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Abstract
This overview article reviews the structure of a fully statisti-
cal spoken dialogue system (SDS), using as illustration, various
systems and components built at Cambridge over the last few
years. Most of the components in an SDS are essentially classi-
fiers which can be trained using supervised learning. However,
the dialogue management component must track the state of the
dialogue and optimise a reward accumulated over time. This
requires techniques for statistical inference and policy optimi-
sation using reinforcement learning. The potential advantages
of a fully statistical SDS are the ability to train from data with-
out hand-crafting, increased robustness to environmental noise
and user uncertainty, and the ability to adapt and learn on-line.
Index Terms: spoken dialogue systems, reinforcement learn-
ing, speech understanding, speech synthesis, natural language
generation

1. Introduction
At Interspeech 2002 in Denver, I suggested that it should be pos-
sible to build a complete spoken dialogue system in which every
component was based on a statistical model with parameters es-
timated from data[1]. The potential advantages of such a system
would include lower development cost, increased robustness to
noise and the ability to learn on-line so that performance would
continue to improve over time.

Eight years later, fully statistical systems are now being
built in the laboratory and their potential demonstrated. This
talk will review the basic principles of statistical dialogue sys-
tems and discuss the major lessons learnt so far. This will be il-
lustrated primarily by describing a number of systems and com-
ponents developed at Cambridge but related work at other insti-
tutions will be referenced where relevant. The focus will be
on dialogue management and in particular the representation of
dialogue state, approaches to belief monitoring, parameter es-
timation and policy optimisation. Probabilistic components for
speech recognition, semantic decoding, natural language gener-
ation and synthesis will also be briefly mentioned.

2. Architecture of a Statistical SDS
The basic architecture of a statistical spoken dialogue system
is shown in Fig. 1. The user speaks producing a noisy acous-
tic signal y which is converted by a speech recogniser into a
sequence of words w. A semantic decoder then converts the
word sequence w into an abstract representation of the user’s
intended dialogue act v. The dialogue manager maintains an in-
ternal state s representing the inferred user goal g, the hypothe-
sised user dialogue act u and any relevant dialogue history h[2].
Based on the dialogue state s, the dialogue manager selects an
action a in the form of a system dialogue act. This dialogue act
is converted into an output message m by a natural language

generator and finally into speech x by a synthesiser. The user
responds to x with another input y and the cycle repeats.

The modular decomposition shown in Fig. 1 is both con-
ceptually and practically convenient. Each module can be de-
signed, constructed and optimised individually and then inte-
grated to form a working system. However, any deterministic
system built this way would be sub-optimal for two reasons.
Firstly, if each module is entirely independent, then it will be
forced to take early decisions without having access to all of the
necessary contextual evidence. Secondly, local optimisation of
individual modules does not guarantee global optimality. Ensur-
ing that all of the components are based on probabilistic models
provides a potential solution to both of these problems.

Speech
Recognition

Semantic
Decoding

Dialogue
Manager
s=<u,g,h>

Speech
Synthesis

Natural
Language
Generation

User

y w v

x m a

Figure 1: Architecture of a Spoken Dialogue System

In a fully statistical system, the signal at each interface is
a distribution and not the single best hypothesis. Typically,
this distribution is approximated by an N-best list [3] or some
form of lattice [4]. Thus on the input side, the output w of
the speech recogniser with parameters λasr is the distribution
p(w|y, λasr) where y is the noisy speech input from the user.
The semantic decoder then combines this distribution with its
own model p(v|w, λsd) to give

p(v|y, λasr, λsd) =
X
w

p(v|w, λsd)p(w|y, λasr) (1)

On the output side, similar principles can be applied except that
the output distribution must be sampled to select an exemplar
utterance to present to the user. The NLG component with pa-
rameters λnlg converts input dialogue acts a into a sequence
of phrases m which are then converted by a synthesiser with
parameters λss into output speech x. Thus,

p(x|a, λss, λnlg) =
X
m

p(x|m,λss)p(m|a, λnlg) (2)

Typically, the sample value of x is chosen to maximise p(x|a)
but alternatives could be used if variability in the output was re-
quired. At first sight this sampled-distribution approach might
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seem a little odd since it would surely be simpler to just gen-
erate a single utterance m and convert it to speech. However,
this would prevent the generation process from taking account
of the ability of the synthesiser to produce different forms of the
same underlying message. The probabilistic framework allows
the NLG and synthesis to be jointly optimised and this will be-
come increasingly important as the speech output from SDS is
required to be much more sensitive to the linguistic and emo-
tional context[5].

Both the input and output components of an SDS imple-
ment statistical mappings which can be trained from data using
supervised learning. The dialogue manager component is rather
different since its role is to select an appropriate response to
each user input with the long-term goal of satisfying the user’s
requirements. Furthermore it must do this under conditions of
great uncertainty since users will often be unclear about their
requirements and the speech recogniser will further confound
matters by making errors. For example in the tourist informa-
tion system described below, the user’s goal will typically be
a venue satisfying certain requirements (e.g. a cheap italian
restaurant on the north side of town). These requirements will
need to be conveyed to the system over a number of dialogue
turns. Hence, the dialogue manager will have many choices at
each turn including confirming the given requirements, asking
for further requirements or offering a venue. Sometimes there
will be no venue that matches and the system must then negoti-
ate with the user to relax the requirements until an appropriate
venue can be found.

