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ABSTRACT

HMM based synthesis has attracted great interest due to its compact
and flexible modelling of spectral and prosodic parameters. In this
approach, short term spectra, fundamental frequency (F0) and du-
ration are simultaneously modelled by multi-stream HMMs. How-
ever, since F0 values in unvoiced regions are normally considered
as undefined, it is difficult to use standard HMMs for F0 modelling.
The currently preferred solution to this is to use a multi-space distri-
bution HMM (MSDHMM) in which discrete distributions are used
for modelling the voiced/unvoiced decision and continuous Gaussian
distributions are used for modelling the F0 values within the voiced
regions. However, the assumption of undefined unvoiced F0 regions
and the special structure of the MSDHMM lead to limitations in the
accurate modelling of F0 patterns. In this paper an alternative is
explored whereby unvoiced F0 values are assumed to exist and are
modelled within the standard HMM framework using a globally tied
distribution (GTD). Subjective evaluations show that these regular
HMMs with GTD can produce significant improvements in the nat-
uralness of the synthesised speech compared to the MSDHMM, and
furthermore, the method is insensitive to the exact method used for
unvoiced F0 generation.

Index Terms— HMM based synthesis, F0 modelling

1. INTRODUCTION
As an alternative to the traditional unit concatenation approach,
HMM-based speech synthesis has attracted considerable interest
recently due to its compact and flexible representation of voice char-
acteristics [1]. Based on the source-filter model of speech produc-
tion, spectral features, excitation features, fundamental frequency
(F0) and duration are modelled as separate streams within a set of
context-dependent phone-level HMMs 1. These phone models are
trained from parameters extracted (eg using STRAIGHT[2]) from
a corpus of utterances spoken by a single speaker. In the synthesis
stage, the source text is converted to a phoneme sequence and the
corresponding HMMs are concatenated. The resulting composite
HMM is then used to generate a sequence of parameters [3] which
are converted to a waveform using an appropriate synthesis filter [4].

In HMM-based synthesis, the modelling of fundamental fre-
quency (F0) is difficult due to the discontinuity of F0 values across
voiced and unvoiced regions. During voiced speech, the periodic
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1Further information such as aperiodic energy may also be modelled us-
ing additional streams within the same HMM framework.

airflow modulation generated at the glottis serves as the excitation
for the vocal tract and since there exists strong periodicity, F0 val-
ues can be effectively estimated from the waveform [5]. However,
unvoiced speech is produced when the airflow is forced through a
vocal-tract constriction with sufficient velocity to generate signifi-
cant turbulence. The long term spectrum of turbulent airflow tends
to be a weak function of frequency [6] and hence F0 values during
unvoiced regions require special treatment. Normally, these F0 val-
ues are assumed to be undefined but it is then not possible to use a
simple continuous distribution to model F0.

The multi-space distribution HMM (MSDHMM) provides a so-
lution to this problem by using a combination of discrete and contin-
uous distributions [7] and it is now the default modelling approach
in state-of-the-art HMM synthesis systems. However, although good
performance can be achieved using MSDHMMs, this type of mixed
distribution F0 modelling has some issues arising from the discon-
tinuities at the boundaries of unvoiced regions and the need to keep
the discrete and continuous density regions distinct. Furthermore,
the use of MSDHMMs makes it more difficult to exploit standard
techniques for HMM modelling, such as adaptation, which cannot
be readily applied to the mixed discrete/continuous F0 distributions.

