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Abstract
The schema-guided paradigm overcomes scala-
bility issues inherent in building task-oriented
dialogue (TOD) agents with static ontologies.
Instead of operating on dialogue context alone,
agents have access to hierarchical schemas con-
taining task-relevant natural language descrip-
tions. Fine-tuned language models excel at
schema-guided dialogue state tracking (DST)
but are sensitive to the writing style of the
schemas. We explore methods for improving
the robustness of DST models. We propose a
framework1 for generating synthetic schemas
which uses tree-based ranking to jointly opti-
mise lexical diversity and semantic faithfulness.
The generalisation of strong baselines is im-
proved when augmenting their training data
with prompts generated by our framework, as
demonstrated by marked improvements in av-
erage joint goal accuracy (JGA) and schema
sensitivity (SS) on the SGD-X benchmark.

1 Introduction

DST is concerned with tracking user goals in task-
oriented conversations. The goals are represented
as key-value pair sequences, with the keys known
as slots (e.g. hotel name). Pre-trained language
models (PLMs) (Devlin et al., 2019; Raffel et al.,
2020) have helped shift focus from systems that can
only track slots drawn from a database or domain
ontology (Henderson et al., 2014) to models that
do not require re-training to parse goals in new
domains. The Schema-Guided Dialogue (SGD)
dataset (Rastogi et al., 2020) facilitates this shift
with a large-scale set of conversations grounded
in 45 service APIs or schemas that describe the
domains, slots and user intents that annotate the
conversations (Appendix A). Test set dialogues are
grounded in 6 schemas seen during training and 15
unseen ones.

Neural models perform impressively on the diffi-
cult schema-guided DST task (Rastogi et al., 2020),

1Code will be released here: https://bit.ly/3WYB7Fl

but Lee et al. (2022) show that the uniformity of
the descriptive language of the schemas facilitates
this. They create the SGD-X benchmark to evalu-
ate robust zero-shot generalisation of DST models.
This is achieved by grounding the SGD test set
conversations in five schema variants increasingly
dissimilar to the SGD schemata2. To perform well,
a DST model should correctly track the state of
a dialogue when conditioned, in turn, on prompts
constructed from the five variants.

We show how to improve DST robustness by
introducing controlled variability in the data. We
contribute to robust DST research by (1) a flexi-
ble framework for generating and ranking diverse
outputs of a paraphrase model based on a tree-
clustering algorithm designed to control lexical di-
versity and semantic similarity; (2) combine state-
of-the-art paraphrase models and language gen-
eration metrics to generate increasingly diverse
schemata paraphrases; (3) show that augmenting
the training dataset with these schemata improves
the robustness and generalisation performance of
strong DST baselines.

2 Related Work

Input variety, data scarcity and domain shifts affect
the robustness of DST models. Liu et al. (2021) in-
vestigate the former. They employ word-level data
augmentation (DA) (Wei and Zou, 2019), turn para-
phrasing and speech disfluency modeling to approx-
imate their field performance. Turn and dialogue
generation are effective in low-resource settings
(Campagna et al., 2020; Hou et al., 2018) but are
very difficult to scale to new domains and are not
effective in the high-resource setting we consider
(Campagna et al., 2020; Mohapatra et al., 2021).
This also applies to word- and sentence-level meth-

2Variants are ordered according to their lexical similarity to
the SGD schemas. The v1 variant is the most similar whereas
v5 is the most dissimilar. See Appendix A for details and
examples and the schemata here: https://bit.ly/3Ev0KrV.

https://bit.ly/3WYB7Fl
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue/tree/master/sgd_x/data/v1


ods (Quan and Xiong, 2019; Louvan and Magnini,
2020). Lee et al. (2022) find word-order changes
and deletions to be ineffective in the high-resource,
schema-guided setting we consider.

Schema-guided DST tackles both data scarcity
and novel domains by using API definitions to
prompt PLMs (Zhao et al., 2022). Yet Lee
et al. (2022) demonstrate the lack of robustness
of schema-guided DST models to prompt styles
and vocabulary, creating a new research direc-
tion. They show that augmenting the training data
with synthetic prompts obtained via backtransla-
tion significantly improves models’ ability to track
states under meaning-preserving prompt transfor-
mations. Backtranslation is also applied to im-
prove DST robustness to linguistic variation inher-
ent in user communication (Ma et al., 2019; Einol-
ghozati et al., 2019), which is orthogonal to the
prompt style and vocabulary robustness setting we
consider. Reinforcement learning has also been
applied (Yin et al., 2020), but works only in the
very constrained single-domain, ontology-driven
setting. Other TOD-relevant DA approaches apply
to policy learning (Gritta et al., 2021) and response-
generation (Gao et al., 2020; Zhang et al., 2020b).