Conventional SDS systems implement the dialogue man-
ager using deterministic decision logic. Essentially each input
is treated as a command which is decoded by a set of hand-
crafted decision rules to generate a response. To assist the deci-
sion making process, the system must maintain a dialogue state
which records the current best estimate of the user’s goal and the
dialogue history. The problem with this conventional approach
is that it is expensive to produce, inflexible and fragile.

In [6] it is argued that any human-computer interface, but
especially an SDS, must be able to support four key features
which are characteristic of cognitive behaviour:

• able to support reasoning and inference - necessary to
interpret noisy inputs in context to robustly resolve am-
biguities and minimize errors;

• able to plan under uncertainty - the communicative goals
must be defined objectively and strategies then optimized
to meet the objectives as efficiently as possible;

• able to adapt on-line to changing circumstances. Con-
texts and environments change and behaviour must adapt
to maintain an acceptable level of performance;

• able to learn from experience. In addition to short-term
adaptation, an SDS should be capable of learning from
its own interactions over the long term. The more it is
used, the smarter it should become.

Interfaces which have these four essential properties are re-
ferred to as cognitive user interfaces and the key to building
such an interface is dialogue management based on the partially
observable Markov decision process (POMDP)[7].

A POMDP-based dialogue manager has two essential com-
ponents. Firstly, a POMDP maintains a distribution b(s) over
all possible dialogue states called the belief state. User inputs
are not treated as commands, instead they are noisy observa-
tions. Bayesian inference is then used to update the belief state

at each dialogue turn given the noisy observation o = p(v)1 and
the previous system action a

b′(s′) = P (s′|o′, a, b)

= k · P (o′|s′, a)
X
s

P (s′|a, s)b(s). (3)

where k = 1/P (o′|a, b) is a normalisation constant [8]. This
belief update process is referred to in the POMDP literature as
belief monitoring.

Secondly, a policy {π : b→ a} provides a mapping from
belief states b to actions a. The policy is designed to maximise
the cumulative sum R of rewards r(b, a) obtained at each dia-
logue turn. The reward function r(b, a) therefore serves as an
objective metric of performance and should be chosen to reflect
the design criteria of the application. Typically for spoken dia-
logues it will consist of a small negative reward at each turn, a
large positive reward for successfully completing the dialogue
and a large negative reward for failure. POMDP optimisation
then involves finding the policy which maximises the expected
cumulative reward R over the course of a dialogue2.

To elaborate on how the above architecture can be realised
in practice, the next few sections describe the components of a
fully statistical SDS built at Cambridge in the Tourist Informa-
tion domain.

3. The CamInfo System
The CamInfo system is based on the architecture shown in
Fig. 1. All of the components are statistical and all of the
component interfaces are implemented as N-best list approxi-
mations of the output distributions. The system is server based
and it uses sipgate3 to make it accessible via the telephone or via
a web interface which also displays an interactive map. Cam-
Info can help the user locate places to stay, places to eat, places
to drink, places to see and a variety of other entities such as
shops, sports facilities, transport and general amenities. Typical
requests might be “I want a cheap restaurant in Cherry Hinton”,
“I’d like a hotel near the river”, “Is there anywhere to get a drink
near Trinity College?”.

3.1. Ontology

The information in the CamInfo database is organised according
to an ontology as shown in Fig. 2. As can be seen, it is quite
large with several layers of hierarchy. The top level defines a
generic venue and the layer below that defines some general
classes of venue such as places-to-eat, places-to-stay, places-to-
drink, places-to-see, university-venues, sports-venues, etc. As
an example, Fig. 3 shows the main elements of the ontology
relating to places-to-eat. On system startup, CamInfo compiles
this ontology to create the internal representation of a user goal
(see 3.4 below).

3.2. Dialogue Acts

As noted in section 2, CamInfo uses a common abstract repre-
sentation called a dialogue act for both inputs and outputs to the
dialogue manager. The definition and form of dialogue acts are
critical since they affect the design of all processing below the
word level i.e. semantic decoding, dialogue management and
natural language generation.

1In practice this will be an N-best list of user dialogue acts.
2The cumulative reward is also called the return.
3See http://www.sipgate.co.uk
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Figure 2: Full Ontology of the CamInfo System
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Figure 3: Ontology of Places to Eat

Dialogue acts in all of the Cambridge dialogue systems4

take the form acttype(a1=v1, a2=v2, ..) where acttype denotes
the type of dialogue act and the arguments are act items consist-
ing of attribute-value pairs5. Attributes refer to the key informa-
tion nodes in the user goal tree g of the dialogue state which is
compiled from the ontology described in 3.1. The values of an
attribute are either sub-nodes as in “type=placetoeat” or atomic
values as in “food=chinese”. In some contexts, the value can be
omitted, for example, where the intention is to query the value
of an attribute. Note that the dialogue act types are application
domain independent whereas the attributes and their values are
derived from the application ontology. The most common acts
are listed in Table 1 and a simple dialogue illustrating their use
is shown in Table 2. A full description of the dialogue act set is
given in [9].

