
Vision Encoders in Visual Question
Answering

Ryan Anderson

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy

Magdalene College August 2022

Dedicated to my Mom, my brothers, and my late Dad.

Declaration

I, Ryan Stephen Anderson of Magdalene College, being a candidate for the MPhil in Machine
Learning and Machine Intelligence, hereby declare that this report and the work described in
it are my own work, unaided except as may be specified below, and that the report does not
contain material that has already been used to any substantial extent for a comparable purpose.
All software used for this project has been written by Weizhe Lin (the overall design) and me
(the specific implementation required for this project) using Python and PyTorch, and the code
is available here. This dissertation contains 14056 words including appendices.

Ryan Anderson
August 2022

https://github.com/rs-anderson/explicit-alignment-for-vqa

Acknowledgements

As this report reflects the product of my entire time in Cambridge, I will acknowledge those
who have assisted me during and before this project.

Firstly, I would like to thank my supervisor, Professor Bill Byrne, who gently guided me
through the initial uncertainty of formulating a direction for the project, and provided invaluable
insights into how to formalise my ideas into a coherent report. His unwavering commitment to
all of the students that he supervises, and his passion for the MLMI program, is commendable.

Secondly, I owe a great deal of gratitude to my co-supervisor, Weizhe Lin, who selflessly
spent a significant amount of time setting up a well-written and designed code-base which served
as the starting point for rapid experimentation. Without this repository, and his patient guidance
in the early stages of the project, I would have been lost.

I’d like to make a shout-out to Shane, Vishaal, Alistair, Sam, Kevin, and many more people
for making this year about so much more than just getting an academic education.

Lastly, I am forever indebted to the The Cecil Renaud Educational and Charitable Trust for
turning a dream into reality.

Abstract

Most existing methods that apply pretrained Visual Language Models (VLMs) to vision and
language tasks do not sufficiently explore the effect of the format of their inputs on downstream
performance. We show that utilising appropriate prompt formatting is a simple yet effective
approach to improving the few-shot performance of VLMs that use relatively small language
models on the Visual Question Answering (VQA) task. We format the inputs used to prompt
a VLM using a modified text-only template from a closed-book question answering task that
the language-model component of the VLM was pretrained on. By doing this, we explicitly
align the VQA task with a task that this language model has already seen, enabling the VLM
to leverage the similarities between the tasks, such as the answer-length distribution, when
generating answers to the visual questions.

In order to test our claims, we implement a simple architecture based on Frozen (Tsimpoukelli
et al., 2021) and ClipCap (Mokady et al., 2021), whereby, through image captioning, the VLM
learns to integrate powerful pretrained vision-only and language-only models via a relatively
simple learnt mapping network. Furthermore, we contextualise our approach relative to existing
work by presenting a unified view of VLMs.

Our results show that explicit alignment enables our VLMs to achieve a significantly higher
zero-shot (34.49% vs 20.89%) and best overall (40.39% vs 30.83%) VQA score on the VQA2.0
dataset (Goyal et al., 2017) than when the prompt template from Frozen (Tsimpoukelli et al.,
2021) and Flamingo (Alayrac et al., 2022) is used. Furthermore, our zero-shot and best overall
performance is better than Frozen’s (34.49% vs 29.5% and 40.39% vs 38.2%, respectively)
despite Frozen using a language model with more than double the number of parameters. Our
code is available here.

https://github.com/rs-anderson/explicit-alignment-for-vqa

Table of contents

List of figures ix

List of tables xiii

1 Introduction 1

1.1 Report Outline . 3

2 Background 5

2.1 Language modelling . 5

2.1.1 Prompting large language models . 6

2.2 Joint vision and language modelling . 8

2.2.1 Contrastive dual encoder approaches 8

2.2.2 Visual language models (VLMs) . 9

2.3 Few-shot learning in vision and language modelling 10

2.4 Task format . 11

2.4.1 Aligning downstream tasks with training 12

2.5 Conclusion . 13

3 Unified View of Visual Language Models 14

3.1 The state of VLMs . 14

3.1.1 Recent VLM approaches . 14

3.2 Unifying VLM architectures . 16

3.3 Conclusion . 18

Table of contents Table of contents

4 Approach 19

4.1 Architecture . 19

4.1.1 Frozen pretrained LM . 20

4.1.2 Frozen pretrained image encoder . 21

4.1.3 Mapping network and visual prefix 21

4.1.4 Indifference to prompt modalities . 21

4.2 Training . 22

4.3 Task adaptation with few-shot in-context learning 23

4.3.1 Prompt format . 23

4.3.2 Building the prompt embedding . 24

4.3.3 In-context example selection . 25

4.3.4 Prompt ensembling . 26

4.4 Summary . 27

5 Experimental Setup 28

5.1 Architectural components . 28

5.1.1 Frozen pretrained LM . 28

5.1.2 Frozen pretrained image encoder . 29

5.1.3 Mapping network and visual prefix 29

5.2 Training . 30

5.3 Few-shot VQA . 31

5.3.1 Dataset . 31

5.3.2 Evaluation metric . 31

5.3.3 Baselines . 31

5.3.4 Prompt templates . 32

5.3.5 Text-only performance . 33

5.3.6 RICES implementation . 33

5.3.7 Decoding and answer generation . 35

5.4 Conclusion . 35

vii

Table of contents Table of contents

6 Results and Discussions 36

6.1 Generated captions . 36

6.2 Visual Question Answering results . 38

6.2.1 Explicit alignment improves performance 38

6.2.2 Explicit alignment improves zero-shot performance 39

6.2.3 Explicit alignment improves few-shot performance 41

6.2.4 The selection of good in-context examples is important 44

6.2.5 The visual prefix is informative . 44

6.2.6 Prompt ensembling does not significantly improve performance 45

6.3 Discussion . 46

6.3.1 Zero-shot summary . 46

6.3.2 Few-shot summary . 47

6.3.3 T0 is not designed for in-context learning 47

6.4 Limitations . 48

6.5 Future work . 48

7 Conclusion 49

References 51

Appendix A 57

A.1 T0 . 57

A.2 RICES implementation details . 57

A.3 RICES examples . 58

viii

List of figures

1.1 Explicit task alignment for VQA via prompt formatting. A high-level
overview of our approach to improving the performance of VLMs on the VQA
task, where the VLM is required to predict an answer to a question about an
input image. The inputs are first formatted using a prompt template, then the
VLM is conditioned on the formatted input when autoregressively generating an
answer. 2

2.1 Learning soft prompts. (a) Prompt tuning (Lester et al., 2021a), where the
embedding of the soft prompt is learnt directly. (b) Input-dependent prompt
tuning (ID-PT; Levine et al. (2022)), where the soft prompt is generated by
passing the input through a prompt generator, a model that accepts tokenized
input sequences and outputs a sequence of learnt embeddings. Blue indicates
frozen parameters, whereas green indicates trainable parameters. 7

2.2 In-context learning. A demonstration of in-context learning through the task of
translating English sentences to French. The prompt consists of two in-context
examples of English to French translations followed by the test input (i.e. the
query). The Figure is adapted from Brown et al. (2020). 8

2.3 In-context learning for VLMs. A demonstration of in-context learning for
VLMs, following the methodology of Frozen (Tsimpoukelli et al., 2021),
through the task of visual question answering. The prompt consists of two
in-context examples comprised of interleaved visual inputs and textual inputs,
followed by a final test input (i.e. the query). The “<image>” token represents
the location at which the embedding of the soft prompt will be inserted (this is
expanded on in Section 4.3.2). 11

ix

List of figures List of figures

2.4 Aligning downstream tasks with training. (a) Transforming tasks into masked
LM problems: an example, taken from Song et al. (2022), demonstrating how
closed-book QA tasks can be recast into a masked LM task by transforming
the question (via a learnt mapping) into a masked declarative sentence. (b)
Template-based formatting of tasks: an illustrative example of formatting a
question using a template. 12

3.1 Unified view of VLM architectures. We provide a unified view of a subset
of recent VLMs. The high-level architectural structures of each method are
shown and grouped. All of the VLMs share the same high-level mapping of
images to vision encodings. The papers unified are: ClipCap (Mokady et al.,
2021), Frozen (Tsimpoukelli et al., 2021), Flamingo (Alayrac et al., 2022),
X-VLM (Zeng et al., 2021), ALBEF (Li et al., 2021), SimVLM (Wang et al.,
2021), VL-T5 (Cho et al., 2021), BLIP (Li et al., 2022), CoCa (Yu et al., 2022),
VisualGPT (Chen et al., 2022), MAGMA (Eichenberg et al., 2021), and the
vanilla framework presented in VC-GPT (Luo et al., 2022). ’Ours’ refers to the
approach used in this project, expanded on in Chapter 4. 16

4.1 Overview of our VLM. Our VLM bridges two unimodal pretrained models – an
image encoder and a Transformer-based LM – via a relatively simple mapping
network. Only the mapping network is learnt during training on the captioning
task. The trained VLM is then frozen and evaluated on the VQA task. 20

4.2 High-level interface for in-context learning. Given in-context examples from
the VQA2.0 (Goyal et al., 2017) training set and a query, the model is required
to generate a textual response. The in-context examples and query are passed to
the VLM as a sequence of interleaved visual and textual inputs. 23

4.3 Constructing the prompt embedding from a prompt template. The prompt
embedding, ZZZ, is constructed by replacing the embedding of the <image> token
with the visual prefix (i.e. the sequence of continuous vectors comprising the
vision encoding). The prompt template is taken from MAGMA (Eichenberg
et al., 2021). 25

x

List of figures List of figures

5.1 In-context example selection. An illustration of the four in-context examples
(comprised of an image and a question – the answer has been omitted) selected
for a given test query (the bottom-most image and question), when using differ-
ent in-context example selection methods. The methods used are: (a) RICES;
(b) Random selection of in-context examples from the training set. For RICES,
the in-context examples are sorted such that the closer the example is to the test
query, the more similar it is. 34

6.1 Generated captions and summaries. The generated captions and summaries
for three unseen images from the Conceptual Captions (Sharma et al., 2018)
validation set for both VLM configurations, where n represents the visual prefix
length. We specify the input to the encoder and decoder of T0-3B, respectively,
that is used to obtain the generated captions. 37

6.2 Zero-shot results. The zero-shot results for the VLM configurations, when
using the frozen and hotpotqa templates. The green dashed line indicates the
zero-shot VQA score of 29.5% achieved by Frozen (Tsimpoukelli et al., 2021). 39

6.3 Zero-shot generated answers. The zero-shot generated answers for three
inputs from the test set, when using the hotpotqa and frozen templates. T0-3B
(n = 10) was used to generate the answers. 40

6.4 The number of words in the generated answers. A histogram showing the
distribution of the number of words in the zero-shot generated answers, when
using the frozen and hotpotqa templates. To improve the visualisation, we have
only included answers that have less than 10 words and omitted the irregular
answers with more than 10 words. 41

6.5 Few-shot results. The VQA score for T0-3B (n = 10), when in-context ex-
amples (shots) are presented to the model. We compare using the frozen and
hotpotqa templates, and compare our results to Frozen (Tsimpoukelli et al., 2021). 42

6.6 Few-shot results with different in-context example selection methods. The
influence of the in-context example selection method on the VQA score for T0-
3B (n = 10) when the hotpotqa template is used. We compare the performance
of RICES to the random selection of in-context examples from the training set. 44

xi

List of figures List of figures

6.7 The influence of the visual signal. The influence of the extent to which the
visual signal is incorporated into the VLM, when using the hotpotqa template.
Referring to Section 5.3.5, text-only prompt denotes when the visual prefix is
removed from the prompt and text-only prompt with text-only RICES denotes
when the visual prefix is removed from the prompt, and RICES selects in-
context examples based on the question similarity only. Lastly, default denotes
the default configuration, where the visual prefix is not removed and RICES is
implemented with the image and question similarity. 45

6.8 Few shot results with ensembling. The effect of prompt ensembling on the
few-shot performance of T0-3B (n = 10), when using the hotpotqa template, is
shown. 46

A.1 RICES examples. Each column shows the four in-context examples selected
(starting from the top image-question pair) for a given test query (the bottom
image-question pair) using RICES. The in-context examples are sorted such that
the closer the example is to the test query, the more similar it is. 59

xii

List of tables

3.1 High-level architectural components. Each model’s implementation of the
high-level components visualised in Figure 3.1. ∗ indicates that the component’s
weights are initialised from a pretrained model. ∗∗ indicates that the component’s
weights are initialised from a pretrained model and the component is kept frozen. 17

5.1 Number of trainable parameters. The number of trainable parameters (i.e. the
number of parameters in the mapping network) for different visual prefix lengths.
Frozen (Tsimpoukelli et al., 2021) is included for comparison. ∗ The number
of trainable parameters in Frozen is not explicitly stated, thus, we obtained this
value by estimating that the ResNet-50 and mapping network contribute 23
million and 17 million trainable parameters, respectively. 30

5.2 Additional training details. Additional training details for the different VLM
configurations. 30

6.1 Best VQA scores. The best VQA scores obtained when using the hotpotqa and
frozen templates, compared to the best results reported in Frozen (Tsimpoukelli
et al., 2021). 39

6.2 1-shot VQA scores compared to RICES baseline. The 1-shot VQA scores
for the hotpotqa and frozen templates compared to the RICES baseline. This
baseline predicts answers by simply selecting the answer from the most similar
in-context example to the test query (i.e. the nearest neighbour’s answer). We
call this baseline RICES since the RICES method is effectively predicting the
answer. 42

xiii

List of tables List of tables

6.3 Breakdown of the 1-shot VQA score. The 1-shot VQA scores broken down
by answer type. (1) in-context: the generated answers that are the same as the
in-context example’s answer. (2) original: the generated answers that are not
the same as the in-context example’s answer. (3) all: the overall VQA score for
the template (i.e. with the in-context and original answers combined). We also
report the proportion of the generated answers that are in-context and original.
The final column shows how the VQA score, over the test queries for which an
original answer was generated, changes when the original generated answers
are replaced by the relevant in-context example’s answer. 43

xiv

Chapter 1

Introduction

Recent developments in vision and language modelling have demonstrated that Visual Language
Models (VLMs), which utilise visually-conditioned autoregressive language models (LMs),
are capable of impressive performance on a wide range of open-ended vision and language
tasks (Alayrac et al., 2022; Li et al., 2022, 2021; Wang et al., 2021; Yu et al., 2022; Zeng et al.,
2021). However, the novelty of many of these VLMs is not primarily in the design of their
architectures, but rather in their ability to learn effectively from either task-agnostic web scraped
data (Alayrac et al., 2022; Wang et al., 2021; Yu et al., 2022), or through large-scale multi-tasked
training (Li et al., 2022, 2021; Zeng et al., 2021). This trend is consistent with developments
in the language-modelling domain, where state-of-the-art (SOTA) results are generally only
obtained with significant scale in data and model size (Hoffmann et al., 2022a). As only few
institutions have the computational resources to achieve this scale, researchers have to find ways
of leveraging these powerful pretrained models, without making any changes to their parameters.

