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T
his article argues that future generations of computer-
based systems will need cognitive user interfaces to 
achieve sufficiently robust and intelligent human interac-
tion. These cognitive user interfaces will be characterized 
by the ability to support inference and reasoning, plan-

ning under uncertainty, short-term adaptation, and long-term learn-
ing from experience. An appropriate engineering framework for such 
interfaces is provided by partially observable Markov decision process-
es (POMDPs) that integrate Bayesian belief tracking and reward-

based reinforcement learning. The benefits of this approach are 
demonstrated by the example of a simple gesture-driven inter-

face to an iPhone application. Furthermore, evidence is 
provided that humans appear to use similar mechanisms 

for planning under uncertainty.
A limiting factor of the POMDP framework is that 

exact computation is intractable, and, hence, POMDPs 
are often thought to be impractical for real-world 
problems. The second part of the article therefore 
attempts to demonstrate that the essential benefits of 
the POMDP approach can be retained by the use of 
sensible approximations. To illustrate this, two real-
world spoken dialog systems (SDSs) are described. 
Each make very different approximations but both 

achieve significant performance gains. The first hidden 
information state (HIS) system represents an evolutionary 

path from current systems. The second Bayesian update of 
dialog state (BUDS) system exploits more recent develop-

ments in Bayesian networks, and, although more challenging 
to scale, it offers significantly more potential for short- and long-

term adaptation. The article concludes by noting that while the 
challenges facing future development of cognitive user interfaces 

are considerable, the need to develop this style of interface appears to 
be inevitable.

INTRODUCTION
As the complexity of computer-based systems continues to increase, 
there will be an increasing demand for much more robust and intelli-
gent interaction than is possible with the current generation of 
human-computer interfaces. The technology drivers for this demand 
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are already emerging. The introduction of 
highly capable touch-screen smartphones is 
spawning a new generation of highly 
sophisticated mobile applications in which 
complex interactions must be accomplished 
using combinations of gesture and voice. 
However, screens are small and ambient 
noise levels are often high. Hence, main-
taining acceptable levels of robustness will 
be a significant challenge. The development 
of smart robots for use in mass markets 
such as aids for the elderly will further cre-
ate new challenges. Here voice control will be essential but a wide 
range of issues such as inadequate signal source separation, unre-
liable voice activity detection, speech understanding errors, and 
user uncertainty and confusion will combine to ensure that accu-
rate interpretation of the user’s intentions will be very difficult. A 
further example is the rapidly expanding computer games industry 
which in the United States, now exceeds the film industry mea-
sured by turnover. New generations of fully immersive games that 
involve the human player engaging in realistic dialogues with 
computer-generated characters will push our ability to create 
robust and natural user interfaces to the limit. Less frivolous but 
equally challenging examples of similar technology will emerge in 
areas such as health-care support and education.

The premise of this article, which is based on a 2009 IEEE 
International Conference on Acoustics, Speech, and Signal 
Processing plenary talk, is that future human-computer interfaces 
will only be able to meet the above challenges if they exhibit the 
following four key characteristics: 

Ability to support reasoning and inference1) . Natural human 
communication relies on imprecise analog signals such as ges-
tures, facial expressions, and speech. The user interface must 
be capable of interpreting these inputs in context to robustly 
resolve ambiguities and minimize errors.

Ability to plan under uncertainty2) . Effective communication 
involves meeting specific goals with incomplete knowledge. 
This requires that communicative goals are defined objectively 
and strategies then optimized to meet the objectives as effi-
ciently as possible.

Ability to adapt online to changing circumstances3) . Contexts 
and environments change and the user interface must be able 
to modify its behavior to maintain an acceptable level of perfor-
mance.

Ability to learn from experience4) . In addition to short-term 
adaptation, a user interface should be capable of learning from 
its own interactions over the long term. The more it is used, 
the smarter it should become.
User interfaces that have these four essential properties will be 

referred to as cognitive user interfaces.
Virtually all existing human-computer interfaces follow the 

finite state automaton model outlined in Figure 1. All relevant 
information is encoded within a finite state machine. Each user 
input is regarded as a command, which is used by decision logic to 
determine the transition from one state to the next. Entering each 

new state generates a response to the user. This model applies 
equally from the simple button interface of a washing machine to 
the complex natural language interface of a speech-driven infor-
mation inquiry system. The only difference is that the level of 
ambiguity in the latter is much higher since the spoken input sig-
nal will often be unrecognized. Nevertheless, both operate on the 
assumption that the complete state is known.

In fact, this assumption can never be satisfied. Even though 
the push of a button on a washing machine may be entirely 
unambiguous, it may not represent the intention of the human 
user. Humans are fallible, and they often operate with half-
formed intentions, based on incomplete information. Thus, there 
will always be uncertainty in a human user’s intentions and this 
uncertainty will increase as the IT systems that they interact 
with gain in complexity. Add into this mix an increasing reliance 
on imprecise multimodal inputs such as gestures, emotion 
detectors, gaze trackers, and speech, and the need for more 
robust mechanisms for handling uncertainty in future systems 
becomes  overwhelming.

The claims presented in this article are straightforward. 
Uncertainty cannot be avoided and future interfaces will need to 
exhibit cognitive behavior if they are to be fit for a purpose. The 
sections that follow will argue that the framework of POMDPs 
underpinned by Bayesian inference and Bellman’s optimality prin-
ciple provide an appropriate engineering approach to building 
future cognitive user interfaces.

It should be noted that this is a position article and not a review 
article. Hence, references are given where appropriate but there is 
no attempt to be comprehensive.

AN EXAMPLE: A SIMPLE GESTURE-DRIVEN INTERFACE
The iPhone is a great demonstration of how an intuitive gesture-
driven interface can improve our ability to communicate with a 
device [1]. Nevertheless, some operations are not as slick as we 
might wish. For example, suppose you have taken a large number 
of photos and you want to quickly skim through them and delete 
all the ones that you do not wish to keep. The default interface 
requires you to select each photo, hit a delete button, and then 
explicitly confirm every operation. As illustrated in Figure 2, a 
quicker way to do this might use just three gestures to scroll for-
ward, scroll backward, and delete. The only problem with such an 
interface is that when you try to do it quickly, your gestures 
become unreliable and errors occur. Of course, in a practical 

[FIG1] Finite state automaton model of human-computer interaction. Each user input is 
regarded as a command that is used by decision logic to determine the transition from 
one state to the next. Entering each new state generates a response to the user.
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 system, there would need to be 
some form of recovery mecha-
nism to undo unintended dele-
tions, but here the concern is 
with minimizing the occurrence 
of such errors in the first place.