3.3. Speech Understanding

The speech understanding function in CamInfo is implemented
by combining a HTK-based speech recogniser with a statistical
semantic decoder(see Fig. 1). The speech recogniser converts
the acoustic speech signal y into a 10-best list of recognised
word sequences {wi} and the semantic decoder then converts
eachwi into one or more user dialogue acts. Duplicate dialogue
acts are merged to form a single N-best list of user dialogue acts

4In addition to the tourist information system described here, we
have also built systems for Appointments Scheduling and the Pittsburgh
Let’s Go bus information service.

5Attributes are referred to as slots in some dialogue systems.

Act Description
hello(a=x,b=y,...) open a dialog and give info a=x, b=y, ...
inform(a=x,b=y,...) give information a=x, b=y, ...
request(a, b=x,...) request value for a given b=x ...
reqalts(a=x,..) request alternative with a=x,...
confirm(a=x,b=y,..) explicitly confirm a=x,b=y,..
confreq(a=x,.., d) implicitly confirm a=x,.. and request d
select(a=x,a=y) select either a=x or a=y
affirm(a=x, b=y,...) affirm and give further info a=x, b=y, ...
negate(a=x) negate and give corrected value a=x
deny(a=x) deny that a=x
bye() close a dialogue

Table 1: The principal dialogue acts used by all Cambridge di-
alogue systems.

and their corresponding posterior probabilities {vj , pj}. Hence,
the actual number of dialogue acts passed to the dialogue man-
ager varies depending on the speaker and noise level.

Speech recognition in the CamInfo system is provided by
ATK [10] which is a real-time multi-threaded recogniser com-
patible with acoustic and language model resources built using
HTK [11]. The CamInfo recogniser has a vocabulary of around
3000 words. It uses state-clustered word-internal triphones
trained on 40 hours of audio data to produce 4091 distinct
states each with 4 Gaussians per state. The speech waveform is
coded using PLP coefficients plus their 1st, 2nd and 3rd deriva-
tives mapped to a 39-dimensional vector using HLDA[12]. The
recogniser runs with a fixed trigram language model trained
on around 400k words of in-domain data smoothed with about
80M words of general corpus data[13]. There is no grammar
switching so the user can say anything at any time.

Semantic decoding requires a sequence of words to be con-
verted into a dialogue act plus some number of attribute-value
pairs. Early attempts to solve this problem assumed that it was
sufficient to tag each word with a semantic label and hence sim-
ple HMM-taggers could be used[14]. However, this fails with
utterances which have embedded phrases where some form of
hierarchical structure must be supported in order to analyse the
utterance correctly.

A review of various approaches to statistical semantic de-
coding is given in [15, 16]. However, a critical issue for con-
figuring a decoder to a specific spoken dialogue application
is the cost of producing training data in the form of matched
pairs < w, v > of word string and corresponding dialogue act.
This cost is greatly reduced if the need for an explicit align-
ment between w and v can be avoided. For the CamInfo sys-
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Utterance Dialogue Act
U: Hi, I am looking for somewhere to eat. hello(task=find,type=restaurant)
S: You are looking for a restaurant. confreq(type=restaurant,food)

What type of food do you like?
U: I’d like an Italian somewhere near Trinity College. inform(food=Italian,near=“Trinity”)
S: Strada is a nice Italian restaurant near Trinity. inform(name=“Strada”, type=restaurant, food=Italian, near“Trinity”)
U: Is it reasonably priced? confirm(pricerange=moderate)
S: Yes, Strada is in the moderate price range. affirm(name=“Strada”, pricerange=moderate)
U: What is the phone number? request(phone)
S: The number of Strada is 385456. inform(name=“Strada”, phone=“385456”)
U: Ok, thank you goodbye. bye()

Table 2: An example dialogue and its representation at the dialogue act level.

tem, we have experimented with three different decoders, all
of which can be trained on unaligned data: the hidden vector
state decoder[17, 18], a transformation-based decoder [19] and
an SVM-based decoder[20].
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Figure 4: Semantic parse tree generation using SVM classifiers.
The input utterance is converted to N-gram features and input
to a bank of SVM classifiers which detect parent/offspring nodes
in the semantic parse tree.

Due to its simplicity, high performance and very low run-
time compute cost, we now mostly use the SVM-based decoder.
This is based on the very simple idea that a semantic parse tree
such as the one shown in Fig. 4 can be constructed from a set
of tuples < n1, n2, n3, ... > where node ni is the parent of
node ni+1. Using the N-grams of w as classification features,
a binary SVM is trained for every possible tuple to determine
whether or notw has a semantic parse containing that tuple. All

that is then required to decode a previously unseen utterance w
is to apply all of the SVM classifiers to w and collect the set of
all tuples that are predicted to be in w’s semantic tree. These
tuples are then glued together to form the required tree. The
choice of tuple size is a trade-off between classifier accuracy
and fidelity of the tree reconstruction. For the CamInfo domain,
a tuple size of 2 appears to be adequate. Of course, there is po-
tentially a very large number of SVMs to apply but lexicalising
terminal nodes reduces that number, and each classification is
very fast being a simple scalar product. By searching for higher
level tuples first, the search for lower level tuples can be limited
to those which are consistent with those already found. Finally,
the SVM margins can be used to compute a confidence score
for the overall parse. As shown in [20], this simple SVM de-
coder can achieve a dialogue act accuracy and an F-measure
on attribute-value pairs of 95% on clean data, out-performing a
hand-crafted parser.