Since large LMs have been shown to possess exceptional text-generation abilities (Brown
et al., 2020; Radford et al., 2019; Raffel et al., 2020; Sanh et al., 2021), there are a growing
number of approaches in vision and language modelling that attempt to insert visual information
into the space of a pretrained large LM (Alayrac et al., 2022; Chen et al., 2022; Cho et al., 2021;
Li et al., 2022, 2021; Luo et al., 2022; Mokady et al., 2021; Tsimpoukelli et al., 2021; Yang et al.,
2022; Yu et al., 2022; Zeng et al., 2021), thus retaining the powerful text-generation abilities
of the pretrained LM, and providing access to the information retained from LM pretraining
(Roberts et al., 2020). The resulting visual-conditioned text-generation abilities can then be
applied to downstream vision and language tasks that can be cast as a text-generation problem,
such as visual question answering, visual entailment, visual captioning, and visual grounding.

Despite the growing literature pointing to the importance of the input-format to downstream
performance (Alayrac et al., 2022; Reynolds and McDonell, 2021; Sanh et al., 2021), many
VLMs that utilise a vision-condition LM do not sufficiently explore the effect of the format

1

Introduction

Fig. 1.1 Explicit task alignment for VQA via prompt formatting. A high-level overview of our
approach to improving the performance of VLMs on the VQA task, where the VLM is required to predict
an answer to a question about an input image. The inputs are first formatted using a prompt template,
then the VLM is conditioned on the formatted input when autoregressively generating an answer.

of their inputs on downstream performance. With a focus on the Visual Question Answering
(VQA) task, Flamingo (Alayrac et al., 2022) and Frozen (Tsimpoukelli et al., 2021) simply
place “Question:” and “Answer:” before the input question and answer, respectively, with no
justification despite the former stating that “the format of the task matters a lot”. MAGMA
(Eichenberg et al., 2021) uses “Q:” and “A:” as it results in “superior performance”, but do not
outline the alternative prompt formats they explored. However, Sanh et al. (2021) argue that
although these models have not explicitly seen this formatting before, they might have seen
it implicitly, given the scale of recent LMs’ pretraining corpora. Hence, these prompts might
implicitly align the VQA task with their training task, improving performance.

However, the ability to implicitly learn multiple tasks during training requires a sufficiently
large LM (Press et al., 2021; Reynolds and McDonell, 2021; Sanh et al., 2021). With this
in mind, in this project we investigate whether utilising appropriate prompt formatting can
improve the few-shot performance of VLMs, that use relatively small LMs, on the VQA task. In
particular, we explore formatting the inputs used to prompt the VLMs using a modified text-only
template from a closed-book question answering task that the LM component of the VLM was
pretrained on (see Figure 1.1). By doing this, we hope to explicitly align the VQA task with a
task that this LM has already seen, enabling the VLM to leverage the similarities between the
tasks, such as the answer-length distribution, when generating answers to the visual questions.

In order to test our claims, we implement a simple architecture based on Frozen (Tsimpoukelli
et al., 2021) and ClipCap (Mokady et al., 2021), whereby, through image captioning, the VLM
learns to bridge powerful pretrained vision-only and language-only models via a relatively
simple learnt mapping network. We contextualise our approach relative to existing work by
presenting a unified view of VLMs. We then evaluate our trained VLMs on the VQA2.0 (Goyal

2

Introduction 1.1 Report Outline

et al., 2017) dataset via few-shot in-context learning in order to identify the effect of prompt
formatting on VQA performance.

To summarise, our contributions are as follows:

1. We demonstrate that a VLM’s few-shot VQA performance can be improved by explicitly
aligning the VQA task with a text-only closed-book question answering task that the LM
component of the VLM was pretrained on. To the best of our knowledge, we are the first
to demonstrate that explicit alignment can be implemented in this way for vision and
language tasks, and we show that the corresponding performance gains result in our VLM
outperforming Frozen (Tsimpoukelli et al., 2021), who use an LM with more than double
the number of parameters.

2. We provide a unifying view of the rapidly developing field of joint vision and language
modelling. By doing this, researchers can easily comprehend the high-level architectural
components of many VLMs and how the VLMs are related to each other.

3. To the best of our knowledge, we are the first to provide an open-source, reproducible
implementation of in-context learning for VQA using a vision-condition LM1. Our code
is available here.

4. To the best of our knowledge, we are the first to use an approximate implementation of
RICES (Yang et al., 2022) that is suitable when only moderate computational resources
are available. In particular, we outline how a FAISS (Johnson et al., 2019) index can be
used to implement a fast approximation to RICES (see Section 5.3.6).

1.1 Report Outline

The outline of the report is as follows:

In Chapter 2, we provide the necessary context upon which the project’s methodology relies.
In particular, we present the field of vision and language modelling by first introducing the
related methods from language modelling which inspired many of the developments in the
vision-and-language domain. We conclude the chapter with a review of the importance of the
“task format” for few-shot performance.

In Chapter 3, we present a unified view of a subset of the recent developments in vision and
language modelling. Specifically, we outline the different Visual Language Models (VLMs)

1Neither Flamingo (Alayrac et al., 2022) nor Frozen (Tsimpoukelli et al., 2021) have made their implementations
publicly available, and the implementation of PICa (Yang et al., 2022) requires a GPT-3 (Brown et al., 2020) API
key.

3

https://github.com/rs-anderson/explicit-alignment-for-vqa

Introduction 1.1 Report Outline

that have been developed and demonstrate how their respective architectures can be viewed as
variations on some common elements.

In Chapter 4, we describe our approach to using a VLM to produce free-form answers to
visual questions, and contextualise our approach relative to previous work using the unified view
from the previous chapter. Most notably, we then detail how template-based prompt formatting
can be used to improve the few-shot performance of our trained VLMs.

In Chapter 5, we outline the setup of our experiments. This involves (1) listing the specific
models used as the architectural components of our VLM; (2) describing how the VLM is trained;
and (3) outlining the setup for our main experiments: evaluating whether using template-based
prompt formatting – explicitly aligning the VQA task with a task that the LM component of our
VLM was pretrained on – can improve few-shot performance.

In Chapter 6, we present and discuss the main experimental results: finding that the few-shot
VQA performance of a VLM can be improved by explicitly aligning the VQA task with a
text-only closed-book question answering task. We conclude the chapter with the limitations of
our approach and our recommendations for future work.

In Chapter 7, we conclude the report.

4

Chapter 2

Background

The field of vision and language modelling has been influenced significantly by developments in
language modelling (Alayrac et al., 2022). In order to capture the resulting dependencies, we
will first introduce a selection of topics from language modelling (Section 2.1) before diving
into vision and language modelling (Section 2.2), highlighting where text-only techniques have
been adapted to the multi-modal domain. We then outline how vision and language models can
be used in the few-shot setting (Section 2.3), and finish off by exploring the importance of the
“task format” for few-shot performance (Section 2.4).

2.1 Language modelling

The language-modelling field has rapidly progressed in recent years (Brown et al., 2020; Devlin
et al., 2018; Radford et al., 2019; Raffel et al., 2020; Sanh et al., 2021), following the wide-
spread adoption of Transformers (Vaswani et al., 2017). Transformers are better equipped to
model long-range dependencies over RNN-based approaches, while significantly increasing
the throughput of models and therefore enabling the training of models on significantly larger
datasets (Alayrac et al., 2022). The resulting paradigm of pretraining models on vast quantities
of noisy data and then adapting the models for downstream usage has become standard (Liu
et al., 2021b).

Given the success of pre-trained large language models (LMs), a range of techniques have
arisen to adapt these general-purpose models to downstream tasks. The dominant adaptation
technique has been model-tuning (or “fine-tuning”), where a subset of the LM’s parameters are

5

Background 2.1 Language modelling

updated via supervision on a downstream task1. However, as the scale of LMs continues to grow,
updating their parameters is becoming increasingly computationally infeasible for most.

Adapting frozen large LMs has become an attractive alternative, whereby a relatively small
number of task-specific trainable parameters are added to a frozen LM to optimize performance
on a specific task. Some of the leading approaches include prompt tuning (Lester et al., 2021a),
prefix tuning (Li and Liang, 2021), adapter tuning (Houlsby et al., 2019) and low-rank adaptation
(Hu et al., 2021). In this paper, we utilise a method similar to prompt tuning, which falls under
the umbrella of prompting methods for language models.

2.1.1 Prompting large language models

As an alternative to the pre-train, fine-tune paradigm, prompting methods follow the pre-train,
prompt, and predict paradigm (Liu et al., 2021b). Prompting is the approach of providing
additional inputs for an LM to condition on when generating an output sequence. Appropriate
prompts can inform the model behavior so that a pre-trained LM itself can be used to predict the
desired output, sometimes even without any additional task-specific training (e.g. Brown et al.
(2020); Radford et al. (2019); Raffel et al. (2020)). The advantage of this method is that a single
LM, trained in an entirely unsupervised fashion, can be used to solve a great number of tasks,
simply by selecting appropriate prompts for each task (Brown et al., 2020; Sanh et al., 2021).
For example, GPT-3 (Brown et al., 2020) can be adapted to QA-tasks by prompting the model
with inputs such as, “Q: Where did Harry Potter go to school? A:” (Brown et al., 2020).

In order to provide context for later sections, we will outline two approaches to prompting:
(1) learning soft prompts, where additional prompt-relevant parameters are introduced and learnt,
and (2) in-context learning, where an LM is prompted with training examples.

Learning soft prompts. Since manually finding the most appropriate prompts for any
given task is cumbersome, methods have been developed to learn them. Initial “prompt-tuning”
methods aimed to find an optimal “hard prompt” by selecting a sequence of prompt tokens,
through either manual search or non-differentiable search methods, from the vocabulary of the
LM (Jiang et al., 2020; Shin et al., 2020). However, because the purpose of prompting is to
find information that, when conditioned on, enables an LM to effectively perform a task, it is
not necessary to limit the prompt-search to human-interpretable natural language. A simpler
alternative, prompt tuning (Lester et al., 2021a), directly learns a “soft prompt” for each task.
A soft prompt is a learnable sequence of embeddings that is not necessarily associated with
tokens from the LM’s vocabulary. Levine et al. (2022) expanded on this idea by conditioning the
learnt prompts on the tokenized input, resulting in input-dependant prompt tuning (ID-PT). See

1This method of transfer learning was proposed fairly recently by Howard and Ruder (2018) for language
modelling, but has been common practice in the computer vision field for a number of years.

6

Background 2.1 Language modelling

Fig. 2.1 Learning soft prompts. (a) Prompt tuning (Lester et al., 2021a), where the embedding of the
soft prompt is learnt directly. (b) Input-dependent prompt tuning (ID-PT; Levine et al. (2022)), where the
soft prompt is generated by passing the input through a prompt generator, a model that accepts tokenized
input sequences and outputs a sequence of learnt embeddings. Blue indicates frozen parameters, whereas
green indicates trainable parameters.

Figure 2.1 for a comparison of the two methods. The soft prompts can be learnt jointly while
fine-tuning the LM, or can be learnt while keeping the LM frozen. We utilise a method that can
be viewed as a form of ID-PT, where the learned soft prompts are conditioned on visual inputs
and the LM is frozen.

In-context learning. Brown et al. (2020) introduced the idea of in-context learning, where,
at inference time, an LM is conditioned on a prompt consisting of training examples followed
by a test query which requires a completion. The parameters of the LM are left unchanged.
An example of an in-context-learning prompt is shown in Figure 2.2. Although the idea of
in-context learning is simple, there are several aspects that make it challenging: (1) the choice of
in-context examples can result in very different performance, ranging from near state-of-the-art
accuracy on some tasks to near random guess (Lu et al., 2021). It is desirable to use a form of
example selection that both limits the sequence length2 as well as finds examples that are more
informative for correctly predicting the response to the test input, leading to better performance
(Liu et al., 2021a). (2) The order of the examples can influence model performance (Lu et al.,
2021). These considerations are explored further in Section 2.3.

Few-shot learning. A popular application of in-context learning is few-shot learning, where
the model is only allowed to see a very small number of training examples before being evaluated
on a held-out set. This is in contrast to full-data learning, where a reasonably large number of

2Press et al. (2021) showed that there is a risk of poor generalisation when the prompt size exceeds the size of
the sequences seen during training (i.e. the max input length of the LM).

7

Background 2.2 Joint vision and language modelling

Fig. 2.2 In-context learning. A demonstration of in-context learning through the task of translating
English sentences to French. The prompt consists of two in-context examples of English to French
translations followed by the test input (i.e. the query). The Figure is adapted from Brown et al. (2020).

training examples are used to train the model. To clarify terminology, the number of shots (when
using in-context learning) is the number of distinct, complete in-context examples from the
task’s training set presented to the model prior to the test query. For example, in visual question
answering, a shot is an image along with an associated question and answer.

Given this context from the language-modelling domain, we can now introduce the field of
vision and language modelling.

2.2 Joint vision and language modelling

We will focus on two families of related models for vision and language modelling: contrastive
dual encoder approaches and visual language models (VLMs). For simplicity, we omit the field
of language-conditioned visual generation (e.g. Ramesh et al. (2021)) and BERT-based (Devlin
et al., 2018) approaches.

2.2.1 Contrastive dual encoder approaches

In the last few years, a large family of vision-language models, based on contrastive learning
have emerged (Alayrac et al., 2022; Jia et al., 2021; Radford et al., 2021; Zhai et al., 2022). These
models generally encode vision and text inputs with separate encoders, producing individual
vision and language vectors embedded into a joint space using a contrastive loss (Jia et al., 2021;
Radford et al., 2021). The contrastive loss encourages representations of paired images and texts
to be similar, and representations of non-paired images and texts to be dissimilar. The trained
dual-encoders can be used to produce highly generic textual and visual representation that can
be used for downstream tasks, such as image classification, image retrieval, image-text matching
and cross-modal retrieval (Alayrac et al., 2022; Jia et al., 2021; Radford et al., 2021; Zhai et al.,
2022). We leverage a frozen pretrained vision encoder, that was trained with a contrastive loss,
in order to extract powerful image-representations.

8

Background 2.2 Joint vision and language modelling

2.2.2 Visual language models (VLMs)

Visual language models (Alayrac et al., 2022; Cho et al., 2021; Li et al., 2022; Luo et al., 2022;
Mokady et al., 2021; Tsimpoukelli et al., 2021; Wang et al., 2021; Yang et al., 2022; Yu et al.,
2022) can model vision and language jointly, and are able to generate text in an autoregressive
manner.

Visual-conditioned text-generation. Since large LMs have been shown to possess excep-
tional text-generation abilities, there is a growing number of approaches (Alayrac et al., 2022;
Chen et al., 2022; Cho et al., 2021; Li et al., 2022, 2021; Luo et al., 2022; Mokady et al., 2021;
Tsimpoukelli et al., 2021; Wang et al., 2021; Yang et al., 2022; Yu et al., 2022; Zeng et al., 2021)
that attempt to insert visual information into the space of a pretrained large LM, thus retaining
the powerful text-generation abilities of the pretrained LM, and providing access to the infor-
mation retained from LM pretraining (Roberts et al., 2020). The resulting visual-conditioned
text-generation abilities can then be applied to downstream vision and language tasks that can be
cast as a text-generation problem, such as visual question answering, visual entailment, visual
captioning, and visual grounding. The manner in which these approaches fuse the visual signal
into the LM is discussed and unified in Chapter 3. We will expand on the most relevant approach
to this project here, namely, learning image-conditioned soft-prompts.