In this paper, a simpler alternative to the MSDHMM is investi-
gated in which it is assumed that F0 values do exist and are observ-
able in both voiced and unvoiced regions. Hence, standard HMMs
can be used. Dynamic features can then be calculated for all frames
and only one stream is required for F0 modelling. This assumption
has been used in stress classification [8] and in intonation contour
modelling [9], but it has not been investigated for HMM based syn-
thesis so far. Note that this assumption does not imply that F0 is sim-
ply interpolated across unvoiced regions using some form of curve
fitting. Instead, it is assumed that the F0 values observed in un-
voiced regions are drawn from a different distribution. In practice,
these observations can be selected from the F0 candidates generated
by the pitch tracker during the feature extraction stage or sampled
from some pre-defined distribution. Thus, the F0 stream is mod-
elled by a Gaussian mixture with two components, corresponding to
voiced and unvoiced F0, respectively. Due to the nature of unvoiced
speech, mixtures corresponding to unvoiced F0 values are globally
tied. Hence, the approach is referred to as a HMM with a globally
tied distribution (GTD). As will be shown below, the HMM-GTD
model is not only simpler but subjective listening tests also show that
it can significantly improve the naturalness of synthesised speech.

The rest of the paper is arranged as follows. Section 2 discusses
F0 modelling in the MSDHMM in some detail. The HMM-GTD
model is then described in section 3. Section 4 presents the experi-
mental results, followed by the conclusions in section 5.



2. F0 MODELLING IN HMM BASED SYNTHESIS
As indicated in section 1, a common assumption is that F0 is a con-
tinuous value in voiced (v) regions and it is undefined in unvoiced
(uv) regions. This implies that for HMM-based synthesis, a discrete
v/uv indicator is required at each frame and this places some con-
straints on the associated HMMs.

Firstly, accurate F0 modelling within a HMM framework re-
quires that the static F0 values are augmented with dynamic param-
eters consisting of the 1st and 2nd order derivatives. For frames at
the boundary between voiced and unvoiced regions, this causes prob-
lems because the dynamic features are not defined at discontinuities.
Although methods of using a single stream have been considered (eg.
[10]), the preferred solution to this problem is to regard these unde-
fined values as being unvoiced [11]. This means that the boundaries
differ for static and dynamic parameters and consequently separate
streams have to be used for each of the F0 features. The effect of
this is that the correlation modelling between the static and dynamic
F0 parameters is weakened. During training there will be a greater
tendency to overfit the data, and during synthesis, the reduced con-
straints on the temporal correlation may degrade the accuracy of the
generated F0 trajectories.

Secondly, in order to simultaneously model the discrete v/uv de-
cision and the continuous F0 trajectory variables, multi-space dis-
tribution HMMs (MSDHMM) are commonly used [7]. The state
output distribution in an MSDHMM is

bθ(o) =


cvN (o;µθ, σθ) o ∈ voiced region
cuv o ∈ unvoiced region (1)

where o is the observation at state θ, cv and cuv (cv + cuv = 1) are
the probababilities of voiced and unvoiced regions, and µθ and σθ
are the means and variances of the Gaussian distribution of F0 in the
voiced regions. During synthesis, each HMM state is first classified
as voiced or unvoiced according to whether cv of the static stream
is greater than 0.5. Then, for unvoiced states, white noise is used as
the excitation while for voiced states, F0 values are generated as the
excitation parameters.

This multi-space HMM framework results in some inherent lim-
itations. Since bθ(o) represents a continuous density in voiced re-
gions and a discrete probability mass in unvoiced regions, each ob-
servation can only be either voiced or unvoiced, but not both at the
same time. Consequently, during the forward-backward calculation
for any F0 stream in training, the state posterior occupancy will al-
ways be wholly assigned to one of the two components depending
on the voicing condition of the observation. This hard assignment
limits the ability of the unvoiced component to learn from voiced
data and vice versa, and it prevents any possibility of using a soft
assignment to reduce the effect of F0 estimation errors.