3.4. Dialogue Management

As noted in section 2, the CamInfo dialogue state s is decom-
posed into three factors s = {g, u, h} where g represents the
user’s goal, u represents the user input act and h represents the
dialogue history [2]. All of these are highly complex. Further-
more, since speech recognition error rates are typically high,
there is significant uncertainty in the decoded user utterances u
and this propagates uncertainty into g and h. In addition, the
system action space must cover every possible system response
so policies must map from complex and uncertain dialog states
into a large space of possible actions. All of these factors com-
bine to make implementation of a POMDP-based dialogue sys-
tem a significant challenge.

The first step towards building a practical system is to
make belief monitoring tractable by simplifying the represen-
tation of the state distribution. For example, suppose that
in the tourist information domain the user’s goal consisted of
four discrete values: type, location, price, food. Exact be-
lief monitoring would require that the full joint distribution
over P (type, location, price, food) be maintained; but even a
modest number of types, locations, price-points and food types
would quickly render the full joint probability impossibly large.
One of the simplest ways of dealing with this is to use an M -
best approximation whereby the probability of all state values
are ranked and pruned to retain only the M most likely states.
For instance, the ranked list for the tourist example might be as
follows
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P(hotel, east, cheap, none) = 0.65
P(hotel, west, cheap, none) = 0.21
P(restaurant, east, cheap, italian) = 0.08
P(bar, east, cheap, none) = 0.04
P(hotel, east, expensive, none) = 0.01
...

where all combinations other than those shown have such low
probabilities that they are not worth maintaining. This idea is
developed further in the Hidden Information State (HIS) dia-
logue manager described below.

A second approach to belief state approximation is to factor
the joint distribution by making some independence assump-
tions. For example, from knowledge of the domain it might be
argued that the kind of food and the price of a venue depends
only on its type, and the type and location are independent, then

P (type, location, price, food) ≈ (4)
P (price|type)P (food|type)P (type)P (food)

This results in a Bayesian network representation for the dia-
logue state and forms the basis for the Bayesian Update of Dia-
logue State (BUDS) dialogue manager also described below.

In order that belief monitoring can accurately track the dia-
logue state as it evolves, it is important to minimise the approxi-
mations made in the representation of the state space. However,
policy implementation and optimisation do not require such a
detailed representation of the state. For example, when the user
asks for a restaurant in a particular area of town, the belief state
must record all of the possible areas that the user might have
said. However, to generate an appropriate response it is only
necessary for the system to decide between a few high level op-
tions such as to confirm the last user input, ask for further infor-
mation or suggest a venue. Thus the second step towards build-
ing a practical POMDP-based system is to introduce the notion
of a summary belief space. At each input turn, the so-called
master belief space is updated and then mapped into summary
space where the appropriate next summary action is determined.
The summary action is then mapped back into master space and
converted into a system response. Since the policy is main-
tained and optimised in summary space, tractability issues are
much reduced.

The HIS and BUDS dialogue managers exemplify the two
alternative approaches to belief state approximation described
in step one above and they both exploit a form of master-
summary space mapping. They have both been implemented
within the CamInfo system in order to understand the impact of
the differing approximations they make. They are now briefly
described.

3.4.1. The Hidden Information State Dialogue Manager

If the factorisation of the dialogue state, s = {u, g, h} is
plugged into the belief update equation (3) and some reason-
able independence assumptions are made, it is straightforward
to show that

b′(u′, g′, h′) = k · P (o′|u′)| {z }
observation

model

· P (u′|g′, a)| {z }
user action

model

·

X
g,h

P (g′|g, a)| {z }
user goal

model

· P (h′|g′, u′, h, a)| {z }
dialogue history

model

· b(g, h) (5)

where the primes indicate the next time step [21]. As shown
by under-braces, the belief update equation for a spoken di-
alogue system involves four distinct probability models. The
user goal model and the history model represent the dynamics
of the underlying Markov decision process. In the HIS sys-
tem, it is assumed that the user’s goal changes changes only
rarely so the probability of change is low. It is also assumed
that the history model can be replaced by a deterministic finite
state grounding model. More interesting are the observation and
user action models. The observation model encodes the error
characteristics of the speech understanding system and the user
action model encodes the probability that the user would speak
u′ given the goal g′ and the last system prompt a. Since the ob-
servation is an N -best list of hypotheses, the user action model
effectively allows this list to be re-ranked according to the con-
text. Thus the user action model provides a context sensitive
filter which is extremely effective at reducing errors, especially
in high noise conditions [22].
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Figure 5: The HIS Belief Space. Each combination of user di-
alogue act, goal partition, and set of history states constitutes
a single partition of states in belief space. The history states
record grounding and query status information (see [23] for de-
tails) ).