Learning image-conditioned soft-prompts. Frozen (Tsimpoukelli et al., 2021), ClipCap
(Mokady et al., 2021) and MAGMA (Eichenberg et al., 2021) inject the visual signal into a pre-
trained LM by prompting the model with a learnt sequence of continuous image representations.
This can be viewed as a form of input-dependent prompt-tuning (ID-PT; see learning soft
prompts in Section 2.1.1) where the input passed to the prompt generator is an image, and the
output is a learnt image-conditioned soft-prompt. The VLM architecture used in this project is
very similar to Frozen and ClipCap.

From pixels to image representations. In order to condition LMs on visual signals, an
important consideration is how to map the input images to embeddings with which the LM
can be conditioned. Two main approaches have emerged for this, both of which make use of
pre-trained models: (1) transforming the images into textual features, such as captions, tags
and object names (Gao et al., 2022; Gui et al., 2021; Yang et al., 2022), and (2) utilising learnt
continuous image representations obtained from the output of a vision encoder trained, most
popularly, with a contrastive loss (Alayrac et al., 2022; Mokady et al., 2021; Tsimpoukelli
et al., 2021), or with a combination of losses (Li et al., 2022, 2021; Yu et al., 2022; Zeng et al.,
2021). The former approach is attractive as it enables the use of pretrained LMs “out-of-the-box”
since the visual inputs are converted directly into the text-domain. However, this approach
has two inherent limitations: (a) if the textual descriptions of the image do not capture the

9

Background 2.3 Few-shot learning in vision and language modelling

necessary information to complete the task, then the model can only guess the correct response3;
(b) numerous specialised models have to be used in order to obtain the textual description,
including captioning models (Li et al., 2020; Zhang et al., 2021), OCR models (Du et al., 2020)
and object-detection models (Ren et al., 2015). We favour utilising learnt continuous image
representations because they generally require only one model, a vision encoder, and have been
shown to posses rich generic representations of images (Alayrac et al., 2022; Jia et al., 2021;
Mokady et al., 2021; Radford et al., 2021; Shen et al., 2021; Tsimpoukelli et al., 2021). In
particular, the image embeddings obtained from CLIP’s vision encoders (Radford et al., 2021)
have been shown to be particularly advantageous for VLMs on vision and language tasks (Shen
et al., 2021).

2.3 Few-shot learning in vision and language modelling

With the modelling of vision and language tasks moving into the language-modelling domain,
methods that are well-developed for LMs are being transferred to VLMs. In-context learning
(Brown et al., 2020) is one such method that has recently been extended to vision and language
tasks (Alayrac et al., 2022; Eichenberg et al., 2021; Tsimpoukelli et al., 2021) with very minor
modifications, as shown in Figure 2.3. An attractive characteristic of VLMs that use image-
conditioned soft-prompts for multimodal fusion (e.g. Frozen, ClipCap, MAGMA) is that
the treatment of the in-context examples is the same as in language modelling – the LM is
conditioned on this prompt when generating a response.

In-context example selection. As mentioned in Section 2.2, in language modelling, the
choice of in-context examples can result in very different performance, ranging from near state-
of-the-art accuracy on some tasks to near random guess (Liu et al., 2021a). It has been shown
that the same is true for in-context learning in vision and language tasks (Alayrac et al., 2022;
Yang et al., 2022). Although it would be desirable from a computational complexity standpoint
to randomly select in-context examples from the support set, a more principled approach to
selecting these examples has been shown to be beneficial to performance (Alayrac et al., 2022;
Yang et al., 2022). In the language-modelling domain, Liu et al. (2021a) proposed an effective k
nearest neighbours (kNN) based method for choosing in-context examples, called KATE4. For
a given test input, KATE works by finding the test input’s kNNs from the training set, where
the similarity of any two inputs is the distance (e.g. cosine similarity) between their respective
embeddings in the embedding space of a text encoder5. Following this work, Yang et al. (2022)

3Using an example from Yang et al. (2022), if the task is to count the number of giraffes in an image, but the
textual description does not enumerate the giraffes, then the best the LM can do is guess.

4KATE: Knn-Augmented in-conText Example selection.
5This approach is also very similar to the work of Gao et al. (2020).

10

Background 2.4 Task format

Fig. 2.3 In-context learning for VLMs. A demonstration of in-context learning for VLMs, following the
methodology of Frozen (Tsimpoukelli et al., 2021), through the task of visual question answering. The
prompt consists of two in-context examples comprised of interleaved visual inputs and textual inputs,
followed by a final test input (i.e. the query). The “<image>” token represents the location at which the
embedding of the soft prompt will be inserted (this is expanded on in Section 4.3.2).

proposed an effective method that extends KATE into the vision and language domain, called
RICES6. Rather than using text similarity alone, RICES averages the textual and visual similarity
when finding the k nearest neighbours, resulting in improved performance compared to when
KATE is applied directly to vision and language tasks (Alayrac et al., 2022; Yang et al., 2022).
Given these findings, we utilise RICES for in-context example selection.

2.4 Task format

Brown et al. (2020) raise the question of whether LMs actually “learn” new tasks at inference
time from the in-context examples based on the provided input-output mappings, or simply
recognize and identify tasks learned during training. The findings of Reynolds and McDonell
(2021) suggest that the function of few-shot examples is the latter: to find the task location
in the model’s existing space of learned tasks. This is supported by Min et al. (2022), who
found that demonstrating the ground-truth mapping from input to output through the in-context
examples generally has limited impact on few-shot performance, as opposed to specifying the
overall format of the examples. In particular, they showed that the characteristics of the in-
context examples that are most important to downstream performance are that they provide a few
examples of (1) the label space, (2) the distribution of the input text, and (3) the overall format
of the sequence (Min et al., 2022). The importance of the last characteristic is supported by
Reynolds and McDonell (2021), who found that zero-shot prompts can significantly outperform

6RICES: Retrieval-based In-Context Example Selection.

11

Background 2.4 Task format

few-shot prompts when the zero-shot prompts are formatted appropriately. For example, they
show that, for the English-to-French translation task, prepending “English:” and “French:”
before the English source sentence and French target sentence, respectively, leads to better
translations when no shots are presented to the model, compared to the translations when 10
shots are provided in the format shown in Figure 2.2, taken from the original GPT-3 paper
(Brown et al., 2020). This motivates the question: Is there a methodology which can be followed
to find prompts that are more likely to yield desired behavior? We explore several methodologies
that aim to do this in the next section.

2.4.1 Aligning downstream tasks with training

A number of approaches have been developed for both text-only and vision-and-language
modelling that aim to format tasks such that they more closely resemble the tasks that their
respective LM was pretrained on (Gao et al., 2020; Liu et al., 2022; Song et al., 2022).

Fig. 2.4 Aligning downstream tasks with training. (a) Transforming tasks into masked LM problems:
an example, taken from Song et al. (2022), demonstrating how closed-book QA tasks can be recast into a
masked LM task by transforming the question (via a learnt mapping) into a masked declarative sentence.
(b) Template-based formatting of tasks: an illustrative example of formatting a question using a template.

Learnt alignments. This idea has been used to successfully enhance task adaptation through
fine-tuning (Gao et al., 2020; Liu et al., 2022) and zero-shot transfer (Song et al., 2022), where
the alignment of test tasks with training tasks has been learnt. Expanding on this, the pretrained
LMs used in Gao et al. (2020); Liu et al. (2022); Song et al. (2022) are pretrained with masked-
language-modelling tasks (Devlin et al., 2018), in which they were trained to predict masked
text pieces based on the surrounding context. Thus, they each transform downstream tasks into
this form, inserting MASK tokens where the response should be generated (see Figure 2.4 for
an example). This transformation is achieved by adapting a pretrained LM which learns the
relevant mapping either through fine-tuning (Gao et al., 2020; Liu et al., 2022) or in-context
learning (Song et al., 2022). However, these methods induce extra complexity into the modelling
process and run the risk of propagating errors, when converting tasks into the masked LM form,
to downstream performance.

12

Background 2.5 Conclusion

Template-based alignments. The development of LMs trained via multitask prompted
training (Mishra et al., 2021; Raffel et al., 2020; Sanh et al., 2021; Wei et al., 2021) provides a
simpler alternative: the use of templates to format downstream tasks in the same form as training
tasks, without the need for learnt mappings (see Figure 2.4 for an example). We demonstrate
that performance gains can be observed by formatting vision and language tasks using templates
from LMs pretrained using multitask prompted training.

Implicit alignments. Interestingly, despite the growing literature pointing to the importance
of the formatting of the in-context examples to downstream performance (Alayrac et al., 2022;
Reynolds and McDonell, 2021), many VLMs do not include this consideration in their analysis.
With a focus on the visual question answering (VQA) task, Flamingo (Alayrac et al., 2022) and
Frozen (Tsimpoukelli et al., 2021) simply place “Question:” and “Answer:” before the input
question and answer, respectively, with no justification despite Flamingo stating that “the format
of the task matters a lot”. MAGMA (Eichenberg et al., 2021) uses “Q:” and “A:” as it results in
“superior performance”, despite not outlining what other alternatives they explored. However,
Sanh et al. (2021) argue that although these models have not explicitly seen this formatting
before, they might have seen it implicitly, given the scale of recent LMs’ pretraining corpora.
Hence, these prompts might implicitly align the VQA task with their training task, improving
performance.

Explicit alignments. However, the ability to implicitly learn multiple tasks during training
requires a sufficiently large LM (Press et al., 2021; Reynolds and McDonell, 2021; Sanh et al.,
2021). We explore whether explicit alignment (Sanh et al., 2021) via appropriate prompt format-
ting can be used to improve the performance of relatively small LMs, closing the performance
gap between smaller and larger LMs.

2.5 Conclusion

In this chapter, we have provided the necessary context upon which the proceeding chapters
rely. We started the chapter by introducing a few topics from the language-modelling domain so
that we could demonstrate how the developments in vision and language modelling have been
influenced by language modelling (Section 2.1). We briefly introduced how VLMs have been
developed that can model vision and language jointly (Section 2.2), how these models can be
applied in the few-shot setting through in-context learning (Section 2.3), and highlighted the
importance of the task format to downstream performance (Section 2.4).

In the next chapter, we will look deeper into the recent VLMs that have been developed and
provide a unified view of these methods, such that the commonalities between the approaches
can be identified.

13

Chapter 3

Unified View of Visual Language Models

The field of vision and language modelling is very fast-moving: there have been numerous
papers published over the last two years alone. In this chapter, we review these developments
by presenting a unified view of a subset1 of the recent approaches. By doing this, researchers
can easily comprehend the high-level architectural components of many visual language models
(VLMs) and how they relate to other architectures. We start by outlining the different VLMs
that have been developed (Section 3.1) before demonstrating how their respective architectures
can be unified (Section 3.2).

3.1 The state of VLMs

Before unifying a subset of VLMs, we provide a review of their methodologies. In particular,
we focus on the manner in which they condition language-model decoders on visual and textual
signals through cross-modality fusion. We do not review the low-level details of the papers,
such as their training objectives.

3.1.1 Recent VLM approaches

There has been a recent movement (Cho et al., 2021; Li et al., 2022, 2021; Wang et al., 2022; Zeng
et al., 2021) to formulate some vision tasks as text generation problems, including classification,
captioning, VQA, visual entailment and visual grounding. This simplified prior work relying
on learning task-specific classification layers, and opened the door to utilising transformer-

1Due to the rate at which the field has grown over the last few years, there are simply too many approaches to
unify within a reasonable period of time. Thus, we have used judgment to select a few influential approaches in
order to demonstrate recurring themes.

14

Unified View of Visual Language Models 3.1 The state of VLMs

based decoders, conditioned on visual and textual signals, to autoregressively generate textual
responses to these tasks.

However, training large-scale language models (LMs) is computationally expensive and data-
hungry (Hoffmann et al., 2022b). As a consequence, building on top of a powerful pretrained
text-only LM is an attractive alternative and has been widely explored. The following methods
condition a decoder on a mixture of visual and textual signals, either through the decoder’s
cross-attention layers or by prompting the decoder directly.

Modality fusion through decoder cross-attention. VisualGPT (Chen et al., 2022), Flamingo
(Alayrac et al., 2022) and the vanilla approach of VC-GPT (Luo et al., 2022) showed that a
causally masked decoder-only LM can be conditioned on visual inputs by adding learnt cross-
attention layers to the decoder. In order to do this, the visual input is first mapped into a
continuous representation compatible with the hidden-dimensions of the transformer LM, before
being passed to the decoder as the keys and values of the attention mechanism. Furthermore,
VisualGPT and Flamingo found it beneficial to use gated cross-attention layers, such that the
decoder could be initialised with the weights of a pretrained LM. A similar approach to cross-
modality fusion is observed in X-VLM (Zeng et al., 2021), ALBEF (Li et al., 2021) and CoCa
(Yu et al., 2022), except that they encode the text modality with a transformer-based encoder
prior to decoding, such that the inputs to the decoder are learnt text-encodings and not tokenized
text. In contrast to these approaches, Flamingo only learns the cross-attention layers during
training. The reason for this design is that, by building on top of a strong frozen LM, the VLM
may retain the LM’s powerful language-only abilities, such as few-shot language adaptation,
external knowledge retrieval and dialogue capabilities (Alayrac et al., 2022).

Modality fusion through LM prompting. Frozen (Tsimpoukelli et al., 2021), ClipCap
(Mokady et al., 2021) and MAGMA (Eichenberg et al., 2021) subscribe to this idea too, albeit
using a different approach to modality fusion. They condition a decoder-only LM on visual
inputs using a form of input-dependent prompt tuning (ID-PT; Levine et al. (2022)) where a
visual prefix, encoded by a trainable visual encoder, is used to prompt a pre-trained LM. In
Frozen and ClipCap, the pretrained LMs are frozen and unmodified, whereas MAGMA extends
these methods by inserting bottleneck adapters (Houlsby et al., 2019; Sung et al., 2022) into the
frozen LM. Finally, instead of using continuous vector representations of images, PICA (Yang
et al., 2022) and Socratic Models (Zeng et al., 2022) make use of off-the-shelf vision-language
models to transform images into language descriptions which can then be used to prompt GPT-3
(Brown et al., 2020).

These two approaches to modality fusion have been similarly applied to encoder-decoder
architectures. For instance, SimVLM (Wang et al., 2021) and VL-T5 (Cho et al., 2021) insert
the visual signal as input to the encoder of an encoder-decoder architecture. The decoder can

15

Unified View of Visual Language Models 3.2 Unifying VLM architectures

then attend to the resulting joint vision-text encoding when generating a response. Similarly,
BLIP (Li et al., 2022) also pass jointly-encoded vision and text inputs to a decoder, but the joint
encodings are obtained by passing the visual signal to a text-encoder via added cross-attention
layers.