Consider first the classical approach to implementing this 
interface as exemplified by Figure 1, and suppose that each ges-
ture is decoded simply on the basis of the angle it makes on the 
screen as shown in Figure 3. The classical approach entails a 
two-stage process: first the angle of each gesture is decoded into 
one of the three possible commands, and second, the decoded 
command forms the input to some decision logic that deter-
mines the response.

The first of these stages is a classification problem. If the angle 
that the gesture makes with the vertical is u, then since errors can 
occur, the usual technique is to estimate a probability distribution 
P 1u|v 2  for each class v 5 {forward, delete, backward } (see 

Figure 4). Optimal decision 
boundaries ui

* can then be deter-
mined based on the class poste-
rior probabilities P 1v|u 2 . For 
example, Figure 4 shows a typi-
cal distribution for the case 

where the average error is <20%. A typical choice for ui
* would 

then be to set equal posterior probabilities at the decision bound-
aries as shown by the vertical dotted lines in Figure 4. Each input 
gesture can then be decoded by simply comparing the angle with 
the decision boundaries and choosing an appropriate action. As a 
refinement, the probability of error rate can be estimated from the 
posterior distributions and a confidence margin d determined. 
Thus, the second stage of the classical approach is typically a sim-
ple program or flowchart of the form outlined in Figure 5.

So what is missing in this approach to user interface design? 
First, there is no explicit modeling of uncertainty. As shown in the 
example, confidence margins can be used to inform the decision 
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[FIG2] iPhone photo selection using three gestures: a) swipe left 
to scroll forward through photo roll, b) swipe right to scroll 
backward, and c) swipe downward to delete the photo.
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[FIG4] Empirical distributions of gesture angles for each 
command. Given the angle of a gesture, the most likely 
command can be determined by comparing it with the class 
boundaries shown as dotted lines. The degree of overlap 
between distributions determines the error rate.

 1: Let θ = angle of input gesture and
        θ1 and θ2 be lower and upper thresholds
 2: Let δ be a confidence margin around
    each threshold
 3: if θ  < θ1 – δ then
 4:  scroll-forward
 5: else if θ1 + δ  < θ < θ2 − δ  then
 6:  delete-photo
 7: else if θ2 + δ < θ  then
 8:  scroll-backward
 9: else
10:  do-nothing
11: end if

[FIG5] Decision logic for decoding each gesture. The effect of 
errors is reduced by introducing a margin of width 2d centered 
on each decision boundary. When a gesture lies within this 
margin, the command is ignored.

THE ESSENTIAL BENEFITS OF THE POMDP 
APPROACH CAN BE RETAINED BY THE 
USE OF SENSIBLE APPROXIMATIONS.

[FIG3] Decoding a gesture. Each gesture is defined by its angle 
with the vertical from which the intended command can be 
inferred. 
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process, but the decoding itself is still a hard decision and once 
taken, it cannot be easily undone. Second, there is no attempt to 
track what the user might be trying to achieve. Hence, the system 
has no way of determining whether or not its interpretation of the 
user’s gesture is consistent with what the user might be trying to 
do. For example, in the case here, it may be observed that users 
rarely move backwards after deleting a photo, but when moving 
backwards the most likely next action is to delete a photo. This 
behavioral information can be useful when disambiguating ‘noisy’ 
gestures. Third, since there are no quantifiable objectives, there is 
no basis for optimizing the decision rules embodied in the flow-
chart. As consequence of all of this, the criteria required for a cog-
nitive user interface cannot be met.

The key to building a cognitive user interface is to acknowledge 
the uncertainty in interpreting input gestures and therefore to 
view them not as commands, but rather as observations from 
which the system can infer the user’s intent. The effectiveness of 
the system in responding to the user’s intent is then quantified by 
a set of rewards and the necessary decision logic can be optimized 
by maximizing these rewards. The implementation of this 
approach depends on two fundamental ideas: Bayesian inference 
and Bellman’s optimality principal, which leads to a framework 
that is commonly referred to as a POMDP [2], [3].

Returning to the iPhone example, the user has one of three 
possible intentions at each time step: move forward, move back-
ward, or delete the current photo. Each of these is represented by 
a discrete state s 5 {forward, delete, backward}. Notice here that it 
is the state of the user that is being modeled, not the state of the 
machine. To satisfy the user, the machine has four possible actions 
available to it: a 5 {scroll-forward, delete-photo, scroll-backward, 
do-nothing}.

The user’s intention st at time t will depend on their previous 
intention st21 and the previous system action at21. Thus, the 
dynamics of the user’s behavior can be captured in the transition 
probability P 1st|st21, at21 2 . The resulting gesture ot at time t will 
then depend only on the corresponding user state st, and hence, 
the variability in the user’s expression of intent is captured by the 
observation probability density p 1ot|st 2 . Notice that the observa-
tion is simply the measured angle of the gesture; there is no 
attempt to classify the gesture as in the previous classical decode 
and execute approach.

The key problem of course is that the intent of the user cannot 
be directly observed. Hence, it is a hidden variable, and its value 
can only be inferred from knowledge of the transition and observa-
tion probabilities and the observed gestures. These relationships 
can be depicted by a Bayesian influence network as shown in 
Figure 6 where the open circles represent hidden variables, the 
shaded circles denote observed variables, and the squares repre-
sent actions [4].