A further problem is that the use of separate F0 streams intro-
duces redundant mixture weights (cuv). Hence, the number of free
parameters is unnecessarily increased and this may have a significant
effect on the state clustering where the minimum description length
(MDL) criterion [12] is normally used. Using MDL, the description
length of a modelMi given a data set D is defined as:

l(Mi) = − log p(D|MML
i ) + λ

αi
2

logND +K. (2)

whereMML
i is the maximum likelihood (ML) estimate ofMi given

the data, αi is the number of free parameters inMi, ND is the num-
ber of data points in D2, K is a constant usually unchanged dur-
ing clustering, and λ is a factor controlling the weight of the model

2In HMM state clustering, ND will be replaced by the total posterior
occupancies ofMi.

complexity part. From equation (2), the first term is the negative
log likelihood, while the second term reflects the model complexity.
The MDL criterion selects the model with the minimum description
length for the given data. Hence, an increased model complexity will
result in a smaller number of states following the decision-tree-based
clustering. Thus, the redundant parameters in the MSDHMM may
result in an underestimation of the cluster states. Furthermore, since
the mixture weights for static and dynamic F0 streams are indepen-
dent of each other, they may be very different in the final HMM after
re-estimation. Thus, the forced use of separate streams may lead to
a voicing classification which is inconsistent across streams.
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Fig. 1. Distribution of unvoiced mixture weights (cuv)

Figure 1 shows the distribution of mixture weights for the static
and delta F0 streams in an MSDHMM model trained with λ =
0.6 on the slt voice in the ARCTIC corpus as described in Sec-
tion 4. The inconsistency of the weights for unvoiced speech be-
tween static and delta F0 streams can be clearly observed. It is also
interesting to note that the delta weights are never less than the static
weights. As explained above, this is a consequence of treating un-
defined delta coefficients as unvoiced thereby overestimating cuv in
the delta stream [11]. Further evidence of this bias comes from our
own experiments using the MSDHMM where we found that about
7.4% of the voiced states would have been classified as unvoiced if
the delta stream weights had been used in place of the static stream
weights.

3. HMM WITH GLOBALLY TIED DISTRIBUTION (GTD)
The previous section highlighted some of the problems encountered
in HMM-based synthesis when F0 is assumed to be undefined in
unvoiced regions. In the model described in this section, an alter-
native assumption is made whereby F0 values are assumed to exist
in unvoiced regions but have markedly different statistical properties
compared to their values in voiced regions. One motivation of this
assumption comes from considering the synthesis stage. When gen-
erating the excitation for the synthesis filter, random noise is used for
unvoiced regions. As with periodic excitations, this noise can be de-
fined in the frequency domain, it is just the statistical characteristics
that differ.

To implement a model where F0 is considered to exist in both
voiced and unvoiced regions, two issues need to be addressed: how
to obtain F0 observations within unvoiced regions and how to model
the statistical difference between voiced and unvoiced regions.

A simple approach to obtaining F0 observations in unvoiced
regions is to make use of the pitch tracker used in F0 extraction
(here the STRAIGHT system is used [2]). In many pitch trackers,
multiple F0 candidates are generated for each frame regardless of
whether it is voiced or unvoiced. For training in unvoiced regions,



the first F0 candidate output by the pitch tracker may be selected
as the F0 observation. This will be referred to as the 1-Best se-
lection. Alternatively, interpolation may be applied within the un-
voiced regions and then the F0 candidate closest to the interpolated
F0 track at each frame is selected as the observation. This will be
referred to as interpolation-based selection. Finally, following pre-
vious stress classification work [8], pseudo-F0 observations could be
used whereby log F0 values are sampled from a pre-defined Gaus-
sian distribution with large variance.

Given the assumption that F0 observations are defined at ev-
ery frame, dynamic F0 features can be calculated straightforwardly
without considering any v/uv boundary effects. Consequently, static,
delta and delta-delta F0 features can be modelled in a single stream.