3.2 Unifying VLM architectures

Fig. 3.1 Unified view of VLM architectures. We provide a unified view of a subset of recent VLMs.
The high-level architectural structures of each method are shown and grouped. All of the VLMs share
the same high-level mapping of images to vision encodings. The papers unified are: ClipCap (Mokady
et al., 2021), Frozen (Tsimpoukelli et al., 2021), Flamingo (Alayrac et al., 2022), X-VLM (Zeng et al.,
2021), ALBEF (Li et al., 2021), SimVLM (Wang et al., 2021), VL-T5 (Cho et al., 2021), BLIP (Li et al.,
2022), CoCa (Yu et al., 2022), VisualGPT (Chen et al., 2022), MAGMA (Eichenberg et al., 2021), and
the vanilla framework presented in VC-GPT (Luo et al., 2022). ’Ours’ refers to the approach used in this
project, expanded on in Chapter 4.

16

Unified View of Visual Language Models 3.2 Unifying VLM architectures

It is apparent from the review above that these VLMs share the same core idea: they
want to find the most effective way to condition an LM on a mixture of visual and textual
signals. As a result, there are natural commonalities between the methods. In this section we
attempt to highlight the architectural similarities of the VLMs. However, choosing the level
of abstraction at which to unify these models is an important consideration. We determined
this level by considering what information would be necessary to design a flexible software
suite to implement these VLMs. Thus, we focus on the high-level architectural components
of the models, and choose not to focus on their respective training objectives or low-level
implementation details. The resulting unified view is demonstrated in Figure 3.1, with more
details of how each VLM fits into this framework shown in Table 3.1.

Table 3.1 High-level architectural components. Each model’s implementation of the high-level compo-
nents visualised in Figure 3.1. ∗ indicates that the component’s weights are initialised from a pretrained
model. ∗∗ indicates that the component’s weights are initialised from a pretrained model and the compo-
nent is kept frozen.

Model Vision encoder Mapping network Encoder Decoder

Frozen NF-ResNet-50∗ Linear mapping - GPT-2** with relative position encodings

ClipCap CLIP-ViT∗∗ MLP / Transformer - GPT-2**

MAGMA CLIP-ViT∗ / CLIP-ResNet∗ Linear mapping - GPT-J** with adapters

VisualGPT Transformer Identify mapping - GPT-2* with cross-attention layers

Flamingo NF-ResNet-F6∗ Perceiver Resampler - Chinchila** with cross-attention layers

VC-GPT - vanilla CLIP-ViT* Not specified - GPT2** with cross-attention layers

VL-T5 Faster R-CNN** Linear mapping + learnt embeddings T5∗ T5∗

SimVLM ViT Identity mapping Transformer Transformer

CoCa ViT Attentional pooler Transformer Transformer

X-VLM ViT∗ Not specified BERT∗ BERT∗

ALBEF ViT∗ Not specified BERT∗ BERT∗

BLIP ViT∗ Not specified Transformer Transformer

Image to vision encoding. At this level of abstraction, we find that all of the listed models
share the same treatment of the visual signal: the image is passed through an image encoder in
order to obtain an image embedding. These image embeddings can take the form of flattened
feature grids produced by Normalizer-Free ResNets (NF-ResNet; Brock et al. (2021), e.g.
MAGMA, Flamingo), a selection of hidden states from the final layer of ViTs (Dosovitskiy et al.
(2020), e.g. CoCa, ClipCap, SimVLM, X-VLM, ALBEF, BLIP), or region features obtained
from Faster R-CNN (Ren et al. (2015); e.g. VL-T5). However, for the LM to incorporate
the visual signal, the visual representation has to be compatible with the LMs hidden-state
dimensions. Thus, a mapping network is applied in order to transform the image embedding
into a form that is compatible with the LM of interest. The mapping network can take the form
of a simple linear layer (e.g. Frozen, VL-T5, MAGMA), an MLP (e.g. ClipCap), a Transformer
(ClipCap, Flamingo, CoCa), or an identity mapping (SimVLM, VisualGPT).

17

Unified View of Visual Language Models 3.3 Conclusion

Grouping similar architectures. As demonstrated in Figure 3.1, the VLMs can be unified
further by grouping those that have similar architectural structures. Evidently, there is large
overlap between many of the VLMs, with respect to the high-level architectural components
that they use as well as the manner in which they fuse the multi-modal signals.

3.3 Conclusion

Based on this investigation, it may be that the novelty of many of these VLMs is not primarily in
the design of their architectures, but rather in their ability to learn effectively from task-agnostic
web scraped data. Flamingo (Alayrac et al., 2022) is a clear example of this as it shares
numerous ideas with some of the aforementioned VLMs, yet achieves state-of-the-art (SOTA)
performance on many downstream tasks (Alayrac et al., 2022). In particular: (i) it relies on a
frozen pretrained LM (same as Frozen, ClipCap and MAGMA), (ii) it uses a Transformer-based
mapping network between the vision encoder and the frozen LM (same as ClipCap and CoCa),
and (iii) it learns cross-attention layers that are interleaved with the frozen LM’s layers (same
as VisualGPT). This trend is consistent with the language-modelling domain, where SOTA
results are generally only obtained with significant scale in data and model size (Hoffmann
et al., 2022a). As only few institutions have the computational resources to achieve this scale,
researchers must find alternative ways of improving the performance of large pretrained models.

With this in mind, in the next chapter we outline how utilising appropriate prompt formatting
can be used as a simple, yet effective, approach to improving downstream performance.

18

Chapter 4

Approach

This chapter describes our approach to using a visual language model (VLM) to produce free-
form answers to visual questions. We start by outlining the architectural components that
comprise the model (Section 4.1), before moving onto the details of how the model is trained
(Section 4.2). We then describe how the trained model can be used at inference-time, outlining
the methodology used to incorporate few-shot in-context examples when generating responses
(Section 4.3). Most notably, in Section 4.3.1, we detail how template-based prompt formatting
can be used to improve the few-shot performance of the trained VLM.

4.1 Architecture

In order to contextualise the VLM used in this project relative to existing work, we will describe
our VLM using the groupings and architectural components introduced in Figure 3.1. We use
a VLM that is similar to SimVLM (Wang et al., 2021) and VL-T5 (Cho et al., 2021) from the
perspective of their abstract architectural form, in that the visual signal is inserted as input to
the encoder of an encoder-decoder Transformer language model (LM; Vaswani et al. (2017)).
However, our VLM can equally be viewed as a modification of ClipCap (Mokady et al., 2021)
and Frozen (Tsimpoukelli et al., 2021), whereby an encoder-decoder Transformer replaces
their decoder-only Transformer. Thus, like ClipCap and Frozen, our VLM fuses textual and
visual modalities through prompting the LM with learnable image-conditioned soft-prompts (see
Section 2.2.2).

An overview of our VLM is shown in Figure 4.1. Like in Flamingo (Alayrac et al., 2022),
we choose to freeze both the image encoder and LM, such that only the mapping network is
learnt. Thus, during training, the VLM learns to bridge powerful pretrained vision-only and
language-only models – an image encoder and a Transformer-based LM, respectively – via a

19

Approach 4.1 Architecture

Fig. 4.1 Overview of our VLM. Our VLM bridges two unimodal pretrained models – an image encoder
and a Transformer-based LM – via a relatively simple mapping network. Only the mapping network is
learnt during training on the captioning task. The trained VLM is then frozen and evaluated on the VQA
task.

relatively simple learnt mapping network. In doing so, the powerful unimodal abilities of the
frozen models are retained: the pretrained image encoder can be used to extract highly generic
image representations; and the text-generation ability of the powerful pretrained LM can be
utilised, aided by the large amount of knowledge embedded in the pretrained LM (Roberts et al.,
2020).

4.1.1 Frozen pretrained LM

The only constraints on the choice of Transformer LM are that it can be used for autoregressive
text generation (ruling out non-causal models such as BERT; Devlin et al. (2018)) and that its
pretraining inputs are formatted using prompt templates (for example, see Figure 2.4). The latter
constraint is expanded on in Section 4.3.1. Although a decoder-only LM could also be used,
we focus on using an encoder-decoder LM, primarily due to the availability of encoder-decoder
LMs that meet the latter criterion.

20

Approach 4.1 Architecture

4.1.2 Frozen pretrained image encoder

Similar to the other VLMs unified in Chapter 3, each image is passed through an image encoder
in order to obtain an image embedding. The image encoder, v(.), maps an input image xxx to an
r-dimensional continuous vector representation, such that

iii = [i1, . . . , ir]T = v(xxx)

where i j ∈ R, ∀ j ∈ {1, . . . ,r}.

Our methodology differs from Frozen (Tsimpoukelli et al., 2021) in that we do not update
the parameters of the image encoder, as it is computationally advantageous1 and beneficial from
an image-representation perspective, as we could use a more powerful pretrained image encoder
than we could feasibly train ourselves (see Section 5.1.2).

4.1.3 Mapping network and visual prefix

In order to utilise the strong text-generation ability of the LM while conditioning it on both text
and vision inputs, in a similar fashion to ClipCap (Mokady et al., 2021), Frozen (Tsimpoukelli
et al., 2021) and MAGMA (Eichenberg et al., 2021), the image embedding is mapped into the
LM’s embedding space via a learnt mapping network, m(.). In particular, each r-dimensional
image embedding is mapped to an n-length sequence of D-dimensional embeddings, eee∗1, . . . ,eee

∗
n,

where D is the internal dimension of the LM. Following the convention of Frozen, we call this
learnt embedding the visual prefix2 as, from the perspective of the LM, these learnt embeddings
are functionally equivalent to a sequence of n prefix tokens that have been embedded using the
LM’s text embedder.

4.1.4 Indifference to prompt modalities

Since text sequences and images are embedded into the same space through the LMs text
embedder and mapping network, respectively, the LM is designed to be agnostic to the modality
of the prompt. Thus, our VLM can easily be trained or evaluated on a variety of vision and
language tasks by simply modifying the composition of the prompt. For example, the prompt
can be composed of images only (e.g. captioning), or image and text pairs (e.g. VQA), or
interleaved sequences of images and text (e.g. few-shot VQA), and the treatment of the prompt

1As the image encoder is frozen, we are able to extract all of the necessary image embeddings before training/in-
ference and re-use them. Furthermore, we do not have to calculate the gradients or update the parameters of the
image encoder.

2Visual prefix is an alternative name for the image-conditioned soft-prompts introduced in Section 2.2.2.

21

Approach 4.2 Training

by the LM will be the same – the decoder will attend to the prompt during a forward pass. This
means that the probability of the next output token, yl , given previous output tokens, y<l , and
the visual and textual inputs can be compactly expressed as

p(yl|ZZZ,y<l) (4.1)

where ZZZ is a sequence of embeddings in the embedding space of the LM which can be comprised
of sequences of visual prefixes, text embeddings or interleaved sequences of both, depending on
the task. We refer to ZZZ as the prompt embedding as it encapsulates the whole prompt on which
the LM is conditioned, irrespective of the modalities of the prompt.

4.2 Training

In order to be comparable with Frozen, the mapping network is trained on image-captioning
data (e.g. Conceptual Captions; Sharma et al. (2018)). Thus, only a very small proportion of
the VLM’s parameters are updated, making the model significantly faster to train and requiring
significantly less computational resources.

We frame the captioning task as the conditional generation of the target caption yyy = y1, . . . ,yl

given an input image xxx. In order to do this, the frozen image encoder is used to obtain an image
embedding, which the mapping network transforms into the visual prefix:

eee∗1, . . . ,eee
∗
n = m(v(xxx)) .

Since, for the captioning task, there are no textual inputs passed to the encoder of the LM, the
prompt embedding is only comprised of the visual prefix, such that ZZZ = eee∗1, . . . ,eee

∗
n. By inserting

the visual signal into the prompt embedding, the decoder of the LM can attend to the image
through its cross-attention layers when generating a caption.

Following from Eqn. (4.1), we train the parameters of the mapping network with “teacher
forcing” (Williams and Zipser, 1989) to maximise the likelihood

log p(yyy|xxx) = ∑
l

log p(yl|ZZZ,y<l)

= ∑
l

log p(yl|eee∗1, . . . ,eee∗n,y<l) .

During training, the loss is computed using a cross-entropy loss and gradients are back-
propagated through the frozen LM to update the parameters of the mapping network via
stochastic gradient descent (SGD).

22

Approach 4.3 Task adaptation with few-shot in-context learning

4.3 Task adaptation with few-shot in-context learning

Our VLM, along with Frozen, ClipCap and MAGMA, can be easily adapted to a variety of
vision and language tasks – that can be formulated as text-generation problems – at inference
time by changing the composition of the prompt embedding, ZZZ. We evaluate the ability of our
VLM to rapidly transfer its knowledge from the captioning task to the VQA task using in-context
learning, following an analogous approach to Frozen. The high-level interface for this method,
applied to the VQA2.0 task (Goyal et al., 2017), is shown in Figure 4.2.

Fig. 4.2 High-level interface for in-context learning. Given in-context examples from the VQA2.0
(Goyal et al., 2017) training set and a query, the model is required to generate a textual response. The
in-context examples and query are passed to the VLM as a sequence of interleaved visual and textual
inputs.

4.3.1 Prompt format

As described in Section 2.4, the way that the task is formatted can significantly influence an
LM’s few-shot performance. In particular, it was highlighted in Section 2.4.1 that for both LMs
and VLMs, aligning downstream tasks with the task that their respective LM was pretrained on
can be beneficial to performance on the downstream tasks.

Despite this, as described in Section 2.4, many VLMs do not sufficiently explore the format
of their inputs on downstream performance. Instead, with a focus on the VQA task, they
simply format inputs by, for example, placing “Question:” and “Answer:” or “Q:” and “A:”
before the input question and answer, respectively (Alayrac et al., 2022; Eichenberg et al.,
2021; Tsimpoukelli et al., 2021). Sanh et al. (2021) argues that although these VLMs have not
explicitly seen this formatting before, they might have seen it implicitly. Expanding on this
further, the pretraining data used to train the frozen LMs used in each of these VLMs was not
explicitly formatted using specific prompt templates. However, given the scale of their LMs’
pretraining corpora, it is reasonable to expect that some common natural language processing

23

Approach 4.3 Task adaptation with few-shot in-context learning

(NLP) tasks would appear in an explicit form3 in their pretraining corpora (Sanh et al., 2021).
Hence, these prompt formats might implicitly align the VQA task with their training task,
improving performance.

However, the ability to implicitly learn multiple tasks during training requires a sufficiently
large LM (Press et al., 2021; Reynolds and McDonell, 2021; Sanh et al., 2021). We hypothesise
that template-based prompt formatting can be used to improve the performance of VLMs that
use relatively small LMs by explicitly aligning the VQA task with the LM’s training tasks. In
order to try achieve this alignment, we format the VQA task using the formatting of a text-only
closed-book QA task (e.g. hotpotqa (Yang et al., 2018), shown in Figure 2.4) that our VLM’s
LM was pretrained on. The specific templates used are tied to the LM, and thus will be expanded
on in Section 5.1.1.