Let the distribution of the hidden state st21 at time t 2 1 
be denoted by bt21 1st21 2 , then the inference problem is to 
find bt 1st 2  given bt21, at21 and ot. This is easily solved using 
Bayes’ rule 

 bt 1st 2 5 P 1st|ot, at21, bt21 2
 5 p 1ot|st 2P 1st|at21, bt21 2 /p 1ot|at21, bt21 2
 5 p 1ot|st 2a

st21

P 1st, st21|at21, bt21 2 /p 1ot|at21, bt21 2
 5 k # p 1ot|st 2a

st21

P 1st|st21, at21 2bt21 1st21 2 , (1)

where k 5 1/p 1ot|at21, bt21 2  is a normalization constant. The 
distribution of states is often denoted by an N-dimensional vector 
b 5 [b 1s1 2 , c, b 1sN 2 4 r called the belief state. The belief update 
can then be written in matrix form as

 bt 5 k #O 1ot 2T 1at21 2bt21 , (2)

where T 1a 2  is the N 3 N  transition matrix for action a, and 
O 1o 2 5 diag 1[p 1o|s1 2 , c, p 1o|sN 2 4 2  is a diagonal matrix of 
observation probabilities. Thus, the computational complexity 
of a single inference operation is O 1N2 1 3N 2  including the 
normalization. For the case of the simple iPhone example 
where N 5 3, this is entirely manageable. However, more 
complex examples will have very much larger values of N  
making exact computation intractable. This topic will be dis-
cussed in more detail later.

Given some assumed initial value bo, (2) allows the belief state 
to be updated as each successive gesture is observed. Since the 
actual state is unknown, the action taken at each turn must be 
based on the belief state rather than the underlying hidden state. 
This mapping from belief state to action is determined by a policy 
p : b S a. The quality of any particular policy is quantified by 
assigning rewards r 1s, a 2  to each possible state-action pair. For 
example, in the iPhone example, the rewards shown in Table 1 
might be used. These give a positive reward for taking the action 
that matches the user’s intent and a negative reward for taking the 

StSt – 1

at – 1
Ot

[FIG6] The Bayesian influence network showing one time step 
for the example gesture interface. The system state s is hidden 
as indicated by the open circles. The observation o and the 
action a are both observed as indicated by the shading. 

[TABLE 1] REWARDS FOR EACH STATE-ACTION 
COMBINATION.

ACTION
scroll-
backward

delete-
photo

scroll-
forward

do-
nothing

STATE
backward 11 220 21 0
delete 21 15 21 0
forward 21 220 11 0
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wrong action. Incorrect deletions are punished most strongly 
since from the user’s point of view, accidentally deleting the wrong 
photo is the worst error that the system can make.

The choice of specific rewards is a design decision and different 
rewards will result in different policies and differing user experi-
ences. The choice of reward function may also affect the learning 
rate during policy optimization. However, once the rewards have 
been fixed, the quality of a policy is measured by the expected total 
reward over the course of the user interaction

 R 5 E ea
T

t51
a

s
bt 1s 2r 1s, at 2 f 5 E ea

T

t51
r 1bt, at 2 f . (3)

Policy optimization is then equivalent to maximizing R. 
If the process is Markovian, the total reward Vp 1b 2  expected in 

traversing from any belief state b to the end of the interaction fol-
lowing policy p is independent of all preceding states. Using 
Bellman’s optimality principle, it is possible to compute the opti-
mal value of this value function iteratively

 V 
* 1b 2 5 max 

a
e r 1b, a 2 1 a

o
p 1o|b, a 2V 

* 1t 1b, a, o 2 2 f , (4)

where t 1b, a, o 2  represents the state update function defined in 
(2) [5]. This iterative optimization is an example of reinforcement 
learning [6].

This optimal value function for 
finite interaction sequences is 
piecewise-linear and convex. It can 
be represented as a finite set of 
N-dimensional hyperplanes span-
ning belief space where each hyper-
plane in the set has an associated 
action. This set of hyperplanes also 
defines the optimal policy since at 
any belief point b  all that is 

required is to find the hyperplane with the largest expected 
value V 

* 1b 2  and select the associated action [3].
Returning to the iPhone example, the user’s behavior can be 

captured in a transition matrix T as in Table 2, and an observation 
probability matrix O can be estimated from distributions such as 
the one shown in Figure  4. Note that O will depend on the error 
rate of the user’s gestures so for this illustration, observation 
matrices have been estimated for seven discrete error rates that 
range from 0% to 60%. Here we assume that a gesture is in error 
if its angle u  lies on the wrong side of the minimum error deci-
sion boundary i.e., p(v intended|u) , p(vnot2 intended|u).

Given values for T  and O and a reward function, a policy 
can be optimized using Bellman’s optimality principle. As noted 
above, the policy will consist of a set of hyperplanes whose 
upper surface defines the optimal value function. The complex-
ity of this surface increases with increasing gesture error rate. 
For the example here, the policy at 0% error rate consists of 
just three hyperplanes while the policy for 60% error rate con-
sists of <37,000. Figure 7 summarizes the policies learned at 
each of the seven error rates where belief space has been com-
pressed into a single dimension by assuming that 
Pb 5 P 1backward 2 5 0 when Pf 5 P 1 forward 2  is significant. 
Thus, the rear area shows the value function surface when 
choosing between the forward and delete states, and the front 

area shows the value function surface 
when choosing between the delete and 
backward states. The color of the surface 
indicates the optimal system action to 
take at any point in belief space. As can be 
seen, at 0% errors, the policy will choose 
to move forward or backward unless the 
probability of delete is very close to one. 
At higher error rates, a do-nothing zone 
is introduced to avoid inadvertently 
deleting a photo. This also shows that 
the value function itself (expressed as an 
average reward per turn) falls steadily as 
the error rate increases.

The performance of the iPhone photo-
sort application can be studied by sam-
pling the transition and observation 
models to simulate the intentions and 
associated gestures of a typical user. This 
enables the average reward per turn to be 
determined for various configurations of 

[TABLE 2] TRANSITION MATRIX P(S9|S, a). EACH 3 3 3 GRID CORRESPONDS TO THE STATE 
TRANSITION MATRIX FOR ONE SPECIFIC ACTION. THE COLUMN LABELS b, d, AND f ARE 
ABBREVIATIONS FOR THE STATES backward, delete, AND forward.