Addressing the dearth of augmentation methods
designed to ensure prompt robustness of schema-
guided DST models, we propose to generate
schemas by ranking large paraphrase candidate lists
with learned metrics in a tree ranking scheme.

3 Tree-Based Paraphrase Ranking

Tree construction A large pool of schema candi-
dates is created by generating paraphrases given
grids of generation parameters (eg temperature,
number of beams). The set is filtered to ad-
dress generation failures (eg toxic and hallucinated
words). We optionally filter candidates with an en-
tailment model to increase semantic faithfulness
(Narayan et al., 2022) (see Appendix B.1).

The tree constructor (Algorithm 1) takes as input
an object (Node) that stores a metric value, val,
and the candidate paraphrases which are split at
that node, sents. A list of metrics to be com-
puted between each candidate and the input is pro-
vided by the user. This enables our framework to
build arbitrary-depth trees with custom user met-
rics. Each unique list of metric values describing
the distance between the input and a candidate gen-
erates a path in the tree (lines 5-13). The n-ary tree
constructed in this way has the property that level-

order traversal of the first level can yield diverse
candidates with respect to the metric it encodes. In
practice, the metrics measure lexical and semantic
distances between their inputs.

Algorithm 1: Tree building

1: def build_tree(root: Node, inp: str,
cands: list[str], metrics: list[Callable]):

Data: root, inp input , cands input
paraphrases, metrics objects to
eval. dist. between input & cand.

Result: tree splitting cands according
to metrics

2: curr← root ;
3: for c in cands:
4: curr← root ;
5: for m in metrics:
6: m_val = m(inp, c) ;
7: next← get_child

(curr.children, m_val) ;
8: if next is NULL:
9: next← Node (val=m_val,

sents=[c]) ;
10: curr.children.add(next)

11: else:
12: next.sents.add(c) ;
13: curr← next

14: return root

Ranking Our ranker input is the tree and a list
of decision functions, with elements corresponding
to each level in the tree, f_dec. Without loss of
generality, we assume that the first level encodes
a metric with respect to which the user wishes to
maximise diversity (eg lexical distance). As shown
in Figure 1, our algorithm traverses breadth-first the
level for which diversity is to be maximised. Each
subtree returned in the traversal is traversed depth-
first, guided by the decision functions. For example,
in Figure 1 we show that the node B = 0.77 is
selected by applying the max decision function to
the children of J = 66, and that applying min to
the children of B = 0.77 selects the leaf S = 77.
See Algorithm 3 (Appendix B) for details.

4 Experiments

4.1 Schema generation

Our paraphrase model is PegasusParaphrase3, a
fine-tuned Pegasus model (Zhang et al., 2020a).

3Available at https://bit.ly/3vgY7EZ.

https://bit.ly/3vgY7EZ
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Figure 1: Ranking paraphrases of Fare per ticket for journey using a tree. Top level node split is by Jaccard
distance (J), middle nodes split by entailment score (E) and leave nodes store string similarities (S). Here
fdec = [None,max,min]. By using J we guarantee that candidates with J = 0 are syntactic paraphrases if S is
constrained. Orange leaves show top ranked candidates. Numbers on paths show ranking order.

Using 10 settings for the number of beams and
temperature, we generate 500 candidates for each
input. For efficiency purposes, these are filtered
heuristically (Appendix B). We construct a depth
d = 3 tree which splits the candidates by Jaccard
distance J , entailment E, and string similarity S.
That is, the input to our tree constructor (Algorithm
2) is metrics = [J,E, S]. Here entailment is com-
puted using BART (Lewis et al., 2020) as described
in Appendix B. We prune nodes with J > 0.75 to
limit hallucination.

We select k = 5 lexically-diverse paraphrases
that maximise entailment given the constraint that
the returned candidates should be lexically diverse.
First, we select a syntactic paraphrase by travers-
ing the subtree rooted at J = 0 and minimising
S. The remainder of the candidates are selected
by constraining the bread-first traversal of the first
level, which encodes lexical distance, to return the
nodes sorted from high to low. This procedure is
depicted schematically in Figure 1. We sort the
ranked candidate lists for each description accord-
ing to the Jaccard distance between them and the
SGD descriptions. Hence we obtain k = 5 syn-
thetic schema variants, with v1 being the most sim-
ilar to the SGD schema and v5 the most dissimilar.
We refer to this scheme as Pegasus + BART.

4.2 State tracking data augmentation

4.2.1 Baseline models
D3ST The Description-Driven Dialogue Modelling
(D3ST) model (Zhao et al., 2022) is a state-of-the-
art DST model that performs intent tracking, re-
quested slots prediction, and state tracking in a

single pass. See Appendix C for a visual represen-
tation of inputs and targets. We process the data and
train the model as described in Zhao et al. (2022)
and Appendix C, selecting models that maximise
the development set JGA.