To model the statistical difference between voiced and unvoiced
F0 values, a two component GMM is used for the F0 stream. It is fur-
ther assumed that the statistical property of unvoiced F0 observations
are independent of state contexts. Hence, a globally tied distribution
(GTD) is used to model all unvoiced F0 values. The likelihood of
observing the F0 feature o at state θ is therefore given by

bθ(o) = cuvN (o;µuv, σuv) + cvN (o;µθ, σθ) (3)

where cuv+cv = 1 are the weights for unvoiced and voiced compo-
nents respectively, µuv and σuv are the globally shared parameters
of the unvoiced component, and µθ and σθ are the state-dependent
mean and variance parameters for the voiced components.

To initialise a model set prior to training, the global unvoiced
Gaussian component can be either fixed to some pre-defined Gaus-
sian distribution or it can be estimated as the global distribution over
all unvoiced F0 values found by the pitch tracker. The subsequent
training process is identical to standard HMM training and both the
state-based Gaussians and the globally tied distribution are updated
via the forward-backward algorithm.

In the synthesis stage, the required voicing classification is based
on the component weights as in the MSDHMM. The parameters of
the voiced components are then used for generating F0 values for
voiced regions.

By making the unvoiced F0 existence assumption, the problems
in section 2 are effectively addressed. Since there is only one single
F0 stream, there are no redundant component weights parameters.
Therefore, there will be no inconsistency in voicing classification
and when using the MDL criterion in state clustering, more clus-
tered states will be generated for the same λ allowing the system to
model richer F0 variations. Furthermore, the use of a single stream
for F0 will yield stronger temporal modelling and the consistent use
of continuous densities across both voiced and unvoiced regions al-
lows soft v/uv boundary alignment in training. The latter combined
with the “background” GTD component may be expected to mitigate
some F0 extraction errors leading to more robust estimation of the
voiced components.

4. EXPERIMENTS
To evaluate the performance of the HMM-GTD based synthesis
framework compared to the MSDHMM, subjective listening pref-
erence tests were performed. The training data was taken from the
CMU ARCTIC speech database. Data from two speakers, a U.S.
female English speaker slt and a Canadian male speaker jmk,
were used. Each data set has the same 1132 phonetically balanced
sentences and is about 0.95 hours in duration. Both systems were
built using the HTS HMM-synthesis toolkit version 2.1 [13].

The static feature set comprised 24 Mel-Cepstral coefficients,
logarithm of F0 and aperiodic energy components in five frequency

bands (0 to 1, 1 to 2, 2 to 4, 4 to 6 and 6 to 8 KHz). All features
were extracted using the STRAIGHT speech analysis system [2].
Spectral, F0 and aperiodic component features were modelled using
separate HMM streams. For the MSDHMM, the F0 features were
further separated into three streams to separately model static, delta,
delta-delta F0 features [11]. In contrast, the HMM-GTD system used
a single stream to model all F0 features. Within unvoiced regions,
the first F0 candidates extracted by STRAIGHT were used as the F0
observations (1-Best selection).

During HMM training for both systems, the stream weight
for the aperiodic component was set to zero. Hence, the forward-
backward alignments depended only on the spectral and F0 features.
Statistics for the aperiodic components were however collected and
their parameters were updated in the normal way.

After training the spectral and F0 model components, a single
Gaussian duration model was estimated for each state from Viterbi
alignments of the training data. This model was then used in the
synthesis stage to generate state and phoneme durations. Note that
a separate state clustering process was applied to obtain the duration
model parameters.