To simplify belief monitoring further, the HIS system
groups user goal states into equivalence classes called parti-
tions. At the start of a dialogue all goal states are in a single
partition. As new evidence is received via the input user acts,
the partitions are expanded to preserve the different possible
goals. This expansion follows a set of ontology rules derived
from the database and it is tree-structured such that when a par-
tition is split by new information x = a, the new partition ex-
plicitly records the fact that x = a and the existing partition
is updated to record the fact that x = ā [24]. Since all of the
goals in a partition are indistinguishable based on the evidence
so far, beliefs can be updated at the partition level rather than at
the individual state level and this significantly reduces the com-
putational load. The goal g in (5) now denotes a partition and
since by definition, g is the parent of g′, the sum over g is no
longer required.

The resulting HIS state space is illustrated schematically in
Fig. 5. Each partition of HIS states consists of a hypothesised
last user act, a user goal partition and a set of grounding infor-
mation. The latter constitutes the dialog history such that every
node in the partition tree has a grounding state which changes
according to a finite state transition network. Thus overall, the
HIS state space consists of all possible hypothesised user acts,
and all possible partitions combined with all possible combi-
nations of grounding states. The probability of every partition
of states in this set is evaluated, rank ordered and pruned. The
system typically maintains 300 to 3000 active partitions and to-
gether these constitute its belief state b.

Master-summary space mapping and policy representation
in the HIS system are shown in Fig. 6. The summary space
consists of a fixed-length vector of features such as the prob-
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Figure 6: HIS Master-Summary state mapping. The summary
space consists of a fixed-length vector of features which is
mapped into a discrete grid point in summary space by a vector
quantizer. Each grid point has an associated array of Q-values
and associated actions. The action with the highest Q value
which can be mapped back into master space is selected (see
[25] for details).

ability of the top state in master space, the probability of the
next-to-top state, various discrete variables representing status
information, and the last user act. This summary vector is then
mapped into a fixed grid point in summary space by a vector
quantizer [26, 27]. Each grid point has a set of associated sum-
mary system actions ranked according to their Q values6. Ini-
tially the action with the highest Q value is selected and mapped
back to master space by an inverse mapping function which in
most cases assumes that the topic of the system action concerns
the most likely partition in master belief space. In some cases,
the selected summary action cannot be mapped back to master
space in which case the action with the next highest Q value is
tried [25]. This is illustrated in Fig. 6 where the highest ranked
action is to inform the user about a venue, but since no venue has
yet been determined, the 2nd choice confirm action is selected
and mapped back to master space by heuristically selecting a
specific attribute to confirm from the top-ranked hypothesis.

The vector quantization of the continuous summary space
converts the HIS POMDP into a simple discrete Markov De-
cision Process (MDP) for which many optimization algorithms
exist. In fact, the standard HIS system uses the Monte Carlo
Control algorithm in conjunction with a user simulator to esti-
mate the optimal action set via on-line reinforcement learning
[28] (see section 4 below).

3.4.2. The Bayesian Update of Dialog State System

The HIS system described in the previous section illustrates
how the M -best approach to belief space approximation cou-
pled with a master-summary state mapping can lead to a
tractable real-world dialog system. However, it suffers from
two major problems. Firstly, the M -best approximation makes
it difficult to represent a state transition matrix and hence, the
HIS system assumes that the probability that the user’s goal will
change during the course of a dialogue is very low. Secondly,
the probability models in the HIS system are hybrids of deter-
ministic rules and statistical models which are difficult to train
automatically from data.

6Q(s, a) is the reward expected from taking action a when in state
s

As explained in the introduction to this subsection, an al-
ternative approach is to use a Bayesian network representation
for the dialogue state. This form of approximation retains the
ability to properly represent system dynamics and to use fully
parametric models but at the cost of ignoring much of the con-
ditional dependency inherent in real world domains.

The BUDS system uses the same factorization of the dia-
logue state s = {u, g, h} as the HIS system, but it further fac-
torizes each component into concepts[29]. For example, in the
tourist information domain, the user might be interested in the
concepts location, price, food, room-rate, music, etc. Most of
these concepts will be dependent on the type of venue involved
(restaurant, bar, hotel, etc) but otherwise they can be deemed
to be independent. This results in a dynamic Bayesian network
structure of the form shown in Fig. 7 which shows the venue
type and one dependent concept food. Note that in the actual
CamInfo system there are about 20 concepts in total. Each con-
cept c has three principle nodes: a goal node gc with values
ranging over the user’s possible choices; a user act node uc de-
noting the type of the last user act or null if the last user act
did not mention this concept; and a history node hc taking the
values of a simple grounding model such as (initial, mentioned,
grounded). All uc nodes depend on a single node represent-
ing the full user act and this in turn depends on the observa-
tion, which like the HIS system is normally an N-best list of
hypothesized user dialogue acts. System dynamics are repre-
sented by adding dependencies on the equivalent node in the
previous time slot. In the BUDS system, both the goal nodes
and the history nodes depend on their previous values.
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Figure 7: Bayesian Update of Dialogue State (BUDS). BUDS
uses a dynamic Bayesian network in which the dialogue state
is decomposed into slots representing features such as kind of
food, price, location. Each slot has goal g, an associated user
dialogue act u, and history information h. The slots are mostly
independent except that all slots depend on the venue type.