In order to illustrate how a prompt template is used to format inputs, we will use the naïve4

template from MAGMA. This template has the form

<image> Q: {question} A: {answer}

where “{question}” and “{answer}” are placeholders for the input question and answer,
respectively, and “<image>” is a token used to identify the location at which the visual prefix
will be inserted relative to the text embedding when constructing the prefix embedding, ZZZ. An
example of using the MAGMA template to define the construction of ZZZ is shown in Figure 4.3.

4.3.2 Building the prompt embedding

In order to adapt the trained VLM to the VQA task using in-context learning, we need to build
an appropriate prompt embedding that encapsulates the visual and textual signals of all the
in-context examples and the test input.

Let (xxx,qqq,aaa) denote an item from a VQA dataset, comprised of an image (xxx), a question (qqq)
and an answer (aaa). Then, given a set of K in-context examples, {(xxxi,qqqi,aaai) : i ∈ 1, . . . ,K}, and
a query, (xxx∗,qqq∗), we build the overall prompt embedding, ZZZ, by concatenating the respective
prompt embeddings for each in-context example and the query. Thus,

ZZZ = ZZZ1, . . . ,ZZZK,ZZZ∗

3Using the example from Sanh et al. (2021), there are many websites that simply contain lists of trivia questions
and answers. Using one such website as an example, the website presents question-answer pairs in an explicit
format: “What does www stand for in a website browser? Answer: World Wide Web” (the example question-answer
pair is from https://www.quizbreaker.com/trivia-questions).

4We call this template “naïve” because Eichenberg et al. (2021) do not justify why it is used, however, it is a
sensible format for question-answer pairs.

24

https://www.quizbreaker.com/trivia-questions

Approach 4.3 Task adaptation with few-shot in-context learning

Fig. 4.3 Constructing the prompt embedding from a prompt template. The prompt embedding, ZZZ, is
constructed by replacing the embedding of the <image> token with the visual prefix (i.e. the sequence
of continuous vectors comprising the vision encoding). The prompt template is taken from MAGMA
(Eichenberg et al., 2021).

where ZZZi is the prompt embedding for in-context example i and ZZZ∗ is the prompt embedding
for the query. The construction of the prompt embedding for an arbitrary in-context example,
is visualised in Figure 4.3. The construction is identical for a query except that no answer is
provided to the VLM. The frozen encoder-decoder LM is then prompted with the overall prompt
embedding when generating an answer to the query.

4.3.3 In-context example selection

In K-shot learning, in-context example selection (Liu et al., 2021a) tries to find the best K
examples for each inference-time input among all available examples. Although it would be
desirable from a computational complexity standpoint to randomly choose in-context examples
from the training set, a more principled approach to selecting these examples has been shown
to be beneficial to performance (Alayrac et al., 2022; Liu et al., 2021a; Yang et al., 2022). As
introduced in Section 2.3, RICES (Retrieval-based In-Context Example Selection; Yang et al.
(2022)) has been shown to be effective at finding in-context examples that result in superior

25

Approach 4.3 Task adaptation with few-shot in-context learning

few-shot performance relative to the random selection of in-context examples (Alayrac et al.,
2022; Yang et al., 2022).

RICES method. For a given test input, (xxx∗,qqq∗), similar examples from the training set are
retrieved by averaging the similarity of their respective image embeddings and text embeddings,
obtained from a pretrained image and text encoder, such as CLIP (Radford et al., 2021). More
formally, the similarity between the test input and the ith training example, {xxxi,qqqi,aaai}, given a
pretrained image encoder, Eimage(.), and text encoder, Eq(.), is

sim({xxx∗,qqq∗},{xxxi,qqqi,aaai}) =
simimage + simq

2
(4.2)

where
simimage = d(Eimage(xxx∗),Eimage(xxxi)) and simq = d(Eq(qqq∗),Eq(qqqi)) ,

and d(., .) is a similarity metric in the embedding space of Eimage(.) and Eq(.), such as cosine
similarity. The K most similar training examples are then used as the in-context examples when
evaluating the K-shot performance of the model. Since LMs are sensitive to the ordering in
the prompt due to recency bias (Zhao et al., 2021), following the methodology of Alayrac et al.
(2022), we order the examples so that the most similar in-context example appears right before
the query.

Given the need for an image and text encoder when implementing RICES, an attractive
characteristic of using the image encoder of a contrastive dual-encoder model, such as CLIP
(Radford et al., 2021), as the VLM’s image encoder (see Section 4.1.2) is that the dual-encoder
can be reused for RICES. In particular, the dual-encoder’s image encoder can be reused to
extract the image embeddings needed for RICES and the dual-encoder’s text encoder can be
used to extract the necessary text embeddings.

4.3.4 Prompt ensembling

We also explore ensembling the outputs of the model across multiple prompts. This was shown in
Alayrac et al. (2022) and Yang et al. (2022) to be beneficial to performance. Prompt ensembling
can notably be combined with RICES where ensembling can be done over multiple permutations
of the ranked nearest neighbours. Specifically, we permute the top K in-context examples r
times, thus generating r answers. Then, following the methodology from Yang et al. (2022), we
select the answer with the highest log-probability, among the r predicted answers, as the final
answer.

26

Approach 4.4 Summary

4.4 Summary

In this chapter, we outlined the approach followed in this project. To the best of our knowledge,
this is the first research that attempts to explicitly align the VQA task with a text-only closed-
book QA task – that a VLM’s frozen LM was pretrained on – in order to improve the few-shot
performance of a VLM.

We started off by specifying the type of VLM architecture used and how this architecture
relates to the other VLMs unified in Chapter 3. In particular, we showed that our VLM can be
viewed as a modified version of Frozen (Tsimpoukelli et al., 2021) and ClipCap (Mokady et al.,
2021), in that a learnt mapping network is used to embed the visual signal into the prompt of a
frozen pretrained LM. We then elaborated on how this mapping network is trained, following
the methodology of Frozen in order to make our results comparable. Finally, we provided the
details for how the trained VLM can be used for few-shot evaluation via in-context learning.
Specifically, we outlined how prompt templates can be used to explicitly align the VQA task with
tasks that the frozen LM was pretrained on, in order to improve few-shot performance. Finally,
we specified two other methods that we will use to potentially improve few-shot performance,
namely: RICES for in-context example selection and prompt ensembling.

In the next chapter, we outline the setup of our experiments. Most notably, we describe how
we will test the hypothesis that few-shot performance gains can be achieved for VLMs that use
relatively small LMs by using template-based prompt formatting, explicitly aligning the VQA
task with the LM’s training tasks.

27

Chapter 5

Experimental Setup

This chapter outlines the setup of our experiments. We start by listing the specific models
used as the architectural components of our VLM (Section 5.1). We then describe the details
for training our VLM on a captioning dataset (Section 5.2). Finally, we outline the setup for
our main experiments: evaluating whether using template-based prompt formatting, explicitly
aligning the VQA task with our frozen pretrained LM’s training tasks, can improve few-shot
performance (Section 5.3).

5.1 Architectural components

In Section 4.1, we outlined the abstract architectural components of our visual language model
(VLM) without specifying any particular instantiation of the components, so that the VLM can
be implemented with many different models. In this section, we list the specific models used for
the experiments.

5.1.1 Frozen pretrained LM

We use T0 (Sanh et al., 2021) from HuggingFace (Wolf et al., 2020) as the frozen pretrained
encoder-decoder language model (LM). The reason for choosing T0 is that the examples used to
train T0 were formatted by applying prompt templates from the Public Pool of Prompts (P3;
Bach et al. (2022)), such that each example in each dataset was converted into a specific format
defined by a template. Refer to Appendix A.1 for more information on how T0 was trained.

T0 utilises the SentencePiece (Kudo and Richardson, 2018) tokenizer to encode text as
WordPiece (Kudo, 2018; Sennrich et al., 2015) tokens. A vocabulary of size 32 000 wordpieces
is used. Each sequence of tokens t1, . . . , tk is mapped to a sequence of D-dimensional embeddings

28

Experimental Setup 5.1 Architectural components

before being fed into the model. T0 was released in 3B and 11B parameter variants, referred
to as T0-3B and T0pp, respectively. We use T0-3B due to its relative simplicity. The internal
dimension of T0-3B is D = 1024.

It must be noted that T0 is trained to do the following: given a formatted input from one of
its pretraining tasks, it is prompted to generate a response. Thus, T0 is familiar with observing
only one formatted input. Hence, T0 has been successfully applied in the zero-shot regime (Sanh
et al., 2021), since this is the exact formatting it was exposed to during training. However, it
is not certain how the performance will change when in-context examples are presented to the
model, as the more in-context examples that are presented to the model at test time, the further
this input is from T0’s training data/distribution.

5.1.2 Frozen pretrained image encoder

We use the Vision Transformer (ViT; Dosovitskiy et al. (2020)) of a pre-trained CLIP (Radford
et al., 2021) model as the frozen pretrained image encoder. In particular, we use the 307M
parameter “ViT-L/14@336px” variant which maps each input image xxx of size 336x336 pixels
to a 768-dimensional continuous image embedding. We favour “ViT-L/14@336px” over “ViT-
L/14@224px” because using higher-resolution images at inference time has been shown to result
in superior downstream performance (Jia et al., 2021; Radford et al., 2021; Yuan et al., 2021).

Frozen (Tsimpoukelli et al., 2021) trained their image encoder along with their mapping
network from scratch on ∼3M examples. We choose to use a frozen CLIP-ViT because it was
trained on many more examples (∼400M examples) which we assume will result in better image
representations. Furthermore, freezing the image encoder allows us to extract all of the necessary
image embeddings before training/inference and re-use them for different training/test runs and
for RICES.

5.1.3 Mapping network and visual prefix

For the mapping network, we follow the methodology of ClipCap (Mokady et al., 2021) and
utilise a single-hidden-layer MLP. The MLP maps each 768-dimensional image embedding to a
(D∗n)-dimensional vector which is then reshaped to form the visual prefix, eee∗1, . . . ,eee

∗
n, where

D = 1024 is the internal dimension of T0-3B.

The optimal length of the visual prefix, n, has been shown to differ depending on the context:
Frozen (Tsimpoukelli et al., 2021) and MAGMA (Eichenberg et al., 2021) found that a visual
prefix of length 2 was optimal, whereas ClipCap (Mokady et al., 2021) used a length of 10. The
length of the visual prefix has a significant impact on the number of trainable parameters. Thus,

29

Experimental Setup 5.2 Training

in order to balance the number of trainable parameters while ensuring that the visual signal is
adequately represented, we evaluate n ∈ {5,10}. The number of trainable parameters for each
configuration is shown in Table 5.1.

Table 5.1 Number of trainable parameters. The number of trainable parameters (i.e. the number of
parameters in the mapping network) for different visual prefix lengths. Frozen (Tsimpoukelli et al., 2021)
is included for comparison. ∗ The number of trainable parameters in Frozen is not explicitly stated, thus,
we obtained this value by estimating that the ResNet-50 and mapping network contribute 23 million and
17 million trainable parameters, respectively.

Visual prefix length (n) # Trainable parameters (million)

T0-3B
5 56

10 217
Baseline:

Frozen 2 40∗

5.2 Training

We train the mapping network from scratch on Conceptual Captions (Sharma et al., 2018). This
dataset contains ∼ 3.3M images annotated with captions harvested from the Alt-text HTML
attribute associated with web images. Training was terminated when the validation loss reached
a minimum. All training was run on an Nvidia A100 GPU. The batch sizes used, number of
steps before terminating training, and training durations for each of the respective configurations
are shown in Table 5.2. We use the Adam optimizer (Kingma and Ba, 2014) with a constant
learning rate of 3×10−4, and gradients are accumulated over every two steps. The models are
implemented using the PyTorch and PyTorch Lightning frameworks (Falcon et al., 2019).

The ability of the trained VLMs to generate captions for images is qualitatively explored in
Section 6.1.

Table 5.2 Additional training details. Additional training details for the different VLM configurations.

Visual prefix length (n) Batch size Training steps Training time (hrs)

T0-3B
5 64 3418 14

10 64 2739 18

30

Experimental Setup 5.3 Few-shot VQA

5.3 Few-shot VQA

We test the trained VLMs’ ability to transfer from the captioning task to a VQA task using
few-shot in-context learning.

5.3.1 Dataset

Visual Question Answering (VQA) tasks require the model to predict an answer to a question
about an input image. Our chosen VQA task is the VQA2.0 dataset (Goyal et al., 2017), which
contains 83k/41k/81k images, and 444k/214k/448k questions for training/validation/testing.
Following Frozen (Tsimpoukelli et al., 2021) and PICa (Yang et al., 2022), we search over the
training set for in-context examples and report the accuracy on the validation set. Instead of
treating VQA as a classification task over a pre-selected answer vocabulary (e.g. Goyal et al.
(2017); Li et al. (2020)), we predict the answer through open-ended text generation.

5.3.2 Evaluation metric

All questions are human-annotated with 10 concise, open-ended answers. In order to evaluate a
particular predicted answer, the VQA score (Goyal et al., 2017) is used instead of the accuracy
to account for the inter-human variability in the annotations:

score(ans) = min
{

humans that said ans
3

,1
}
.

All predicted answers are processed and evaluated using the evaluation script from the VQA
API1 (Goyal et al., 2017). It is noted that this evaluation metric may unfairly penalise open-
ended answer generation since only exact matches with the human annotations are considered
successful2. Despite this limitation, we still adopt the VQA score to be consistent with previous
work.

5.3.3 Baselines

Although many visual language models (VLMs) have been developed in the last two years to
solve this task, only a small subset have evaluated their VLMs via in-context learning (Alayrac
et al., 2022; Eichenberg et al., 2021; Tsimpoukelli et al., 2021; Yang et al., 2022). We note

1https://github.com/GT-vision-lab/VQA.
2For example, if the answer “grey” is predicted, but all of the ground truth annotations have the answer “gray”,

then the predicted answer will get a VQA score of 0.

31

https://github.com/GT-vision-lab/VQA

Experimental Setup 5.3 Few-shot VQA

that Flamingo (Alayrac et al., 2022) and PICa (Yang et al., 2022) are not comparable with our
approach since they both utilise significantly larger scale than our VLM: (1) Flamingo uses an
80B parameter frozen language model (Hoffmann et al., 2022a) and PICa uses GPT-3 (Brown
et al., 2020) which has 175B parameters, whereas T0-3B only has 3B parameters; (2) Flamingo
was trained on over 1B images, whereas we trained our VLM on only ∼ 3.3M images. MAGMA
(Eichenberg et al., 2021) claims to evaluate their model on the VQA2.0 validation set using
few-shot in-context learning. However, they include the VQA2.0 training set as part of their
pretraining corpus, and thus their results are not truly few-shot. Thus, we use only Frozen
(Tsimpoukelli et al., 2021) as our baseline.

