp (0.00)

MDP-Comp (0.30)

MDP-Comp (0.50)

MDP-Full (0.00)

MDP-Full (0.30)

MDP-Full (0.50)

Figure 2: Number of slots (W) vs. average return forCSP-
BVI and two MDP baselines at various concept error rates.

crafted dialog managers, HC1 and HC2. HC1 and HC2
both use the same state estimator as the “MDP-Composite”
baseline. Both HC1 and HC2 took theaskaction fornot-
statedslots, and thesubmitaction forconfirmedslots. For
unconfirmedslots, HC1 took theconfirmaction and HC2
took theaskaction. HC1 and HC2 were evaluated by run-
ning 10,000 simulated dialogs for various number of slots
and error rates. Results are shown in Figure 4.CSPBVI out-
performs both handcrafted controllers at all error rates. As
the number of slots increases, the reward gained per slot de-
creases, but at higher error rates (i.e.,perr = 0.50) this de-
cline is precipitous for the handcrafted controllers but grad-
ual for the POMDP. One reason for this is that the POMDP
is making use of a user model and taking proper account of
less likely observations, but the handcrafted policies place
equal trust in all observations. As dialogs become longer,
the simulated user provides less-reliable information about
other slots more times in each dialog, causing the perfor-
mance of handcrafted policies to degrade.

Finally, the effects of mis-estimating the user model were
explored. A 5-slot MULTI SLOT was trained using thetrain-
ing user model and evaluated using thetestinguser model,
estimated from the SACTI data as described above. Re-
sults are shown in Figure 5. As speech recognition errors

4

5

6

7

8

9

10

1 2 3 4 5
Number of slots (W)

A
ve

ra
ge

 r
et

ur
n

(p
er

 d
ia

lo
g,

 p
er

 s
lo

t)

POMDP (h=5)

POMDP (h=3)

POMDP (h=1)

MDP-2 (h=5)

MDP-2 (h=3)

MDP-2 (h=1)

Figure 3: Number of slots (W) vs. average return forCSP-
BVI and MDP-Composite-2 baseline at various levels of
confidence score reliability.

-15

-10

-5

0

5

10

15

1 2 3 4 5
Number of slots (W)

A
ve

ra
ge

 r
et

ur
n

(p
er

 d
ia

lo
g,

 p
er

 s
lo

t)

CSPBVI (0.00)

CSPBVI (0.30)

CSPBVI (0.50)

HC1 (0.00)

HC1 (0.30)

HC1 (0.50)

HC2 (0.00)

HC2 (0.30)

HC2 (0.50)

Figure 4: Number of slots vs. average return forCSPBVIand
handcrafted baselines at various concept error rates.

-4

-2

0

2

4

6

8

10

12

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Concept error rate (p err)

A
ve

ra
ge

 r
et

ur
n

(p
er

 d
ia

lo
g,

 p
er

 s
lo

t)

Training user model

Testing user model

Figure 5: Concept error rate vs. average return for training
and testing user models.

increase, the average reward per turn decreases as expected,
and in general performance on the test user model is less
than but very close to the training user model, implying that
the method is reasonably robust to variations in patterns of
user behavior or estimation errors in the user model.

Conclusions
CSPBVI enables slot-filling dialog systems cast as SDS-
POMDPs to be scaled to handle many slots. In dialog sim-
ulation, the scalability gained with localized planning main-
tains performance gains over baseline techniques while tol-
erating errors in user model estimation. Future work will
conduct trials with real users.

References
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence101.

Larsson, S., and Traum, D. 2000. Information state and di-
alogue management in the TRINDI dialogue move engine
toolkit. Natural Language Engineering5(3/4):323–340.

Roy, N.; Pineau, J.; and Thrun, S. 2000. Spoken dialog
management for robots. InProc ACL, Hong Kong.

Stuttle, M.; Williams, J.; and Young, S. 2004. A frame-
work for Wizard-of-Oz experiments with a simulated ASR
channel. InProc ICSLP, Korea.

Watkins, C. 1989.Learning from delayed rewards. Ph.D.
Dissertation, Cambridge University.

Williams, J., and Young, S. 2004. Characterizing task-
oriented dialog using a simulated ASR channel. InProc
ICSLP, Korea.

Williams, J., and Young, S. 2005. Scaling up POMDPs for
dialog management: The “summary POMDP” method. In

Proc ASRU, Puerto Rico.
Williams, J.; Poupart, P.; and Young, S. 2005a. Fac-
tored partially observable Markov decision processes for
dialogue management. InProc IJCAI Workshop on Knowl-
edge and Reasoning in Practical Dialog Systems, Edin-
burgh.
Williams, J.; Poupart, P.; and Young, S. 2005b. Partially
observable Markov decision processes with continuous ob-
servations for dialogue management. InProc SIGDial, Lis-
bon.

b

LDS

Prior to start
of dialog

System / User / ASR Master space

OXD LON

M1: Where from?
U1: London

[leeds~0.67]

POMDP belief state (user goal, from slot)
Summary space

b

best rest

b

LDS OXD LON

b

best rest

b

CAM

Master space

EDI LON

POMDP belief state (user goal, to slot)
Summary space

b

best rest

b

CAM EDI LON

b

best rest

am = from am = to

^

^

^

^

ask ask

am = from confirm am = to ask

b

LDS OXD LON

M3: From Leeds, right?
U3: No, London

to Cambridge
[no~0.78,
london~0.95,
to-edinburgh~0.13]

b

best rest

b

b

CAM EDI LON

b

best rest

am = from am = to

LDS OXD LON

b

best rest

b

CAM EDI LON

b

best rest

^

^

^

^

confirm submit

M4: [prints ticket from London to Cambridge] am = from submit am = to submit

M2: Where to?
U2: From London

To Cambridge
[from-oxford~0.45]
[to-cambridge~0.97]

Figure 6: Sample conversation between user andCSPBVI-based dialog manager. LDS=Leeds, OXD=Oxford, LON=London,
CAM=Cambridge, and EDI=Edinburgh.afrom

m andato
m indicate actions nominated by each slot. Numbers indicate confidence

scores; boldface highlights concept recognition errors. In this example, the user is trying to buy a ticket from London to
Cambridge. Initially belief mass is spread over all user goals evenly and both slots nominate theaskaction. The heuristic

examines these two actions and selects theask[from]() action (M1). The user’s response (U1) of “London” is mis-recognized
as “Leeds” with relatively high confidence (0.67), causing alarge shift in belief mass towardleedsin the fromslot. For the
second machine action (M2), thefrom slot nominates theconfirmaction and theto slot nominates theaskaction, and the

heuristic selectsask[to]() (M2). This process continues until M4, where both slots nominate thesubmitaction, the heuristic
chooses to submit the form and the dialog ends successfully.Note how POMDP belief monitoring naturally combines the user

model with confidence score information – for example, the medium confidence mis-recognition of “from Oxford” in U2 is
predicted against by the user model and causes a small shift of belief mass, whereas recognition of “to Cambridge” in U2 is

both highly predicted by the user model and receives a high confidence score, causing a massive shift in belief mass.