STATE s9

STATE S

 b d f b d f b d f b d f
backward 1 0 0 0.3 0.4 0.3 1 0 0 1 0 0
delete 1 0 0 0 0 1 0.1 0.4 0.5 0 1 0
forward 0.1 0.4 0.5 0 0 1 0.2 0.3 0.5 0 0 1 
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[FIG7] Policy value functions plotted over a single compressed belief space for varying 
gesture error rates. The horizontal axis is divided into two and denotes the probabilities 
that the user wishes to move forward (Pf), move backward (Pb) and delete (Pd). In the 
left part Pb 5 0 and Pf  varies from one down to zero while Pd increases from zero to 
one. The right axis is the mirror where Pf 5 0 and Pb varies from zero to one while Pd  
decreases from one to zero. The other horizontal dimension denotes the error rate and 
the vertical axis is the average reward per turn. The coloring of the surface denotes the 
optimal action to take at each point along the belief state dimension.
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the photo sorter running over a range of different user error 
rates. Figure 8 shows the results of these simulations. As can 
be seen, the conventional “hand-crafted policy” based on the 
algorithm described in Figure 5 performs well at low error 
rates but performance drops off rapidly in high noise. In 
Figure 8, the remaining plots all relate to policies trained using 
reinforcement learning. The plot marked “Fixed Policy (30% 
Noise)” shows the performance when the observation parame-
ters and the policy are trained on data with a 30% error rate. As 
can be seen, robustness at high noise is improved relative to 
the hand-crafted policy but performance at low noise suffers. 
Examining the policy shows that this system is over-cautious at 
low error rates causing it to waste moves by choosing the do-
nothing action. The plot labeled “Fixed Policy 1 Adaptive 
Model” shows what happens when the same fixed policy is used 
but the observation matrix is updated to model the true error 
rate. As can be seen, performance at low error rates is now 
restored and performance at high error rates is further 
improved. This shows the importance of accurate model 
parameters. Finally, the plot labeled “Adaptive Policy 1 
Adaptive Model” shows the performance when the policy is also 
adapted to each error rate. In this case, a further small 
improvement is achieved.

Overall, these performance results illustrate the potential 
of Bayesian belief tracking and policy optimization for robustly 
responding to imprecise and ambiguous gestures. The gains 
illustrated in Figure 8 come from three main sources. First, 
the representation of the environment in the form of a proba-
bilistic transition model enables knowledge of user behavior to 
help disambiguate badly formed gestures. Second, the use of 
an explicit observation model allows the expected noise char-
acteristics to be modeled such that the implicit decision 
thresholds can be optimized. Third, reinforcement learning 
enables the policy to be tuned to maximize the expected 
reward and hence optimize the achievement of the desired 
communicative goals.

Of course, this is a toy example designed only to illustrate 
the basic ideas and the performance results displayed in 
Figure  8 and should be treated with caution. For example, in 
the adapted cases, the user simulator is using exactly the same 
parametric model as the system hence there is a perfect match. 
The upper curve in Figure 8 therefore represents an upper 
bound that would be hard to achieve in practice. Also, the hand-
crafted policy was designed without knowledge of the reward 
function, hence the use of average reward as the performance 
metric biases in favor of the trained system. Nevertheless, the 
potential of combining Bayesian belief tracking with policies 
optimized via reinforcement learning should be clear.

As noted in the introduction, the system outlined in this sec-
tion is an example of a POMDP. POMDPs meet all of the criteria 
required for a cognitive user interface: they support reasoning 
and inference via the Bayesian belief state tracking; they can 
plan under uncertainty via their policies that are based on belief 
states and trained using reinforcement learning; they are para-
metric and hence the underlying models can be rapidly adapted 

online; and since the policies are trained on data, they can be 
updated over longer time frames to learn from experience.

POMDPs are by no means new. They arose originally in opera-
tional research [2], [5] and have since been extensively explored 
by the machine learning community. However, their widespread 
use has been hampered by severe tractability issues [7], [8]. These 
were touched on earlier when it was noted that belief tracking 
and policy optimization are exponentially dependent on the size 
of the state space. In fact, they are also exponentially dependent 
on the size of the action and observation spaces. As a result, their 
use in real-world applications such as user interfaces is not 
straightforward (this will be returned to later). Before that, how-
ever, it is instructive to take a small detour to explore how 
humans approach the problem of planning under uncertainty.

HUMAN DECISION MAKING AND PLANNING
A central tenet of this article is that human-computer interfaces 
will need to exhibit cognitive behavior to remain fit for purpose 
in future generations of computer-based systems, and it is fur-
ther argued that Bayesian inference and reinforcement learning 
must underpin such interfaces. Since most interactions require 
collaborative behavior between a human and a machine, it 
would be comforting to know that the human side of this col-
laboration was operating under broadly similar mechanisms to 
the machine side. It is self-evident that humans rely heavily on 
reinforcement learning [9], but it is not so clear that they are 
capable of Bayesian inference. So it is interesting to address the 
question: “Is human decision making Bayesian?” 

In evolutionary terms, one of the main drivers for the devel-
opment of brain function is movement [10, Ch 5.]. In fact, it can 
be argued that the only reason humans have brains is so that 
they can move [11]. Hence, to understand the core mechanisms 
for inference in humans, it is necessary to understand how 
humans plan movement. Many experiments have been per-
formed to answer this question, but the first to address the 
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[FIG8] Average reward per turn versus gesture error rate for 
four configurations: hand-crafted policy, fixed policy trained at 
30% noise, the same policy with adapted model parameters, and 
adapted policy and adapted model parameters.
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 specific question as to whether or not movement planning is 
Bayesian was a colleague at Cambridge, Daniel Wolpert.

Wolpert’s experiment was conceptually simple, and the main 
elements are illustrated in Figure 9 [12]. A human subject is 
asked to move her finger across a table from the blue home spot 
to the green target spot. However, during the movement, the 
subject’s vision is obscured and the frame of reference is shifted 
by an amount x  sampled from a Gaussian distribution 
N 1mx, sx 2 . At the end of each movement, the subject can see 
the amount by which she missed the target and hence, after 
repeated trials, the subject learns to move her finger to the 
mean mx of the Gaussian (track a in Figure  9). The process is 
then repeated except that this time the subject is given a 
blurred glimpse of her finger relative to the shifted reference 
frame midway between home and target. This blurring is equiv-
alent to applying Gaussian noise N 10, sn 2  to the observation 

(track b in Figure  9). So after many trials, the subject now has 
available, in principle at least, a prior and a noisy observation. 
The question then is how does the subject use this information 
to modify her plan?

There are three plausible models a subject could use to 
determine the most likely target position given a noisy observa-
tion mid-way through the movement. First, the prior informa-
tion could be ignored and the noisy observation alone used to 
predict the target. In this case, as shown in Figure 10(a), the 
average error would be zero but there would be a large variance 
as shown by the green band.