The BUDS system represents all of the relevant dialogue
state information in a single Bayesian network structure. Belief
monitoring can therefore utilize any of the existing algorithms
for approximate inference in a Bayesian network. In the BUDS
system, loopy belief propagation (LBP) is used [30]. However,
to make this run in real-time, various optimizations are essen-
tial. For example, goal nodes may range over a large set of val-
ues whereas only a very few of these values will ever be men-
tioned in a single dialogue. Standard LBP can thus be made
much faster by partitioning the values in each slot similar to the
way states are partitioned in the HIS system. This typically re-
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duces the effective cardinality of each slot down to 2 or 3 and
this has a dramatic effect on computation times. Another very
effective optimization is to assume that the probability of user
goal changing is constant. This reduces the cardinality of a user
goal transition matrix with n possible values from O(n2) to
O(n) [31].

Distributing the belief space over a large number of fac-
tors requires a different approach to policy representation since
direct mapping of each master state into summary space is no
longer possible. In the BUDS system, the policy is represented
by a softmax function with parameters θ as follows

π(a|b,θ) =
eθ.φa(b)P
a′ eθ.φ

′
a(b)

(6)

where φa(b) is a basis function for action a. These basis func-
tions can be separated into components to allow the separate
effects of each concept goal node in the Bayesian network to
contribute to the overall policy

φa(b)> = [φa,1(b)>, . . . ,φa,G(b)>,φa,∗(b)
>]. (7)

where the indices 1..G range over the relevant goal nodes and
the final term φa,∗(b)

> allows global information to be incor-
porated such as the number of database entries matching the
most likely user goal. In effect, the mapping from master to
summary space is performed implicitly via function approxi-
mation. The resulting parametric policy can be optimized by
maximizing the expected reward and in the BUDS system, the
Natural Actor Critic algorithm has been found to be the very
effective for this [32].

3.5. Response Generation

The process of generating a spoken output from CamInfo is di-
vided into two components. Firstly, the system dialogue act out-
put by the dialogue manager is converted to a list of candidate
word strings by a Natural Language Generation (NLG) compo-
nent and then secondly, the word string is converted to speech
by a HMM-based speech synthesiser. Attributes and values in
the dialogue act which are new to the dialogue or are the focus
of a confirmation are marked for emphasis and these empha-
sis marks are carried over to the word or phrase describing that
attribute.

Most existing approaches to statistical natural language
generation (NLG) use statistics to simplify or refine a hand-
crafted generator, for example, by overgenerating to ignore cod-
ing agreement rules and then filtering the output using N-gram
language models[33]. In contrast, the CamInfo NLG compo-
nent, has no hand-crafted generation components[34]. Its sta-
tistical model is inspired by the Hidden Vector State semantic
decoder which represents semantic parse trees as a sequence of
stacks[17]. The basic idea is illustrated in Fig. 8. The input
system dialogue act a is mapped deterministically to a set of
attribute stacks Sa. These stacks are then augmented by a set
of filler stacks Sf and arranged in a sequence S which is in
turn mapped to a sequence of phrases constituting the output
message m = m1 . . .mT . The sequencing of the stacks is de-
termined by two probabilistic models: a stack sequence model
P (S|Sa) and a phrase realisation model P (m|S). Hence,

P (m|a) = P (m|Sa)

=
X

S∈Seq(Sa)

P (m|S)P (S|Sa) (8)

inform(name=Ming,type=restaurant,area=centre,food=chinese,near=Museum)

inform

name food type near area

museum centrechineseMing

is_a Chinese restaurant near the_Museum in_the centre_of_town
inform
name
Ming

Ming

restaurant

inform inform
food

chinese

inform
type

restaurant

inform
near

inform
near
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inform
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inform
area
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Figure 8: Generation via semantic stacks. The process is illus-
trated within the dotted box. Each attribute in the dialogue act
inform(name= ..) maps deterministically to an attribute stack
(shown as shadowed boxes). These are augmented by a number
of filler stacks to form a stack sequence which maps probabilis-
tically to the surface realisation. The semantic parse above the
box illustrates the equivalence of the stack sequence to the se-
mantic parse of the realised utterance.

where Seq(Sa) is the set of all stack sequences which con-
tain all of the attribute stacks Sa. In principle, the distribu-
tion P (m|a) could be computed and then sampled. In practice
a two step process is used to reduce the computational com-
plexity. Firstly, the sequence S∗ is found which maximises (8)
and then the sequence of phrasesm∗ is found which maximises
P (m|S∗).

Factored language models are used for both probability
models[35]. The stack sequence model is

P (S|Sa) =

 QT
t=1 P (st|st−1, st−2, sτ ) ifS ∈ Seq(Sa)

0 otherwise
(9)

where sτ is denotes the most recent attribute stack. The realisa-
tion model is

P (m|S) =

TY
t=1

P (mt|mt−1, st−1, st, st+1) (10)

Obtaining training data for the NLG component of a limited
domain dialogue system is problematic since there are usually
no sources of existing data and collecting data from WoZ-type
experiments would be tedious and expensive. An alternative is
to use a web-based work distribution system such as Amazon’s
Mechanical Turk (MTurk)7. For CamInfo, the dialogue man-
ager was run with the user simulator used for training to gen-
erate a large random set of system dialogue acts. These were
then canonicalised and sampled to provided a corpus for annota-
tion. In a two step process, MTurk annotators were firstly asked
to provide a simple English utterance matching an abstract de-
scription of each dialogue act. In a second step, annotators were
asked to align the attributes and values in the dialogue act with
the words in the utterance (see [34] for details).