Before discussing the synthesis quality of the two systems, it is
informative to examine the training process. Firstly, the effect on
the HMM training process was analysed. With the same MDL fac-
tor λ = 1.0, after clustering, HMM-GTD yielded significantly more
F0 states (2176 for slt and 3180 for jmk) than MSDHMM (1043
for slt and 1880 for jmk). This demonstrates the effect of the
redundant parameters in the MSDHMM. To give a fairer compari-
son between the MSDHMM and the HMM-GTD, the MDL factor
of the MSDHMM was tuned so that the resultant model had similar
number of clustered states (2032 for slt and 3079 for jmk) as the
HMM-GTD systems. It is worth noting that even when the numbers
of states were similar, the likelihood of the F0 part given the HMM-
GTD was much larger than than that given the MSDHMM. Even
though the likelihoods are not strictly comparable due to the different
nature of the discrete and continuous density distributions, the sig-
nificant likelihood difference nevertheless suggests that HMM-GTD
model is making more efficient use of its parameters. To further
demonstrate this, one training sentence from the female slt corpus
was re-synthesised using both the HMM-GTD and the MSDHMM
with similar number of states. The corresponding F0 values were
then extracted using STRAIGHT and compared to those of the orig-
inal speech. The comparison is shown in figure 2. Although there
is a difference in duration, it can be observed that the F0 trajectory
of the HMM-GTD is more similar to the original speech than for
the MSDHMM, especially at the end of the phrase. When listen-
ing to the speech, it is also obvious that both the original and the
HMM-GTD synthesised speech had a distinct rise at the end, while
the MSDHMM speech was flat. This indicates that the HMM-GTD
was a better model to represent the F0 trajectory.
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Fig. 2. Comparison of F0 trajectories

A subjective listening test was then performed to compare the



HMM-GTD and the MSDHMM with a similar number of F0 states.
The listening test was a preference choice test on 36 sentences. Two
wave files were synthesised for each sentence and each speaker voice
using both the HMM-GTD and the MSDHMM. 12 sentences were
then randomly selected to make up a testset for each listener, leading
to 24 wave files pairs (12 for each voice). To reduce the variance in-
troduced by forcing the user to make a choice, the 24 wave file pairs
were duplicated and the order of the two systems were swapped.
The final 48 samples were then shuffled and provided to the listeners.
Each listener was asked to select the more natural example from each
wave file pair. Altogether 21 listeners, 11 native and 10 non-native,
participated in the listening test. The result is shown in figure 3.
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Fig. 3. Subjective comparison between the MSDHMM and the
HMM-GTD based synthesisers for male and female speakers.

Statistical significance tests were performed assuming a bino-
mial distribution of each choice. It was found that the HMM-GTD
was significantly better than MSDHMM for both male and female
speakers at a p value of 0.01. It can also be observed that the listen-
ers’ preferences for the HMM-GTD generated speech were stronger
for the female voice. This may be an artifact of the ARCTIC data
because there is some background noise in the low fundamental fre-
quency region for the female speaker and hence the GTD is more
distinguishable from the voiced distributions.

To investigate whether different unvoiced F0 generation ap-
proaches have a significant effect on the synthesised speech, two
more listening tests were conducted in which the interpolation-
based and random sampling F0 generation methods were compared.
In both cases, the resultant HMM-GTD systems were compared to
the default 1-Best F0 HMM-GTD system and the results are shown
in figure 4.
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Fig. 4. Comparison between different uv F0 generation approaches

From figure 4, it is clear that there is little difference between
the unvoiced F0 generation approaches (p = 0.28). This shows
that the gain from the HMM-GTD model is obtained primarily from
the model structure rather than the specific unvoiced F0 generation
method used.

5. CONCLUSION

This paper has proposed a probabilistic modelling method for F0
values in unvoiced regions for HMM-based synthesis. The key idea
is that F0 values are assumed to exist in unvoiced regions but they

are drawn from a separate distribution. Experiments have been pre-
sented which show that a globally tied distribution (GTD) provides a
good model for the unvoiced F0 regions. Furthermore, the resulting
speech quality as measured by a subjective preference test is signif-
icantly better than that generated by the currently preferred multi-
space distribution model (MSDHMM) . Also, it was shown that the
approach is not sensitive to the method used for generating F0 train-
ing samples in unvoiced regions. Thus, overall the HMM-GTD ap-
pears to provide improved quality compared to an MSDHMM and
since it is a regular HMM, it has the added benefit that existing algo-
rithms such as adaptation can be applied without modification.
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