Second, subjects could learn a direct mapping between the 
noisy observation and the ensuing target error. By minimizing 
this error over a large number of trials, subjects could learn 
some form of optimal mapping without explicitly representing 
the prior distribution or the observation noise. Since the 
observation error was generated by blurring the image, sub-
jects could estimate sn  visually. However, they were only 
shown the target error for the case of zero blur case where 
sn 5 0 and therefore if they did use a direct mapping algo-
rithm, they would have been forced to use the same sn 5 0 
mapping for all trials regardless of its actual value. This leads 
to a response similar to that shown in Figure 10(b). Finally, if 
it was assumed that the human could internalize both the 
prior and observation distributions, then Bayes’ rule could be 
used to predict the target. This would result in the familiar 
maximum a posteriori (MAP) estimate

 x̂ 5
sn

2

sn
2 1 sx

2 mx 1
sx

2

sn
2 1 sx

2 x, (5)

where as can be seen in Figure  10(c), the average deviation var-
ies with the shift and the slope depends on the variance of the 
observation sn. Note also that this model gives the smallest 
variance and indeed it is the minimum variance solution for this 
estimation problem.

The results of this experiment showed unambiguously that the 
Bayesian model was the only one that fitted the experimental data. 
Further, analysis of the data showed that subjects were indeed 
learning the prior distributions. Furthermore, when a bimodal dis-
tribution was used for the prior, similarly consistent results were 
obtained suggesting that humans can estimate and compute with 

more complex distributions than simple 
Gaussians [13], [14].

More recent studies have shown that 
humans use Bayesian inference for other 
processing activities. For example, anoth-
er Cambridge colleague, Máté Lengyel, 
has shown that humans use Bayesian 
learning for visual chunking [15]. In his 
experiments, subjects were shown pat-
terns of the form shown in Figure 11(b). 
These patterns were constructed from an 
inventory of tile combinations (combos) 
shown in Figure 11(a). The inventory 
was kept hidden from the subjects. After 
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[FIG9] A simple movement planning task. The subject must 
move their finger from the blue “Start” to the green “Target.” 
However, during the movement, the subject’s vision is obscured 
and the frame of reference is shifted by an amount x sampled 
from a Gaussian distribution N 1mx, sx 2 . After repeated trials, 
subjects learn to move to the mean of the Gaussian as shown by 
Hand A. However, when subjects are shown a noisy glimpse of 
their finger position in midflight, they modify their trajectory as 
shown by Hand B. The question then is “What model is being 
used to make the correction?”
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each of the three models: (a) full compensation; (b) direct mapping; (c) Bayesian. The 
thickness of the green band indicates the variance and the increasing slopes of the plots 
in (c) correspond to increasing values of observation noise sn.
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 training, subjects were shown a variety of combos some of which 
were from the inventory and  others were not. When subjects 
were asked to decide in each case whether or not the combo was 
familiar, they typically identified combos from the inventory as 
being familiar with around 75% accuracy, well above chance 
level. Several models have been proposed for how humans ac-
complish this task including a sophisticated associative learn-
ing algorithm. In contrast, Lengyel proposed that humans use 
a Bayesian chunk learning process that included an automatic 
Occam’s razor property for determining the optimal model com-
plexity and hence the combo size. By changing the frequencies 
of combo occurrence and the complexity of the combos (e.g., by 
using triples), these postulated mechanisms could be tested on 
the data and compared to human performance. In all cases, the 
Bayesian method fit the data closest.

Overall, experimental data shows that humans can implicitly 
assimilate Bayesian statistics and use Bayesian inference to solve 
problems of planning under uncertainty. The empirical evidence 
outlined here has subsequently been confirmed by many further 
experiments [16]–[18]. There are also architectural arguments 
to support the conjecture that the human nervous system is 
well suited to Bayesian inference [19]. Thus, it seems clear that 
humans have evolved the machinery both to learn statistical 
distributions by observation and to use Bayes’ rule to infer pos-
teriors from these distributions. Thus it would seem that 
humans do indeed use Bayesian inference in problem solving 
and planning under uncertainty.

SCALING-UP TO REAL-WORLD SYSTEMS
In the section “An Example: A Simple Gesture-Driven Interface,” 
the basic ideas of POMDPs were outlined and their potential for 
providing robust and adaptable user interfaces was illustrated via a 
simple example. The key features of the POMDP framework are the 
maintenance of a system of beliefs, continually updated using 
Bayesian inference, and the use of a policy whose performance can 
be quantified by a system of associated rewards and optimized using 
reinforcement learning. As indicated in the preceding section, there 
are strong indicators that humans exploit similar mechanisms and 
overall, POMDPs appear to address all of the 
requirements listed in the introduction for 
an interface to qualify as being cognitive. So 
why is the POMDP framework not used in 
current user  interfaces?

The answer to this question was alluded 
to at the end of the section “An Example: A 
Simple Gesture-Driven Interface.” The 
state space of a real-world human-comput-
er interface is typically very large. Hence, 
naïve implementation of belief monitoring 
via (1) would be far too costly for real-time 
operation. Furthermore, exact implemen-
tation and optimization of POMDP policies 
is intractable for all but the smallest of toy 
problems. Nevertheless, none of these 
issues need be a barrier to progress.

The key elements of the POMDP framework are the ability to 
represent uncertainty by maintaining alternative hypotheses and 
the use of a quantifiable decision process that can be optimized. 
There are several approaches to POMDP approximation that pre-
serve these essential elements and that can be shown empirically 
to yield significantly improved performance compared to conven-
tional approaches. The remainder of this section will illustrate 
these by using the design of a statistical SDS as an example.