Since a large proportion of the methodology followed in this project was inspired by Frozen,
our methods are very similar: we condition a frozen pretrained language model (LM) on a learnt
image-conditioned visual prefix. However, Frozen uses a 7B parameter decoder-only LM and
learn the parameters of their mapping network and image encoder during training. Despite these
differences in our approaches, the main modification we explore is the use of prompt templates
to improve performance. Following the notation introduced in Section 4.3.1, Frozen uses the
template

<image> Question: {question} Answer: {answer}

to format VQA2.0 examples, but their frozen LM has never explicitly seen this formatting before.
In contrast, we use modified versions of the text-only closed-book QA templates seen by T0
during training (see Section 5.3.4).

5.3.4 Prompt templates

As outlined in Section 4.3.1, we investigate whether formatting the inputs used to prompt the
VLMs with modified text-only closed-book QA prompt-templates can improve VQA perfor-
mance. In order to evaluate this, we explore using two different templates:

hotpotqa. We modify one of the P3 (Bach et al., 2022) templates used to train T0 on the
hotpotqa (Yang et al., 2018) task, by prepending the visual prefix to the text embedding.

1 <image>
2 Combine facts and answer this:
3 {question}
4 {answer}

frozen. The template used in Frozen. The text-only version of this format was not seen by
T0-3B during pretraining.

32

Experimental Setup 5.3 Few-shot VQA

1 <image>
2 Question: {question}
3 Answer: {answer}

To emphasize, the text-only version of the hotpotqa template was seen by T0 during pretraining,
while the text-only equivalent of the frozen template was not seen during pretraining.

5.3.5 Text-only performance

We explore whether incorporating the visual prefix is adding any value, or whether, by aligning
the VQA task with the text-only closed-book QA task, the visual prefix is being mainly dis-
regarded. In order to test this, we remove the <image> token from the hotpotqa and frozen
templates such that they are text-only. Notably, this means that this text-only hotpotqa template
is exactly the same as the template used to train T0 on the hotpotqa task (Yang et al., 2018).

However, even when the visual prefix is removed, the visual signal will still influence
the predicted answers as the visual signal informs the selection of in-context examples (see
Eqn. (4.2)). Thus, we investigate two different text-only setups:

text-only prompt. The visual prefix is removed from the prompt, but the visual signal is
used by RICES.

text-only prompt with text-only RICES. The visual prefix is removed from the prompt,
and RICES selects in-context examples based on the question similarity only.

Unless otherwise mentioned, all results are reported with the visual prefix included in the prompt
and with the default RICES implementation. The results are reported in Section 6.2.5.

5.3.6 RICES implementation

Implementing RICES for the VQA2.0 dataset is very computationally expensive. In order to
find the most similar training examples for any given test input, following from Eqn. (4.2),
we have to calculate the average similarity of the test input’s question and image with every
training example’s question and image. Given our compute budget, we decided to implement an
approximate k nearest neighbours (kNNs) algorithm, using a FAISS index (Johnson et al., 2019):
a method for efficient similarity search over dense vectors. The details of this algorithm, and the
motivation for why we chose to use an approximate algorithm, are given in Appendix A.2.

Although the algorithm is approximate, by qualitatively examining the in-context examples
selected for a few random test inputs we found that the selected in-context examples are very

33

Experimental Setup 5.3 Few-shot VQA

Fig. 5.1 In-context example selection. An illustration of the four in-context examples (comprised of an
image and a question – the answer has been omitted) selected for a given test query (the bottom-most
image and question), when using different in-context example selection methods. The methods used are:
(a) RICES; (b) Random selection of in-context examples from the training set. For RICES, the in-context
examples are sorted such that the closer the example is to the test query, the more similar it is.

34

Experimental Setup 5.4 Conclusion

similar to the test inputs with respect to both the image and question. For example, referring
to Figure 5.1, when using RICES, the selected in-context examples and test input all have a
skateboarder (with their board lifted off the ground) in the image, and all have a question relating
to the “background” of the image. The in-context examples selected for additional test queries
when using RICES is shown in Figure A.1.

We re-use the CLIP-ViT image encoder to obtain the necessary image embeddings, and
use the same CLIP model’s Transformer-based text encoder to obtain the necessary question
embeddings.

5.3.7 Decoding and answer generation

As there are over 200k validation examples, in order to speed up evaluation, we use greedy
decoding when generating answers. We also constrain the maximum length of the generated
answers to 20 tokens in order to prevent degenerative, long predictions from slowing evaluation
too significantly.

5.4 Conclusion

In this chapter, we outlined the experimental setup as well as the implementation details for
training and evaluating our VLMs. We started off by specifying the particular architectural com-
ponents for our VLMs (Section 5.1) before describing how the VLMs are trained (Section 5.2).
We then expanded on the key experiments for this project, by introducing the task on which
we evaluate our models, the baseline which we compare our results to, the specific prompt
templates used, and the implementation details for in-context example selection and decoding
(Section 5.3).

In the next chapter, we present the results for each of our experiments and discuss their
implications.

35

Chapter 6

Results and Discussions

This chapter presents and discusses the experimental results. We start off by investigating the
captions generated by the respective VLMs (Section 6.1) in order to glean insight into the
ability of the visual prefix to capture the visual features of the image. The main results are then
presented: evaluating the few-shot performance of the trained models on the VQA2.0 (Goyal
et al., 2017) dataset (Section 6.2). We then summarise and discuss these results (Section 6.3),
ending with the limitations of our approach (Section 6.4) and our recommendations for future
work (Section 6.5).

6.1 Generated captions

Although it is not possible to directly interpret the visual prefix, we can get a sense of the visual
information it contains by examining the output of the frozen LM when prompted with it. In
order to generate captions, we freeze the whole VLM and prompt the frozen VLM with the
visual prefix only1. Furthermore, since T0 (Sanh et al., 2021) was trained on summarisation
tasks, we can prompt T0 to summarise the visual prefix in order to get a different perspective
on the information contained within it. We use a modification of the prompt template used for
one such summarisation task2 to achieve this. Specifically, we replace the text that needs to be
summarised with the visual prefix, such that the template is:

Summarize: <image>

1This resembles the “Training” setup in Figure 4.1, except that the mapping network is also frozen.
2The original prompt template is from P3 (Bach et al., 2022) for the Extreme Summarization (XSum) dataset

(Narayan et al., 2018)

36

Results and Discussions 6.1 Generated captions

Finally, following the convention of Eichenberg et al. (2021); Radford et al. (2021), we pass
the phrase “A picture of” to the decoder of T0-3B, while still passing the visual prefix to the
encoder, and report the resulting captions.

Fig. 6.1 Generated captions and summaries. The generated captions and summaries for three unseen
images from the Conceptual Captions (Sharma et al., 2018) validation set for both VLM configurations,
where n represents the visual prefix length. We specify the input to the encoder and decoder of T0-3B,
respectively, that is used to obtain the generated captions.

The captions and summaries generated by each of the VLM configurations for unseen images
are shown in Figure 6.1. From the captions that are generated when only the visual prefix is used
to prompt the model, it is evident that, for both visual prefix lengths, there are visual concepts
from the images that are contained in the visual prefix. In particular, it seems that the visual
prefix may contain information relating to objects (e.g. “road”, “sign”, “pirate flag”, “cat”), how

37

Results and Discussions 6.2 Visual Question Answering results

they relate to each other (e.g. “a sign on the side of the road”), and the actions associated with
the objects (e.g. “waving”, “blowing”). However, there are also instances where the captions are
not very descriptive of the image (e.g. “illustration by person, a cartoonist”), which may suggest
that, in these instances, the visual prefix either does not contain the relevant information, or does
not prompt T0-3B effectively with the visual information.

The summaries of the visual prefix (i.e. when “Summarize: <image>” is passed to the
encoder) reveal that there is potentially more visual information embedded in the visual prefix
than the captions suggest. The summary of the first image identifies that there is a drone in
the image and that there is a negative association with them. In the final image, the summary
contains “king”, suggesting that the royalty of the cat (either through the crown or general attire)
is potentially embedded in the visual prefix.

Thus, although the visual prefix is not interpretable, and hence we cannot know for certain
how it is prompting the LM, it seems plausible that it captures a number of visual features from
the images. Furthermore, from the reasonable fluency of the generated captions, it appears that
the visual prefix is able to incorporate the visual signal into the prompt while keeping the strong
text-generation abilities of T0-3B mainly intact.

6.2 Visual Question Answering results

We start off by presenting the project’s main results: that explicitly aligning the VQA2.0 (Goyal
et al., 2017) task with a task that T0-3B was trained on, via a prompt template, results in superior
VQA performance (Section 6.2.1). We then explore these results further, by examining the effect
of the prompt template on zero-shot (Section 6.2.2) and few-shot (Section 6.2.3) performance.
Using only T0-3B (n = 10) with the hotpotqa template, we then investigate how important
the in-context example selection method is (Section 6.2.4), whether the visual prefix is adding
any value (Section 6.2.5), and whether prompt ensembling can be used to improve few-shot
performance (Section 6.2.6).

6.2.1 Explicit alignment improves performance

In Table 6.1, we present our best VQA scores when using the hotpotqa and frozen templates, and
compare these results to Frozen (Tsimpoukelli et al., 2021). These results imply the following:

• Comparing rows 1 & 2, explicitly aligning the VQA2.0 (Goyal et al., 2017) task with the
text-only hotpotqa (Yang et al., 2018) task (which T0-3B was trained on) results in a 31%

38

Results and Discussions 6.2 Visual Question Answering results

Table 6.1 Best VQA scores. The best VQA scores obtained when using the hotpotqa and frozen
templates, compared to the best results reported in Frozen (Tsimpoukelli et al., 2021).

Template # Shots VQA score (%)

1
T0-3B (n = 10)

hotpotqa 1 40.39
2 frozen 1 30.83

3 Frozen - 4 38.2

relative increase (30.83% vs 40.39%) in the VQA score compared to the best VQA score
when using the frozen template.

• Comparing rows 1 & 3, the explicit alignment results in our best VLM outperforming
Frozen by a relative VQA score of 5.7% (38.2% vs 40.39%), despite Frozen using a
frozen LM with more than double the number of parameters (3B vs 7B).

• Furthermore, we outperform Frozen with fewer shots (1 vs 4). This is beneficial since
performing in-context learning with Transformers is very computationally expensive: the
compute cost scales linearly with the number of shots, if one can reuse the few-shot prompt
for multiple test queries (by caching the keys and values), and quadratically otherwise
(Alayrac et al., 2022).

6.2.2 Explicit alignment improves zero-shot performance

T0-3B (n=5) T0-3B (n=10)
VLM

0

5

10

15

20

25

30

35

VQ
A

Sc
or

e
(%

)

Template
frozen
hotpotqa

Fig. 6.2 Zero-shot results. The zero-shot results for the VLM configurations, when using the frozen
and hotpotqa templates. The green dashed line indicates the zero-shot VQA score of 29.5% achieved by
Frozen (Tsimpoukelli et al., 2021).

39

Results and Discussions 6.2 Visual Question Answering results

We present the zero-shot results in Figure 6.2. Evidently, for both visual prefix lengths,
using the hotpotqa template improves the VQA score relative to the frozen template. These
differences are significant, with a 96% (15.78% vs 31.07%) and 65% (20.89% vs 34.49%)
relative increase in the VQA score when a visual prefix of length 5 and 10 are used, respectively.
Furthermore, the performance when using the hotpotqa template exceeds Frozen’s zero-shot
performance, with T0-3B (n = 10) obtaining a 17% relative increase (29.5% vs 34.49%) and
T0-3B (n = 5) obtaining a 5% relative increase (29.5% vs 31.07%).

Fig. 6.3 Zero-shot generated answers. The zero-shot generated answers for three inputs from the test
set, when using the hotpotqa and frozen templates. T0-3B (n = 10) was used to generate the answers.

Referring to the generated answers in Figure 6.3, a possible reason for the performance gain
when using the hotpotqa template over the frozen template is that the former template is more
likely to induce more concise predicted answers, such that they better match the expected output.
With reference to Figure 6.3, the answers generated using the frozen template are sometimes
correct (with some of them even containing correct justifications) but do not conform to the
short answers expected for the VQA2.0 task. Conversely, since the hotpotqa (Yang et al., 2018)

40

Results and Discussions 6.2 Visual Question Answering results

task has similarly short answers, when the hotpotqa template is used the answers are more
concise. This claim is supported by Figure 6.4, where the distribution of the number of words
in the generated answers when using the hotpotqa template has relatively more mass around
1- and 2-word answers, whereas the distribution when using the frozen template has a much
heavier right tail.

2 4 6 8
Words

0

20000

40000

60000

80000

100000

120000

Co
un

t

Template
frozen
hotpotqa

Fig. 6.4 The number of words in the generated answers. A histogram showing the distribution of the
number of words in the zero-shot generated answers, when using the frozen and hotpotqa templates. To
improve the visualisation, we have only included answers that have less than 10 words and omitted the
irregular answers with more than 10 words.

Due to the superior zero-shot performance when a visual prefix of length n = 10 is used, we
proceed with this VLM for the remainder of the experiments.

6.2.3 Explicit alignment improves few-shot performance

We present the few-shot results in Figure 6.5. The hotpotqa template once again consistently
outperforms the frozen template by a significant margin, irrespective of the number of shots.
Furthermore, the 1- and 2-shot performance when using the hotpotqa template is comfort-
ably higher than the Frozen benchmark, but the 4-shot performance of the Frozen benchmark
marginally outperforms the hotpotqa template.

Interestingly, for both the hotpotqa and frozen template, the 1-shot performance is signif-
icantly higher than the zero-shot performance, but the VQA score declines as more shots are
added. When looking at the few-shot generated output, it is apparent that in many instances,
the LM is simply selecting an answer from the in-context examples. Furthermore, if we simply
replace each generated answer with the answer from the most similar in-context example to the
test query (based on Eqn. (4.2)), the resulting VQA score of 36.97% is surprisingly impressive,
surpassing the score for the frozen template by 6.14% (see Table 6.2). This is not true for the

41

Results and Discussions 6.2 Visual Question Answering results

0 1 2 4 8
Shots

0

5

10

15

20

25

30

35

40
VQ

A
Sc

or
e

(%
)

VLM
T0-3B (frozen)
T0-3B (hotpotqa)
Frozen

Fig. 6.5 Few-shot results. The VQA score for T0-3B (n = 10), when in-context examples (shots) are
presented to the model. We compare using the frozen and hotpotqa templates, and compare our results
to Frozen (Tsimpoukelli et al., 2021).

hotpotqa template, where replacing the original generated answers with the nearest in-context
example’s answer would significantly decrease the VQA score from 40.39% to 36.97%. In
order to examine the impact of the prompt template, we need to account for what proportion
of the changes in performance are attributed to simply selecting answers from the in-context
examples, and what proportion represents the model’s ability to generate original answers given
the in-context examples.

Table 6.2 1-shot VQA scores compared to RICES baseline. The 1-shot VQA scores for the hotpotqa
and frozen templates compared to the RICES baseline. This baseline predicts answers by simply selecting
the answer from the most similar in-context example to the test query (i.e. the nearest neighbour’s answer).
We call this baseline RICES since the RICES method is effectively predicting the answer.