Speech synthesis in the CamInfo system uses a HMM-
based approach which is now widely available via the HTS
HMM Synthesis Toolkit [36]. Since it is parametric, one of
the key benefits of HMM-based synthesis is that it offers the
potential to provide speech with intonation, voice quality and

7See https://www.mturk.com
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Speaker Utterance Dialogue act
Sys: Thank you for calling the Cambridge Information

system. How may I help you?
User: HI I’M LOOKING FOR AN INDIAN RESTAURANT hello(=restaurant,food=Indian,task=find)
Sys: Let me confirm. You are looking for an indian restaurant. confirm(type=restaurant,food=Indian)
User: YES affirm()
Sys: Blue Spice is a great restaurant and it serves indian food. inform(name=“Blue Spice”,type=restaurant,food=Indian)
User: ERM I WANT SOMETHING CHERRY HINTON inform(area=cherryhinton)
Sys: Spice Merchants is a great restaurant in the Cherry inform(name=“Spice Merchants”,

Hinton part of town and it serves indian food. type=restaurant,area=cherryhinton,food=Indian)
User: YOU UH WHAT’S THE ADDRESS request(addr)
Sys: Spice Merchants is on 60 Trumpington Road. inform(name=“Spice Merchants”,addr=“60 Trumpington Road”)
User: THE ANYTHING ELSE reqalts(=dontcare)
Sys: Sitar Tandoori, which serves indian food, is a great inform(name=“Sitar Tandoori”,type=restaurant,

restaurant in the Cherry Hinton part of town. area=cherryhinton,food=Indian)
User: DO YOU HAVE THE ADDRESS request(addr)
Sys: Sitar Tandoori is on 43 High Street, Cherry Hinton. inform(name=“Sitar Tandoori”,addr=“43 High Street,Cherry Hinton”)
User: ARE THERE ANY CHINESE RESTAURANTS inform(food=Chinese,=restaurant)
Sys: The Hotpot Restaurant is an outstanding restaurant in inform(name=“Hotpot Restaurant”,type=restaurant,

the riverside part of town. It serves chinese food. area=riverside,food=Chinese)
User: NO I WANT CHERRY HINTON negate(area=cherryhinton)
Sys: HK Fusion serves chinese food, it’s an outstanding inform(name=“HK Fusion”,type=restaurant,

restaurant in the Cherry Hinton part of town. area=cherryhinton,food=Chinese)
User: WHAT’S THE ADDRESS request(addr)
Sys: HK Fusion is located on 21 Burleigh Street. inform(name=“HK Fusion”,addr=“21 Burleigh Street”)
User: THE PHONE NUMBER request(phone)
Sys: The phone number of HK Fusion is 01223 355909. inform(name=“HK Fusion”,phone=“01223 355909”)
User: OK THANK YOU GOODBYE bye()
Sys: Thank you goodbye bye()

Figure 9: Example dialogue extracted from CamInfo log files (using the HIS dialogue manager).

affect which varies to match the dialogue context. To facilitate
more natural pitch contour generation, the CamInfo synthesiser
replaces the standard multi-space distribution HMM with an al-
ternative which assumes that F0 is continuous throughout an
utterance but it is generated during unvoiced regions by a glob-
ally tied distribution (GTD)[37]. This GTD-based model has
the advantage that F0 and its derivatives can be modelled by a
single stream and this leads to more accurate trajectories. Fur-
thermore, since the GTD HMM is directly compatible with the
HMMs used in HTK-based speech recognisers, all of the tools
developed for recognition can be used in synthesis.

As mentioned above, within a limited-domain dialogue sys-
tem, one of the most interesting features of HMM-based syn-
thesis is the possibility of modifying the intonation to signal
discourse information. One obvious example of this is the use
of word emphasis to acknowledge a correction. For example,
if the user has asked for a cheap, French restaurant and the
system has responded with an expensive French restaurant, the
user might say “No, I want a cheap French restaurant!”. The
response of the system should then be “Oh, you want a cheap
French restaurant.” The ability to put emphasis on “cheap” pro-
vides important feedback and helps ground that particular user
requirement. In HMM-based synthesis, an emphasis capability
can be implemented by adding a word emphasis feature to the
decision tree used to cluster the context-dependent phones. Un-
fortunately, if the word emphasis feature is simply added to the
existing feature list, the relative rarity of emphasised words in
the training data will result in the feature appearing very low
down in the tree reducing its effectiveness during synthesis. To
overcome this, the decision trees can be factorised and built in
multiple passes ensuring that emphasis features are applied first
[38]. The result is a system which can indicate the focus of an
utterance very effectively by simply setting the word emphasis
feature for the phones of the word to be emphasised.