SDSs are widely used to provide voice-based access to informa-
tion systems in areas such as banking, finance, and travel. More 
recently they are finding increasing use in call center automation. 
The architecture of a typical spoken dialog system for the tourist 
information domain is shown in Figure 12. The user’s voice in the 
form of an audio waveform is first converted by a speech recogniz-
er into words and then a semantic decoder converts the words into 
dialog acts. The latter are abstract representations of a user’s inten-
tions such as inform(food=chinese), confirm(near=tower). 
Typically the type of a dialog act (inform, confirm) is application 
independent whereas the attribute-value pairs that form the argu-
ments are application specific. The user’s dialog acts are passed to 
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[FIG11] Visual chunking task: subjects were shown training 
patterns of the form shown in (b) from the inventory of basic 
tiles shown in (a) while keeping the inventory hidden. Subjects 
were then shown individual tiles from the inventory and asked if 
the tile was familiar or not.
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[FIG12] Architecture of a spoken dialog system for the tourist information domain. The 
speech recognizer produces a word string that is converted by the semantic decoder into 
an abstract representation of the user’s intent called a dialog act. The user’s dialog acts 
are passed to a dialog manager that interprets the act, updates its internal state and 
generates a suitable response in the form of an output dialog act that is expanded back 
into natural language and converted into a waveform by a speech synthesizer. 
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a dialog manager that interprets the act, updates its internal state, 
and generates a suitable response in the form of an output dialog 
act. This is then expanded back into natural language and convert-
ed into a waveform by a speech synthesizer.

 SDSs exemplify all of the issues that arise in the design of a 
real-world cognitive user interface. The internal state s is usually 
decomposed into three factors s 5 5g, u, h6  where g represents 
the user’s goal, u represents the user input act, and h represents 
the dialogue history [20]. All of these are highly complex. 
Furthermore, since speech recognition error rates are typically 
high, there is significant uncertainty in the decoded user utteranc-
es u and this propagates uncertainty into g and h. In addition, the 
system action space must cover every possible system response so 
policies must map from complex and uncertain dialog states into a 
large space of possible actions. All of these factors combine to 
make implementation of SDSs within the POMDP framework a 
significant challenge.

Nevertheless, the POMDP framework can be scaled to real-
world tasks by exploiting a few simple ideas. First, belief monitor-
ing can be made tractable by simplifying the representation of the 
state distribution. For example, suppose that in a tourist informa-
tion domain the user’s goal consisted of four discrete values: type, 
location, price, food. Exact belief monitoring would require that 
the full joint distribution over P 1type, location, price, food 2  be 
maintained; but even a modest number of types, locations, price-
points, and food types would quickly render the full joint impossi-
bly large. One of the simplest ways of dealing with this is to use an 
M-best approximation, whereby the probability of all state values 
are ranked and pruned to retain only the M  most likely states. 
For instance, the ranked list for the tourist example might be as 
 follows:

P(hotel, east, cheap, none) 5 0.65
P(hotel, west, cheap, none) 5 0.21
P(restaurant, east, cheap, italian) 5 0.08
P(bar, east, cheap, none) 5 0.04
P(hotel, east, expensive, none) 5 0.01 
p

where all combinations other than those shown have such low 
probabilities that they are not worth maintaining.

A second approach to belief state approximation is to factor the 
joint distribution by making some independence assumptions. For 
example, from knowledge of the domain it might be argued that 
the kind of food and the price of a venue depends on only on its 
type, and the type and location are independent, then 

 P 1type, location, price, food 2 < P 1price|type 2
 P 1 food|type 2P 1type 2P 1 food 2 .
 (6)

This results in a Bayesian network representation for the dialog 
state.

Both of the above approaches can deliver tractable belief moni-
toring, but they still leave the state space too large to facilitate 
effective policy optimization. The general approach to dealing with 
this is to map the so-called master belief space b into a more com-
pact summary space b̂ via a mapping function f : b S b̂ and then 
perform optimization in that summary space. In a similar way, a 
compact action set â can be defined in summary space, which is 
then mapped back into master space by an inverse mapping 
c : â S a [21].

The following two sections briefly outline the operation of two 
statistical dialog systems built at Cambridge that illustrate these 
two approaches to approximating the POMDP framework. The first 
is the HIS system that exemplifies the M-best approach. The sec-
ond is the BUDS system that exemplifies the Bayesian network 
approach. Both use master-summary space mappings but in differ-
ing ways. A more general overview of statistical dialog systems is 
given in [22].

THE HIDDEN INFORMATION STATE SYSTEM
A block diagram of the HIS system is shown in Figure 13 [23], 
[24]. It exploits both the M-best approximation for belief monitor-
ing and summary space mapping for policy optimization. A typical 
dialog turn follows the basic cycle illustrated in Figure 12. Each 
user input is processed by the speech understanding component 
that outputs an N -best list of alternative hypotheses and associat-
ed confidence scores [ , u1, c1 . , c, , uN, cN . 4. This list 
is treated as an observation o by the POMDP dialogue manager 

from which the belief state b is updated. 
The updated belief state is then mapped 
into a summary belief state b̂. The dialog 
policy associates  a summary action 
â 5 c 1 b̂ 2  with every possible summary 
belief state. This summary action is then 
mapped back into master space and con-
verted into a system response a to the user.

The HIS system state is composed of the 
three principal factors mentioned earlier, 
that is, s 5 5g, u, h6  where g is the user’s 
goal, u is the last user act and h is the dia-
log history. If this factorization is plugged 
into (1) and some reasonable independence 
assumptions are made, it is straightforward 
to show that
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[FIG13] The HIS system. The HIS dialog manager maintains a belief distribution over all 
possible dialog states. To make policy representation and optimization tractable, the 
belief distribution is mapped into a simpler summary space. Responses to the user are 
generated by expanding summary actions into full system actions using a heuristic 
action mapping.
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 b r 1g r, u r, h r 2 5 k # P 1o r|u r 2  P 1u r| g r, a 2  

 a
g, h

P 1  g r| g, a 2  P 1h r| g r, u r, h, a 2  b 1g, h 2 , (7)

where the primes indicate the next time step [25]. As shown by 
under-braces, the belief update equation for a spoken dialog sys-
tem involves four distinct probability models. The user goal 
model and the history model represent the dynamics of the 
underlying Markov decision process. In the HIS system, it is 
assumed that the user’s goal does not change and the history 
model is replaced by a deterministic finite state grounding 
model. More interesting are the observation and user action 
models. The observation model encodes the error characteris-
tics of the speech understanding system in an analogous man-
ner to the observation matrix in the iPhone example of the 
section “An Example: A Simple Gesture-Driven Interface.” The 
user action model then allows this observation probability to be 
scaled by the probability that the user would speak u r given the 
goal g r  and the last system prompt a. 
Since the observation is an N -best list of 
hypotheses, the user action model effec-
tively allows this list to be reranked 
according to the context. Thus the user 
action model provides a context sensitive 
filter that is extremely effective at reduc-
ing errors, especially in high noise condi-
tions [26].