Template # Shots VQA score (%)

1
T0-3B (n = 10)

hotpotqa 1 40.39
2 frozen 1 30.83

3 RICES - 1 36.97

In Table 6.3, we show the breakdown of the 1-shot VQA scores, separating the results by
whether the generated answer is the same as the answer presented in the in-context example, or
whether the generated answer is original. Notably, the answers generated by the VLM with the
hotpotqa and frozen templates are the same answer as the in-context example used to prompt
the LM 63.4% and 45.4% of the time, respectively. Comparing rows 1&2 and rows 4&5, it is
also apparent that most of the improvement in the 1-shot performance relative to the zero-shot
performance is through generating answers that are the same as the relevant in-context example’s

42

Results and Discussions 6.2 Visual Question Answering results

answer. This suggests that the RICES method is good at selecting examples from the training set
that are very similar (both with regard to the image and question) to the test inputs, and hence,
are relatively likely to contain the correct answer.

Table 6.3 Breakdown of the 1-shot VQA score. The 1-shot VQA scores broken down by answer type.
(1) in-context: the generated answers that are the same as the in-context example’s answer. (2) original:
the generated answers that are not the same as the in-context example’s answer. (3) all: the overall
VQA score for the template (i.e. with the in-context and original answers combined). We also report the
proportion of the generated answers that are in-context and original. The final column shows how the
VQA score, over the test queries for which an original answer was generated, changes when the original
generated answers are replaced by the relevant in-context example’s answer.

Template Answer type Proportion (%) VQA score (%) In-context VQA score (%)

1
hotpotqa

original 36.6 30.6 21.24

2 in-context 63.4 46.04 -

3 all 100 40.39 -

4
frozen

original 54.6 20.48 31.72

5 in-context 45.4 43.26 -

6 all 100 30.83 -

Continuing with our analysis of Table 6.3, looking at the VQA score for the answers that
were original (i.e. not the same as the in-context example’s answer), the answers produced when
using the hotpotqa template were significantly better than the answers produced by the frozen
template (30.6% vs 20.48%). However, these scores are calculated over different subsets of the
test set, and thus are not directly comparable.

Looking at this result from a different perspective, it appears that when the hotpotqa template
is used, the VLM is better at “deciding” when the in-context example’s answer should be used
as the output, and when the model should generate an original response, as it obtained a higher
VQA score for the answers that were the same as the in-context examples’ answers than when
the frozen template is used (46.04% vs 43.26%). Furthermore, for the test queries where the
VLM did generate an original answer, the in-context examples’ answers would have performed
relatively poorly (only 21.24% VQA score), compared to the actual generated answers (30.6%
VQA score) when the hotpotqa template is used. The opposite is true for the frozen template.

We do not deem it beneficial for the purposes of this project to continue this analysis of the
broken-down VQA scores when the number of shots is increased, as we suspect that similar
trends will be observed. Thus, we conclude that it is empirically true that using the hotpotqa
template results in a superior few-shot VQA score relative to the frozen template, but the reasons
for this seems to be attributed to two confounding factors:

43

Results and Discussions 6.2 Visual Question Answering results

• The hotpotqa original answers appear to perform better than the frozen original answers.
But this is dependent on the test queries for which the VLM generates original answers.

• The VLM, when using the hotpotqa template, appears to be better at “deciding” when to
generate an original answer and when to simply use the most similar in-context example’s
answer.

6.2.4 The selection of good in-context examples is important

The influence of the in-context examples is demonstrated further by using randomly selected in-
context examples in place of the RICES in-context examples. The results are shown in Figure 6.6.
Evidently, the VQA score significantly decreases, even below the zero-shot performance. Thus,
although the few-shot performance when using the hotpotqa template exceeds the Frozen
benchmark, the performance of the VLM is significantly influenced by the ability of RICES to
select good in-context examples.

0 1 2 4 8
Shots

0

5

10

15

20

25

30

35

40

VQ
A

Sc
or

e
(%

)

Method
RICES
Random

Fig. 6.6 Few-shot results with different in-context example selection methods. The influence of the
in-context example selection method on the VQA score for T0-3B (n = 10) when the hotpotqa template
is used. We compare the performance of RICES to the random selection of in-context examples from the
training set.

6.2.5 The visual prefix is informative

Although we found that the VLMs’ answers are heavily dependent on the in-context examples,
the results in Figure 6.7 suggest that the visual prefix is still beneficial to the VQA score,
especially when no shots are presented to the model. Specifically, comparing when the text-only
prompt is used to the default configuration, we see that the default configuration achieves

44

Results and Discussions 6.2 Visual Question Answering results

significantly higher zero-shot performance (34.49% vs 27.3%) and marginally better few-shot
performance.

However, if we remove the visual prefix and remove the visual signal from the RICES
similarity calculations (referred to as text-only prompt with text-only RICES), we see that the
default configuration obtains a consistently superior few-shot VQA score. This is consistent
with the findings of the previous section, that the few-shot performance of the VLMs is highly
dependent on the in-context examples, and thus, in the few-shot setting, the visual signal mostly
influences the VLMs through the selection of in-context examples.

0 1 2 4
Shots

0

5

10

15

20

25

30

35

40

VQ
A

Sc
or

e
(%

)

Method
default
text-only prompt
text-only prompt with
text-only RICES

Fig. 6.7 The influence of the visual signal. The influence of the extent to which the visual signal is
incorporated into the VLM, when using the hotpotqa template. Referring to Section 5.3.5, text-only
prompt denotes when the visual prefix is removed from the prompt and text-only prompt with text-only
RICES denotes when the visual prefix is removed from the prompt, and RICES selects in-context
examples based on the question similarity only. Lastly, default denotes the default configuration, where
the visual prefix is not removed and RICES is implemented with the image and question similarity.

6.2.6 Prompt ensembling does not significantly improve performance

In order to examine the effect of the ordering of the in-context examples on the few-shot
performance, we use prompt ensembling, following the method outlined in Section 4.3.4. In
particular, we permute the top K in-context examples r times, thus generating r answers, and
select the answer with the highest log-probability. We choose r to be 5.

Looking at the results in Figure 6.8, it is evident that ensembling the prompts had very little
impact on performance. Thus, either the ordering of the shots within the prompt is not very
important, or the default ordering chosen (i.e. ordering the in-context examples such that the
more similar the in-context example is to the test query, the closer it is situated to the test-query)
is predominantly the best ordering among the permutations.

45

Results and Discussions 6.3 Discussion

2 4
Shots

0

5

10

15

20

25

30

35

40

VQ
A

Sc
or

e
(%

)

Method
no ensemble
ensemble

Fig. 6.8 Few shot results with ensembling. The effect of prompt ensembling on the few-shot performance
of T0-3B (n = 10), when using the hotpotqa template, is shown.

6.3 Discussion

We showed in Section 6.2.1 that our best performing VLM outperforms the best results from
the Frozen baseline, despite needing relatively few shots. However, the zero-shot results
most clearly demonstrate that the project’s goal were achieved (see Section 6.2.2), while the
confounding effect of the in-context examples on few-shot performance makes drawing any
concrete conclusions about the few-shot performance difficult (see Section 6.2.3). We will
reiterate the zero-shot and few-shot results in order to justify these claims.

6.3.1 Zero-shot summary

It is evident from Section 6.2.2, that explicitly aligning the VQA2.0 task with the text-only
hotpotqa (Yang et al., 2018) task (which T0-3B was pretrained on) significantly improved the
zero-shot VQA score relative to the Frozen (Tsimpoukelli et al., 2021) baseline and relative
to when the frozen template was used. This is particularly impressive given that the frozen
language model used in Frozen is more than double the size of T0-3B.

A possible reason for this is that the VQA2.0 task expects short, concise answers, and so
does the hotpotqa task, thus aligning these tasks generally results in more concise generated
answers, improving performance. This was shown empirically in Figure 6.2 and Figure 6.4, and
qualitatively in Figure 6.3.

46

Results and Discussions 6.3 Discussion

6.3.2 Few-shot summary

With reference to Section 6.2.3, the performance when using the hotpotqa template exceeds
the performance of the frozen template irrespective of the number of shots used, suggesting
that the explicit alignment is beneficial for few-shot performance too. However, it is evident
from Section 6.2.3, that a large proportion of the answers generated are simply selected from the
in-context examples, and thus it is very hard to infer with certainty why the explicit alignment is
improving few-shot performance.

Furthermore, it is evident that the performance of the VLM deteriorates as the number of
shots is increased. We take the view that this is because T0 is not designed for in-context
learning.

6.3.3 T0 is not designed for in-context learning

As noted in Section 6.2.3, irrespective of the template used, the few-shot performance decreases
as the number of shots is increased. This is contrary to the empirical trends that have been
observed when performing in-context learning (Alayrac et al., 2022; Brown et al., 2020; Yang
et al., 2022), where one expects the performance to increase with the number of in-context
examples, and then reach a plateau where additional shots do not improve performance.

Referring to Section 5.1.1, we argue that this could be because T0 was pretrained with only
one input at a time, and thus the more in-context examples that are presented to the model at
test time, the further this input is from the training data/distribution. This could explain why,
instead of generalising from the in-context examples, the model appears to be overfitting to the
in-context examples, and thus the performance is deteriorating as the number of shots increases.

This training setup is contrary to models such as GPT-3 (Brown et al., 2020) and Flamingo
(Alayrac et al., 2022), which have been shown to be strong in-context learners. These models
were trained with multiple inputs at a time via “packing”3, where the input sequence can be
comprised of multiple different training inputs that require completions. The different training
inputs within the input sequence are delimited with a special end of text token, instead of
specifying attention masks that restrict the completion for a particular input to only be dependent
on the relevant input. Thus, these models are used to having to make completions when prompted
with a number of different inputs, potentially making them more suitable for in-context learning.

3In fact, T0 is also pretrained using packing, but instead of using special end of text tokens like Flamingo
(Alayrac et al., 2022) and GPT-3 (Brown et al., 2020), T0 uses attention masks to ensure that the completion for a
particular output can only attend to the relevant input.

47

Results and Discussions 6.4 Limitations

It may be that the regime used to train T0 has resulted in T0 being unsuitable for in-context
learning. However, this needs to be explored further in order to justify these claims, and is left
for future work.

6.4 Limitations

Here, we describe some limitations of our approach.

In-context learning not improving performance. As described in Section 6.3.3, we believe
that T0 is not suitable for in-context learning. Thus, although we use in-context learning as our
“go-to” few-shot learning method, this was possibly a misguided decision.

Inheriting bias and fairness issues from T0. Like most large language models, the T0
family of models sometimes exhibit the undesirable social biases represented in the large corpus
they are pre-trained on (see the T0 paper for more details; Sanh et al. (2021)). Since we make
use of a frozen T0 model to generate answers, we inherit this undesirable behaviour.

6.5 Future work

Possibilities for future work include:

• Aligning other vision and language tasks with text-only tasks that the frozen language
model has been pretrained on, via an appropriately modified prompt template, either
during evaluation or during training. For example, the captioning task could be cast as a
summarisation task (the summaries generated in Section 6.1 serve as a proof-of-concept)
and the multiple choice visual question-answering task can be cast as a text-only multiple
choice task. We have shown that explicit alignment at evaluation time can be beneficial
to performance, but it would be interesting to investigate how alignment during training
impacts training and downstream performance.

• Repeating our methodology and experiments, but using a frozen language model that has
been shown to be effective at in-context learning.

48

Chapter 7

Conclusion

We have demonstrated that a visual language model’s (VLM) few-shot Visual Question An-
swering (VQA) performance can be improved by explicitly aligning the VQA task with a
text-only closed-book question answering (QA) task that the VLM’s frozen language model
(LM) was pretrained on. Our results show that this explicit alignment enables our VLMs to
outperform a similar VLM that uses a considerably larger frozen LM. In order to test our claims,
we implemented a simple architecture based on Frozen (Tsimpoukelli et al., 2021) and ClipCap
(Mokady et al., 2021), whereby, through image captioning, the VLM learnt to bridge powerful
pretrained vision-only and language-only models via a relatively simple learnt mapping network.
Furthermore, we contextualised our approach relative to existing work by presenting a unified
view of VLMs.

We have further shown that, when prompting our frozen LM with examples in-context, the
generated answers are often simply selected from the in-context examples. We note that this
irregular behaviour may be a sign of the unsuitability of our chosen LM for in-context learning,
and recommend that future research considers utilising a frozen LM that has been shown to be
effective at few-shot in-context learning.

Due to our VLMs’ reliance on the in-context examples, we also demonstrated that the
selection of in-context examples is very influential on our VLMs’ few-shot results. We empiri-
cally justified that the in-context example selection method that we implemented is particularly
beneficial to VQA performance, by showing that a model that simply selects the answer from
the nearest in-context example to each test query obtains a very impressive VQA score.

We also presented a qualitative evaluation of the ability of the mapping network to embed
visual information into the prompt of the LM by examining the captions generated for unseen
images, as well as through “summarising” this visually-conditioned prompt. We found that

49

Conclusion

visual features, such as objects, the relation between objects, and the actions associated with
objects, may be embedded in this learnt prompt.

Our findings suggest that explicitly aligning vision and language tasks with text-only training
tasks is a simple yet promising approach to improving the performance of VLMs that are of
modest scale. We encourage future research into aligning other vision and language tasks, such
as image captioning, with text-only tasks in an attempt to decrease the performance differences
between relatively small and large VLMs.

50

References

Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Mensch, A.,
Millican, K., Reynolds, M., et al. (2022). Flamingo: a visual language model for few-shot
learning. arXiv preprint arXiv:2204.14198.

Bach, S. H., Sanh, V., Yong, Z.-X., Webson, A., Raffel, C., Nayak, N. V., Sharma, A., Kim,
T., Bari, M. S., Fevry, T., Alyafeai, Z., Dey, M., Santilli, A., Sun, Z., Ben-David, S., Xu, C.,
Chhablani, G., Wang, H., Fries, J. A., Al-shaibani, M. S., Sharma, S., Thakker, U., Almubarak,
K., Tang, X., Tang, X., Jiang, M. T.-J., and Rush, A. M. (2022). Promptsource: An integrated
development environment and repository for natural language prompts.

Brock, A., De, S., Smith, S. L., and Simonyan, K. (2021). High-performance large-scale image
recognition without normalization. In International Conference on Machine Learning, pages
1059–1071. PMLR.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901.

Chen, J., Guo, H., Yi, K., Li, B., and Elhoseiny, M. (2022). Visualgpt: Data-efficient adaptation
of pretrained language models for image captioning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 18030–18040.

Cho, J., Lei, J., Tan, H., and Bansal, M. (2021). Unifying vision-and-language tasks via text
generation. In International Conference on Machine Learning, pages 1931–1942. PMLR.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

Du, Y., Li, C., Guo, R., Yin, X., Liu, W., Zhou, J., Bai, Y., Yu, Z., Yang, Y., Dang, Q., et al.
(2020). Pp-ocr: A practical ultra lightweight ocr system. arXiv preprint arXiv:2009.09941.