T5DST We follow Lee et al. (2022) to imple-
ment a simplified T5DST (Lee et al., 2021a). It
predicts the value of each slot iteratively, requiring
a number of decoding passes equal to the number
of slots in an API to predict the dialogue state given
a dialogue history. Training and inference with this
model is very expensive and we train the models
with a fixed computational budget of 20, 000 gradi-
ent steps4 for the baseline and 40, 000 steps for all
augmented data experiments. See Appendix C for
prompt structure and implementation details.

4.2.2 Evaluation
On SGD, the JGA (JGAorig) is computed for the
4, 201 test set dialogues. 77% of these have a turn
span where the agent calls an API unseen in train-
ing. Only 6 out of 21 schemata are seen in training.

Evaluation on SGD-X proceeds as follows. First,
the SGD descriptions in the prompt are replaced, in
turn, with descriptions taken from the five SGD-X
variants. The DST model then predicts the state of
a given dialogue 5 times, conditioned on prompts
that are increasingly dissimilar to the SGD test set.
Hence, the JGAv1−5 figures reported are averages
over approximately 21, 000 conversations. For all
experiments except oracle (see Section 4.2.3), none
of the test time prompts are seen during training:

4This is the number of steps required for maximising the
development set JGA, for all three runs.



the seen superscript in the metric names reported in
Section 5 identifies conversations where the SGD
test set prompt is seen during training. Therefore, it
quantifies whether the model can robustly identify
slots seen in training by interpreting the meaning
of the descriptions rather than relying on linguistic
patters in the training schema. Meanwhile unseen
measures the ability of the model to generalise
to new APIs, which may describe new slots and
domains, notwithstanding the language used by
developers to phrase the descriptions. The JGA co-
efficient of variation (ie schema sensitivity, SSJGA)
as the prompt changes measures the sensitivity of
a model to the prompt (Lee et al., 2021b).

Metric Ranking v1 v2 v3 v4 v5

Jaccard Dist

Pegasus + BART 17.1 63.0 69.5 72.0 76.6
Backtranslation 18.2 29.9 43.9 - -

EDA 3.9 4.1 6.1 16.0 32.9
SGD-X 55.6 65.6 71.2 78.1 85.7

Entailment

Pegasus + BART 99.0 96.7 94.9 94.6 94.4
Backtranslation 97.5 96.5 95.9 - -

EDA 99.1 98.5 96.6 93.2 86.4
SGD-X 89.7 88.0 88.4 86.8 87.5

BLEU

Pegasus + BART 13.4 12.5 12.5 13.2 12.7
Backtranslation 36.4 26.0 18.9 - -

EDA 72.0 63.3 47.2 42.3 44.2
SGD-X 20.4 15.3 10.8 8.3 5.2

self-BLEU

Pegasus + BART - 12.0 11.4 11.0 10.9
Backtranslation - 49.3 41.7 - -

EDA - 87.0 68.8 58.0 53.1
SGD-X - 13.5 11.2 9.9 8.6

Table 1: Automatic synthetic schema evaluation. J is
multiplied by 100 for readability.

4.2.3 Experimental setup
We show our approach is effective by augmenting
the DST training data with synthetic prompts com-
posed from our generated schemata. To study the
effect of controlling prompt diversity augmented
datasets are two (2x) to six times (6x) the SGD
size. For 2x, augmented data contains prompts con-
structed from the v1 synthetic schema, whereas for
6x we use all five generated schemas5.

Baselines We create three synthetic schema by
backtranslation. Our pivot languages are Korean,
Japanese and Chinese (Lee et al., 2022). The aug-
mented DST training dataset is four times (4x)
larger than SGD. Following Huang et al. (2021),
we also consider French and Russian as pivot lan-
guages to generate two more synthetic schemas and
obtain an augmented dataset six times (6x) larger
than SGD. We also compare with easy data aug-
mentation (EDA) (Wei and Zou, 2019), a word-
level DA approach based on synonym replacement

5Ordering is from most (v1) to least (v5) similar to SGD.

(SR), random insertion, deletion and substitution.
We perform SR with probability 0.25 and the other
operations with equal probability of 0.05. Just
like for backtranslation, we generate 3 or 5 syn-
thetic schemas with this method via the public API.
Augmentation with the SGD-X human schemata
paraphrases is considered an oracle because these
models see the SGD-X schemata at training time.