To simplify belief monitoring further, 
the HIS system groups user goal states into 
equivalence classes called partitions. At the 
start of a dialog all goal states are in a single 
partition. As new evidence is received via 
the input user acts, the partitions are 
expanded to preserve the different possible 
goals. This expansion follows a set of ontol-
ogy rules derived from the database, and it 
is tree-structured to ensure that the union 
of all partitions equals the complete state 
space. Since all of the goals in a partition 
are indistinguishable based on the evidence 
so far, beliefs can be updated at the partition 
level rather than at the individual state level 
and this significantly reduces the computa-
tional load. The resulting HIS state space is 
illustrated schematically in Figure 14. Each 
partition of HIS states consists of a user 
goal partition combined with a hypothe-
sized last user act and a set of grounding 
information. The latter constitutes the dia-
log history such that every node in the par-
tition tree has a grounding state that 
changes according to a finite state  transition 
network. Thus overall, the HIS state space 

consists of all possible partitions combined with all possible 
hypothesized user acts combined with all possible combinations of 
grounding states. The probability of every partition of states in this 
set is evaluated, rank ordered and pruned. The system typically 
maintains 300–3,000 active partitions and together these consti-
tute its belief state b.

Master-summary space mapping and policy representation in 
the HIS system are shown in Figure 15. The summary space b̂ 
consists of a fixed-length vector of features such as the probability 
of the top state in master space, the probability of the  next-to-top 
state, and a Boolean denoting whether the top and next-to-top 
state could represent the same entity. This summary vector is then 
mapped into a fixed grid point in summary space by a vector quan-
tizer [27], [28]. Each grid point has an associated summary system 
action that is selected and mapped back to master space by an 
inverse mapping function, which in most cases assumes that the 
topic of the system action concerns the most likely state in master 
belief space. This is illustrated in Figure 15 where the confirm 
action is selected in summary space and the specific attribute to 
confirm is selected from the top-ranked state in b.
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[FIG14] The HIS belief space. Each combination of a goal partition, last user act and 
set of history states constitutes a single partition of states in belief space. The 
history states record grounding and query status information but the details are 
not relevant here (see [24]).
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[FIG15] HIS master-summary state mapping. The summary space b̂ consists of a 
fixed-length vector of features that is mapped into a fixed grid point in summary 
space by a vector quantizer. Each grid point has an associated summary system 
action that is selected and mapped back to master space by an inverse mapping 
function.
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The vector quantization of the continuous summary space 
converts the HIS POMDP into a simple discrete Markov decision 
process (MDP) for which many optimization algorithms exist. In 
fact, the HIS system uses the Monte Carlo control algorithm in 
conjunction with a user simulator to estimate the optimal action 
set via online reinforcement learning [29].

Figure 16 shows the performance of the HIS system compared 
to an MDP-based dialog manager that only maintains a single most 
likely dialog state and a version of the HIS system that has multiple 
states but only a hand-crafted policy. The main graph shows the 
average success rate as a function of the input semantic error rate 
using a user simulator, where a dialogue is said to be successful 
if it returns a venue to the user that satisfies her constraints and 
any information requested about that venue such as the address or 
telephone number. As can be seen, the HIS system is substantially 
more robust at high error rates. The inset summarizes the aggre-
gate results of a user trial in which 36 subjects undertook a variety 
of tasks in noisy conditions [24]. Again, the HIS system is clearly 
more robust.

THE BAYESIAN UPDATE OF DIALOG STATE SYSTEM
The HIS system described in the previous section illustrates how 
the M-best approach to belief space approximation coupled with a 
master-summary state mapping can lead to a tractable real-world 
dialog system. Although the HIS system can deliver improved per-
formance relative to a conventional system, it suffers from two 
major problems. First, the M-best approximation makes it difficult 
to represent a state transition matrix and hence, the HIS system 
assumes that the user’s goal does not change during the course of 
a dialogue. Second, the probability models in the HIS system are 
hybrids of deterministic rules and statistical models that are diffi-
cult to train automatically from data.

As explained in the introduction to this section, an alternative 
approach is to use a Bayesian network representation for the dia-
log state. This form of approximation retains the ability to properly 

represent system dynamics and to use fully parametric models but 
at the cost of ignoring much of the conditional dependency inher-
ent in real-world domains.

An example of this approach is another system built at 
Cambridge called the BUDS system [30]. This system uses the 
same factorization of the dialog state s 5 1g, u, h 2  as the HIS 
system, but it further factorizes each component into concepts. 
For example, in the tourist information domain, the user might 
be interested in such concepts as location, price, food, room-
rate, and music. Most of these concepts will be dependent on the 
type of venue involved (restaurant, bar, hotel, etc.) but otherwise 
they can be deemed to be independent. This results in a dynamic 
Bayesian network structure of the form shown in Figure 17 that 
shows the venue type and one dependent concept food. Note 
that in the actual system there are between ten and 20 concepts 
depending on the application. Each concept c has three princi-
ple nodes: a goal node gc with values ranging over the user’s 
possible choices; a user act node uc denoting the type of the last 
user act or null if the last user act did not mention this concept; 
and a history node hc taking the values of a simple grounding 
model such as (initial, mentioned, grounded). All uc nodes 
depend on a single node representing the full user act and this 
in turn depends on the observation, which like the HIS system 
is normally an N-best list of hypothesized user dialog acts. 
System dynamics are represented by adding dependencies on 
the equivalent node in the previous time slot. In the BUDS sys-
tem, both the goal nodes and the history nodes depend on their 
previous values.

The BUDS system represents all of the relevant dialog state 
information in a single Bayesian network structure. Belief moni-
toring can therefore utilize any of the existing algorithms for 
approximate inference in a Bayesian network. In the BUDS system, 
loopy belief propagation (LBP) is used [4]. However, to make this 
run in real time, various optimizations are essential. For example, 
goal nodes may range over a large set of values whereas only a very 
few of these values will ever be mentioned in a single dialog. 
Standard LBP can thus be made much faster by partitioning the 
values in each slot similar to the way states are partitioned in the 
HIS system. This typically reduces the effective cardinality of each 
slot down to two or three and this has a dramatic effect on compu-
tation times. Another very effective optimization is to assume that 
the probability of user goal changing is constant. This reduces the 
cardinality of a user goal transition matrix with n possible values 
from O 1n2 2  to O 1n 2  [31].