Eichenberg, C., Black, S., Weinbach, S., Parcalabescu, L., and Frank, A. (2021). Magma–
multimodal augmentation of generative models through adapter-based finetuning. arXiv
preprint arXiv:2112.05253.

Falcon et al., W. (2019). Pytorch lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, 3.

51

References References

Gao, F., Ping, Q., Thattai, G., Reganti, A., Wu, Y. N., and Natarajan, P. (2022). A thousand
words are worth more than a picture: Natural language-centric outside-knowledge visual
question answering. arXiv preprint arXiv:2201.05299.

Gao, T., Fisch, A., and Chen, D. (2020). Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and Parikh, D. (2017). Making the v in
vqa matter: Elevating the role of image understanding in visual question answering. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
6904–6913.

Gui, L., Wang, B., Huang, Q., Hauptmann, A., Bisk, Y., and Gao, J. (2021). Kat: A knowledge
augmented transformer for vision-and-language. arXiv preprint arXiv:2112.08614.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D.
d. L., Hendricks, L. A., Welbl, J., Clark, A., et al. (2022a). Training compute-optimal large
language models. arXiv preprint arXiv:2203.15556.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D.
d. L., Hendricks, L. A., Welbl, J., Clark, A., et al. (2022b). Training compute-optimal large
language models. arXiv preprint arXiv:2203.15556.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., At-
tariyan, M., and Gelly, S. (2019). Parameter-efficient transfer learning for nlp. In International
Conference on Machine Learning, pages 2790–2799. PMLR.

Howard, J. and Ruder, S. (2018). Universal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2021).
Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.

Jia, C., Yang, Y., Xia, Y., Chen, Y.-T., Parekh, Z., Pham, H., Le, Q., Sung, Y.-H., Li, Z.,
and Duerig, T. (2021). Scaling up visual and vision-language representation learning with
noisy text supervision. In International Conference on Machine Learning, pages 4904–4916.
PMLR.

Jiang, Z., Xu, F. F., Araki, J., and Neubig, G. (2020). How can we know what language models
know? Transactions of the Association for Computational Linguistics, 8:423–438.

Johnson, J., Douze, M., and Jégou, H. (2019). Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kudo, T. (2018). Subword regularization: Improving neural network translation models with
multiple subword candidates. arXiv preprint arXiv:1804.10959.

Kudo, T. and Richardson, J. (2018). Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226.

52

References References

Lester, B., Al-Rfou, R., and Constant, N. (2021a). The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691.

Lester, B., Al-Rfou, R., and Constant, N. (2021b). The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691.

Levine, Y., Dalmedigos, I., Ram, O., Zeldes, Y., Jannai, D., Muhlgay, D., Osin, Y., Lieber, O.,
Lenz, B., Shalev-Shwartz, S., et al. (2022). Standing on the shoulders of giant frozen language
models. arXiv preprint arXiv:2204.10019.

Li, J., Li, D., Xiong, C., and Hoi, S. (2022). Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and generation. arXiv preprint arXiv:2201.12086.

Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., and Hoi, S. C. H. (2021). Align before
fuse: Vision and language representation learning with momentum distillation. Advances in
neural information processing systems, 34:9694–9705.

Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang, L., Hu, H., Dong, L., Wei, F., et al.
(2020). Oscar: Object-semantics aligned pre-training for vision-language tasks. In European
Conference on Computer Vision, pages 121–137. Springer.

Li, X. L. and Liang, P. (2021). Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen, W. (2021a). What makes good
in-context examples for gpt-3? arXiv preprint arXiv:2101.06804.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig, G. (2021b). Pre-train, prompt, and
predict: A systematic survey of prompting methods in natural language processing. arXiv
preprint arXiv:2107.13586.

Liu, Y., Wei, W., Peng, D., and Zhu, F. (2022). Declaration-based prompt tuning for visual
question answering. arXiv preprint arXiv:2205.02456.

Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp, P. (2021). Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv
preprint arXiv:2104.08786.

Luo, Z., Xi, Y., Zhang, R., and Ma, J. (2022). Vc-gpt: Visual conditioned gpt for end-to-end
generative vision-and-language pre-training. arXiv preprint arXiv:2201.12723.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., and Zettlemoyer, L.
(2022). Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Mishra, S., Khashabi, D., Baral, C., and Hajishirzi, H. (2021). Natural instructions: Benchmark-
ing generalization to new tasks from natural language instructions.

Mokady, R., Hertz, A., and Bermano, A. H. (2021). Clipcap: Clip prefix for image captioning.
arXiv preprint arXiv:2111.09734.

Narayan, S., Cohen, S. B., and Lapata, M. (2018). Don’t give me the details, just the
summary! topic-aware convolutional neural networks for extreme summarization. ArXiv,
abs/1808.08745.

53

References References

Press, O., Smith, N. A., and Lewis, M. (2021). Train short, test long: Attention with linear
biases enables input length extrapolation. arXiv preprint arXiv:2108.12409.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,
Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural language
supervision. In International Conference on Machine Learning, pages 8748–8763. PMLR.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu,
P. J. (2019). Exploring the limits of transfer learning with a unified text-to-text transformer.
arXiv e-prints.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P. J.,
et al. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer.
J. Mach. Learn. Res., 21(140):1–67.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever,
I. (2021). Zero-shot text-to-image generation. In International Conference on Machine
Learning, pages 8821–8831. PMLR.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object detection
with region proposal networks. Advances in neural information processing systems, 28.

Reynolds, L. and McDonell, K. (2021). Prompt programming for large language models:
Beyond the few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human
Factors in Computing Systems, pages 1–7.

Roberts, A., Raffel, C., and Shazeer, N. (2020). How much knowledge can you pack into the
parameters of a language model? arXiv preprint arXiv:2002.08910.

Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika, L., Alyafeai, Z., Chaffin, A., Stiegler,
A., Scao, T. L., Raja, A., et al. (2021). Multitask prompted training enables zero-shot task
generalization. arXiv preprint arXiv:2110.08207.

Sennrich, R., Haddow, B., and Birch, A. (2015). Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Sharma, P., Ding, N., Goodman, S., and Soricut, R. (2018). Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 2556–2565.

Shen, S., Li, L. H., Tan, H., Bansal, M., Rohrbach, A., Chang, K.-W., Yao, Z., and Keutzer,
K. (2021). How much can clip benefit vision-and-language tasks? arXiv preprint
arXiv:2107.06383.

Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., and Singh, S. (2020). Autoprompt: Eliciting
knowledge from language models with automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Song, H., Dong, L., Zhang, W.-N., Liu, T., and Wei, F. (2022). Clip models are few-shot learners:
Empirical studies on vqa and visual entailment. arXiv preprint arXiv:2203.07190.

54

References References

Sung, Y.-L., Cho, J., and Bansal, M. (2022). Vl-adapter: Parameter-efficient transfer learning
for vision-and-language tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5227–5237.

Tsimpoukelli, M., Menick, J. L., Cabi, S., Eslami, S., Vinyals, O., and Hill, F. (2021). Multimodal
few-shot learning with frozen language models. Advances in Neural Information Processing
Systems, 34:200–212.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30.

Wang, P., Yang, A., Men, R., Lin, J., Bai, S., Li, Z., Ma, J., Zhou, C., Zhou, J., and Yang, H.
(2022). Unifying architectures, tasks, and modalities through a simple sequence-to-sequence
learning framework. arXiv preprint arXiv:2202.03052.

Wang, Z., Yu, J., Yu, A. W., Dai, Z., Tsvetkov, Y., and Cao, Y. (2021). Simvlm: Simple visual
language model pretraining with weak supervision. arXiv preprint arXiv:2108.10904.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, A. M., and Le, Q. V.
(2021). Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652.

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1(2):270–280.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu,
C., Scao, T. L., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. M. (2020). Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45,
Online. Association for Computational Linguistics.

Yang, Z., Gan, Z., Wang, J., Hu, X., Lu, Y., Liu, Z., and Wang, L. (2022). An empirical study of
gpt-3 for few-shot knowledge-based vqa. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 3081–3089.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W., Salakhutdinov, R., and Manning, C. D.
(2018). Hotpotqa: A dataset for diverse, explainable multi-hop question answering. arXiv
preprint arXiv:1809.09600.

Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, M., and Wu, Y. (2022). Coca:
Contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917.

Yuan, L., Chen, D., Chen, Y.-L., Codella, N., Dai, X., Gao, J., Hu, H., Huang, X., Li, B., Li,
C., et al. (2021). Florence: A new foundation model for computer vision. arXiv preprint
arXiv:2111.11432.

Zeng, A., Wong, A., Welker, S., Choromanski, K., Tombari, F., Purohit, A., Ryoo, M., Sindhwani,
V., Lee, J., Vanhoucke, V., et al. (2022). Socratic models: Composing zero-shot multimodal
reasoning with language. arXiv preprint arXiv:2204.00598.

Zeng, Y., Zhang, X., and Li, H. (2021). Multi-grained vision language pre-training: Aligning
texts with visual concepts. arXiv preprint arXiv:2111.08276.

55

References References

Zhai, X., Wang, X., Mustafa, B., Steiner, A., Keysers, D., Kolesnikov, A., and Beyer, L. (2022).
Lit: Zero-shot transfer with locked-image text tuning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 18123–18133.

Zhang, P., Li, X., Hu, X., Yang, J., Zhang, L., Wang, L., Choi, Y., and Gao, J. (2021). Vinvl:
Revisiting visual representations in vision-language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 5579–5588.

Zhao, Z., Wallace, E., Feng, S., Klein, D., and Singh, S. (2021). Calibrate before use: Improving
few-shot performance of language models. In International Conference on Machine Learning,
pages 12697–12706. PMLR.

56

Appendix A

A.1 T0

T0 (Sanh et al., 2021) is based on T5 (Raffel et al., 2020), a transformer-based encoder-decoder
language model (Vaswani et al., 2017) that was pre-trained via a span-corruption objective on
C4 (Raffel et al., 2019), a large corpus of unlabeled text data. T0 was created by fine-tuning a
T5-variant1 on a multitask mixture of datasets in order to enable zero-shot generalization, i.e.
the ability to perform unseen tasks without any additional gradient-based training. The examples
used to train T0 were formatted by applying prompt templates from the Public Pool of Prompts
(P3; Bach et al. (2022)) such that each example in each dataset was converted into a specific
format defined by a template (see the P3 repo2 for some examples). Note that these templates
are designed for text-only tasks.

A.2 RICES implementation details

Finding the k-nearest neighbours (KNNs) based on questions or images only, can be efficiently
implemented with a FAISS index (Johnson et al., 2019): a data structure for efficient similarity
search over dense vectors. However, finding the similarities jointly (i.e. averaged) is not
supported by the FAISS index. Thus, an algorithm for efficiently finding the kNNs based on
joint similarity is:

1. Using the frozen pretrained CLIP model (Radford et al., 2021) from Section 5.1.2, obtain
embeddings for both the images and questions for each example, {xxxi,qqqi,aaai}, in the
VQA2.0 (Goyal et al., 2017) training set.

1Lester et al. (2021b) showed that T5’s default span-corruption objective is not well-suited for training frozen
models to be later conditioned by prompts. In order to resolve this, they “unlearnt” the span-corruption objective by
continuing T5’s self-supervised training for 100 000 additional steps, replacing the span-corruption objective with
the standard language modelling objective, to obtain an LM adapted T5 model.

2https://github.com/bigscience-workshop/promptsource

57

https://github.com/bigscience-workshop/promptsource

A.3 RICES examples

2. Build a FAISS index for all of these question-embeddings. Denote this index FAISSq.

3. For each test input, (xxx∗,qqq∗):

(a) Use FAISSq to find the question-only tNNs, and hence simq, for qqq∗. Denote these
nearest neighbours tNNq.

(b) Build a FAISS index for the image-embeddings of all (xxxi,qqqi,aaai) ∈ tNNq. Denote
this index FAISSimage.

(c) Use FAISSimage to find the image-only pNNs, and hence simimage, for xxx∗. Denote
these nearest neighbours pNNimage.

(d) Calculate sim({xxx∗,qqq∗},{xxxi,qqqi,aaai}) for all {xxxi,qqqi,aaai)} ∈ pNNimage.

(e) Rank the similarities to obtain the RICES kNNs.

When searching the FAISS index on GPU, the most neareast neighbours that can be returned
is 2048 (Johnson et al., 2019). Thus, we set t = 2048 as this will result in the most accurate
approximation to the true nearest neighbours, and we set p to be the number of unique images
in tNNq.

A.3 RICES examples

In Figure A.1, we provide further qualitative support for the ability of RICES to select very
similar in-context examples to any given test query, with respect to both the image and question
similarity.

58

A.3 RICES examples

Fig. A.1 RICES examples. Each column shows the four in-context examples selected (starting from
the top image-question pair) for a given test query (the bottom image-question pair) using RICES. The
in-context examples are sorted such that the closer the example is to the test query, the more similar it is.

59

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Report Outline

	2 Background
	2.1 Language modelling
	2.1.1 Prompting large language models

	2.2 Joint vision and language modelling
	2.2.1 Contrastive dual encoder approaches
	2.2.2 Visual language models (VLMs)

	2.3 Few-shot learning in vision and language modelling
	2.4 Task format
	2.4.1 Aligning downstream tasks with training

	2.5 Conclusion

	3 Unified View of Visual Language Models
	3.1 The state of VLMs
	3.1.1 Recent VLM approaches

	3.2 Unifying VLM architectures
	3.3 Conclusion

	4 Approach
	4.1 Architecture
	4.1.1 Frozen pretrained LM
	4.1.2 Frozen pretrained image encoder
	4.1.3 Mapping network and visual prefix
	4.1.4 Indifference to prompt modalities

	4.2 Training
	4.3 Task adaptation with few-shot in-context learning
	4.3.1 Prompt format
	4.3.2 Building the prompt embedding
	4.3.3 In-context example selection
	4.3.4 Prompt ensembling

	4.4 Summary

	5 Experimental Setup
	5.1 Architectural components
	5.1.1 Frozen pretrained LM
	5.1.2 Frozen pretrained image encoder
	5.1.3 Mapping network and visual prefix

	5.2 Training
	5.3 Few-shot VQA
	5.3.1 Dataset
	5.3.2 Evaluation metric
	5.3.3 Baselines
	5.3.4 Prompt templates
	5.3.5 Text-only performance
	5.3.6 RICES implementation
	5.3.7 Decoding and answer generation

	5.4 Conclusion

	6 Results and Discussions
	6.1 Generated captions
	6.2 Visual Question Answering results
	6.2.1 Explicit alignment improves performance
	6.2.2 Explicit alignment improves zero-shot performance
	6.2.3 Explicit alignment improves few-shot performance
	6.2.4 The selection of good in-context examples is important
	6.2.5 The visual prefix is informative
	6.2.6 Prompt ensembling does not significantly improve performance

	6.3 Discussion
	6.3.1 Zero-shot summary
	6.3.2 Few-shot summary
	6.3.3 T0 is not designed for in-context learning

	6.4 Limitations
	6.5 Future work

	7 Conclusion
	References
	Appendix A
	A.1 T0
	A.2 RICES implementation details
	A.3 RICES examples