3.6. Evaluation

Figure 10: HIS performance as a function of the input error rate.
The main graph shows % success rate as a function of semantic
error rate using a simulated user. The inset shows the compa-
rable results for a human user trial held in noisy conditions for
which the average error rate was 25%.

The CamInfo system described above is the basis of con-
tinuous development. Figure 10 shows the performance of the
HIS system in 2007 compared to an MDP-based dialogue man-
ager which only maintains a single most likely dialogue state
and a version of the HIS system which has multiple states but
only a hand-crafted policy. The main graph shows the average
success rate as a function of the input semantic error rate us-
ing a user simulator, where a dialogue is said to be successful
if it returns a venue to the user which satisfies her constraints
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and any information requested about that venue such as the ad-
dress or telephone number. As can be seen, the HIS system is
substantially more robust at high error rates. The inset summa-
rizes the aggregate results of a user trial conducted in February
2008 in which 36 subjects undertook a variety of tasks in noisy
conditions [23]. Again the HIS system is clearly more robust.
Since that time a variety of improvements have been made to
the system and a further trial will be held in late 2010 as part
of the EU Classic Project. To give a more direct impression of
the current CamInfo system in operation, Fig. 9 shows a typical
dialogue extracted from the CamInfo system log files.

Like the HIS system, the BUDS system has been tested both
with a user simulator and in human trials. Performance results
are typically similar to the HIS results.

4. Optimisation Issues
The CamInfo system is an example of a large statistical sys-
tem consisting of a number of components configured ideally
to optimise a single global reward function. In practice, each
component is typically optimised locally rather than globally
and moreover the local objective function may differ from the
global one. When the HIS-based CamInfo system was first
built, the dialogue manager probability models and the user sim-
ulator were hand-crafted. The dialogue policy was optimised
using the basic Monte Carlo Control algorithm and it required
around 100,000 dialogues to converge. Since that time, various
improvements have been made both to model parameter and
policy optimisation.

Improved policy optimisation requires better generalisation
across states so that when a good action is discovered for some
state, other similar states benefit also. In the HIS system, a
simple way to achieve this is by smoothing over states in sum-
mary space, for example by interpolating Q values over the k-
Nearest Neighbours[39]. A more powerful and more general
approach is to use function approximation to directly model
the value function. Both Kalman filters [40] and Gaussian Pro-
cesses [41, 42] have been shown to be effective and the number
of training cycles required to estimate good policies can be re-
duced by an order of magnitude or more.

In terms of dialogue manager parameter estimation, a major
advantage of the BUDS system is that the network can be ex-
tended to include the model parameters themselves along with
appropriate Dirichlet priors. If loopy belief propagation is then
replaced by expectation propagation [43], the system can learn
the model parameters and adapt on-line from data[44].

One limitation of this approach to parameter estimation is
that the objective function differs from the policy reward func-
tion. More recently it has been demonstrated that the natu-
ral gradient methods used to train the BUDS policy can also
be used to optimise the BUDS model parameters even though
they are not directly differentiable[45]. This is made possible
by learning differentiable parameters of their priors in place of
trying to learn the parameters directly. This is interesting be-
cause as well as providing the ability to optimise the dialogue
model parameters wrt to the reward function, the method can
be extended in principle to optimise any parameter in the entire
dialogue system including non-differentiable parameters.

5. Conclusions
The previous sections have described the CamInfo system in-
cluding its two interchangeable Dialogue Managers. The sys-
tem is demonstrably robust to environmental noise. As indi-

cated in section 3.6 and the many further evaluations described
in the references, the explicit representation of uncertainty pro-
vided by the POMDP framework provides a natural resilience
to noise. Furthermore, this resilience requires no developer ef-
fort to achieve. In conventional systems, a large part of the de-
sign and tuning effort revolves around error recovery dialogues.
POMDP-based systems do not require any of this. As soon as a
misunderstanding is detected, the probability of the current top
hypothesis is reduced and another hypothesis rises to the top.
The result is a natural dialogue flow even at high error rates.

Fully statistical systems are also cost effective to develop.
The major cost is in data collection but this is an activity which
does not require skilled developers. Indeed, we have found that
a combination of web-based collection using Amazon’s Me-
chanical Turk and bootstrapping can generate the needed data at
modest cost. Furthermore, the architecture is portable. For ex-
ample, a complete BUDS-based CamInfo system was ported to
the CMU Let’s Go bus information domain in just a few weeks.

This paper started by recalling the definition of a cognitive
user interface. The CamInfo system meets the first two require-
ments of supporting reasoning and inference, and being able to
plan under uncertainty. The remaining two requirements con-
cern adaptation. Work on short-term adaptation is already under
way and the recent developments in fast reinforcement learn-
ing based on Kalman filtering and Gaussian Processes suggest
that this will be possible. Long term adaptation and learning is
rather more problematic since in the most general case this will
require dynamically modifying the ontology to introduce new
concepts, and then learning how these new concepts relate to
existing ones. This would require not only on-the-fly modifica-
tions to the internal user goal models but consequent updating of
the input/output components that reference to them. So whilst
progress has been made, there is clearly still plenty more to do.
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