Distributing the belief space over a large number of factors 
requires a different approach to policy representation since direct 
mapping of each master state into summary space is no longer 
possible. In the BUDS system, a stochastic policy is used in the 
form of a softmax function with parameters u as follows:

 p 1a|b, u 2 5
eu.fa1b2

a ar 
eu.far1b2

, (8)

where fa 1b 2  is a basis function for action a. These basis func-
tions can be separated into components to allow the separate 
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[FIG16] HIS performance as a function of the input error rate. 
The main graph shows percentage success rate as a function 
of semantic error rate using a simulated user. The inset 
shows the comparable results for a human user trial held in 
noisy conditions for which the average error rate was 25%.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on May 02,2010 at 09:40:16 UTC from IEEE Xplore.  Restrictions apply. 



IEEE SIGNAL PROCESSING MAGAZINE   [139]   MAY 2010

effects of each concept goal node in the Bayesian network to 
contribute to the overall policy

 fa 1b 2T 5 [fa,1 1b 2T, c, fa,G 1b 2T, fa,* 1b 2T 4,  (9)

where the indices 1 cG range over the relevant goal nodes 
and the final term fa, *

1b 2T allows global information to be 
incorporated such as the number of database entries matching 
the most likely user goal. This parametric policy can be opti-
mized by maximizing the expected reward and in the BUDS sys-
tem, the natural actor critic algorithm has been found to be the 
very effective for this [32].

Like the HIS system, the BUDS system has been tested both 
with a user simulator and in human trials. Performance results 
are typically similar or slightly better than the HIS results and 
will not be repeated here. However, the major advantage of the 
BUDS system is that the network can be extended to include the 
model parameters themselves along with appropriate Dirichlet 
priors. If loopy belief propagation is then replaced by expecta-
tion propagation [33], the system can learn the model parame-
ters and adapt online from data. Thus, architectures similar to 
BUDS can fulfill all of the requirements listed in the introduc-
tion for building cognitive user interfaces.

CONCLUSIONS AND PERSPECTIVES
The central claim of this article has been that future generations 
of computer-based systems will need user interfaces that can 
support significantly more robust and intelligent interaction 
than is possible with current approaches. It has been argued 
that future interfaces must provide cognitive functionality that 
includes the ability to support inference and reasoning, plan-
ning under uncertainty, and both short-term and long-term 
adaptation. The framework proposed to support such cognitive 
user interfaces is based on POMDPs that integrate Bayesian 
belief monitoring and reward-based reinforcement learning. 
This framework has been shown empirically to provide 
 significantly more robust interpretation of imprecise and ambig-
uous human interactions, and it also provides the ability to plan 
interactions so as to maximize the desired objective functions. 
Furthermore, it appears that humans utilize similar machinery.

If this argument is accepted, the implications are that we 
must start approaching the design of human-centric IT systems 
in a different way. The key is to identify what are the main 
sources of uncertainty and how they can be efficiently repre-
sented within the system. Inputs from the user must then be 
treated as evidence via which uncertainty can be resolved 
through Bayesian inference. Although POMDPs are often 
thought to be intractable for real-world problems, in practice, 
the use of sensible approximations can lead to practical systems 
that still retain the essential benefits of the POMDP framework.

The HIS spoken dialog system was described at some 
length to illustrate how this can be done. The HIS system also 
demonstrates that there is an evolutionary path from existing 
systems to this new paradigm. The HIS system is, in effect, an 
efficient representation of multiple dialog managers acting in 

parallel, each one making different assumptions about what 
the user intends (see also [34] and [35]). The HIS system con-
tains symbolic components similar to those found in conven-
tional dialog systems, and indeed, this ability to integrate 
conventional system components into a probabilistic frame-
work is one of its main strengths.

In the longer term, however, cognitive user interfaces will 
need to be designed as distributed probabilistic models from 
the ground up since this is the only way to ensure that systems 
can evolve with time and adapt from experience. For these 
types of systems, the use of Bayesian networks as illustrated by 
the BUDS system is compelling. However, the deployment of 
large-scale Bayesian network-based POMDP systems presents 
many challenges. The immediate problem is maintaining real-
time operation as network complexity increases since approxi-
mate inference requires considerable computation. As 
demonstrated by the BUDS system, significant speed gains can 
be achieved from conventional belief propagation algorithms 
by exploiting the fact that human interaction tends to focus on 
just a few specific entities, and further optimizations of this 
sort are clearly possible. However, ultimately we will need sys-
tems that can support very large dynamically changing net-
works, and for these support may be needed from the 
underlying hardware, perhaps in the form of distributed pro-
cessors optimized for the type of message passing operations 
needed by belief propagation algorithms. There are also other 
challenges such as integrating multimodal input and output 
channels and handling the many subtle dialog phenomena 
found in natural communication between humans. There are 
also social challenges since, unlike present-day systems, it may 
not be possible to guarantee precisely how a cognitive user 
interface will respond in certain situations [36].

With a few notable exceptions, the traditional philosophy of 
an IT system design has been to encode all information as 

[FIG17] BUDS uses a dynamic Bayesian network in which the 
dialog state is decomposed into slots representing features 
such as kind of food, price, and location. Each slot has goal g, 
an associated user dialog act u, and history information h. 
The slots are mostly independent except that all slots depend 
on the venue type.
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 tabulated data, manipulated by deterministic algorithms. 
Inputs are also viewed as being deterministic and the obvious 
frustration of the IT industry with speech recognition technol-
ogy has arisen through the notion that speech is a keyboard 
substitute, and all that is required to make it useful as such is 
to reduce the error rate. This article has argued that such a 
view is misplaced and that progress towards providing truly 
cognitive human-computer interfaces will require a radically 
different approach in which the explicit modeling of uncer-
tainty is at the core. POMDPs provide a well-founded frame-
work for properly engineering such systems, and they are the 
key to the cognitive user interface of the future.
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