5 Results and Discussion

5.1 Synthetic schema generation

Our ranking method generates increasingly lexi-
cally diverse schemata as shown by the increase in
Jaccard distance across schema variants (Table 1).
This aspect is much more difficult to achieve with
EDA without significantly affecting semantics. Fur-
thermore, self-BLEU (Zhu et al., 2018) scores indi-
cate EDA is the least effective in ensuring candidate
diversity compared to other approaches. The BLEU
difference between the SGD-X variants v1 and v5
is 15.2 but smaller (0.66) for our approach. Hence,
the PEGASUS + BART copies n-grams from the
input and includes additional information. This in-
formation is not always meaning-preserving: City
where the event is happening is paraphrased as The
bustling city where the event is taking place (v5)
but End date for the reservation or to find the house
is paraphrased as End date for hotel reservation to
allow time for a replacement both at the struck and
in the run up to the event (v5). The self-BLEU of
the SGD-X schemas decreases faster compared to
the automatically generated paraphrases, suggest-
ing that Jaccard distance increases partly due to
hallucination.

Entailment scores show that backtranslation is
effective in preserving semantics. For EDA, the se-
mantic similarity drops significantly as more candi-
dates are generated since more dissimilar schemas
are generated with more edit operations which are
likely to affect meaning. The entailment scores for
the SGD-X paraphrases are also lower since they
do not always perfectly semantically overlap with
the input by construction (Lee et al., 2022) and
because of entailment model errors.

5.2 Dialogue state tracking

D3ST Both the robustness and robust generali-
sation are improved by augmentation with our
synthetic schemas, as demonstrated by maximum
JGAseen

v1−5
(12.35%) and JGAunseen

v1−5
(5.85%) in-

creases and 23.6% drop in SSJGA (rows 1&4, Ta-



Model Index Generation method - Dataset size JGAorig ↑ JGAv1−5 JGAseen
v1−5

JGAunseen
v1−5

SSJGA ↓
1 None - 1x 69.8 56.5 73.6 50.8 70.1
2 Pegasus + BART - 2x 72.8 61.3 80.9 54.8 56.4
3 Pegasus + BART - 4x 72.6 62.5 81.7 56.1 51.0
4 Pegasus + BART - 6x 71.2 63.9 85.9 56.6 46.5
5 EDA - 4x (Wei and Zou, 2019) 71.0 59.0 78.5 52.5 63.0
6 EDA - 6x (Wei and Zou, 2019) 71.4 62.3 83.3 55.3 53.2
7 Backtranslation - 4x (Lee et al., 2021b) 72.1 62.2 84.0 54.9 53.1
8 Backtranslation - 6x (Huang et al., 2021) 71.5 61.0 82.5 53.8 54.4

D3ST

9 SGD-X - 6x (Lee et al., 2021b) (Oracle) 73.8 69.7 92.5 62.1 27.9
10 None 70.0 50.4 58.5 47.7 87.0
11 Pegasus B + BART - 4x 71.3 55.1 71.2 49.7 70.1
12 Pegasus + BART - 6x 68.7 52.5 71.6 46.5 77.6
13 EDA - 6x (Wei and Zou, 2019) 72.2 51.1 55.6 49.6 84.1
14 Backtranslation - 4x (Lee et al., 2021b) 72.8 53.9 67.0 49.6 76.4

T5DST

15 SGD-X - 6x (Lee et al., 2021b) (Oracle) 74.2 67.2 91.8 59.0 36.6

Table 2: SGD and SGD-X dialogue state tracking performance when training with augmented data. Best performance
(excluding the oracle setup) is in bold. Dataset size is the number of times the augmented dataset is larger than
SGD.

ble 2). The most benefit is obtained by training with
syntactically diverse prompts (Pegasus + BART
2x). Adding more diverse data (rows 3&4) im-
proves DST performance. Part of this improvement
may arise because paraphrasing leaves out domain-
dependent information: Average review rating of
the doctor is paraphrased as The rating is average,
so it’s not perfect, so the model can learn to identify
ratings more generally6. Moreover, inputs are noisy
due to hallucination, so the models trained with our
augmentation are less likely to overfit to the lin-
guistic patterns of the training schemas. BLEU
scores indicate high lexical overlap between EDA-
generated and SGD schemas (Table 1). This limits
the magnitude of EDA improvement (row 5) and
we perform better with less data (rows 3&6, 2&5).

Backtranslation is comparable with our method
given the same data quantity (rows 3&7). When we
also backtranslate via French and Russian (Huang
et al., 2021) the data diversity does not significantly
increase (Table 5, Appendix D.1). This negatively
impacts the DST performance, while our method
improves it (rows 4&8). We can control the schema
generation process to match SGD backtranslation
performance (Appendix E).

T5DST7 We outperform EDA (rows 12&13) but
not backtranslation (row 14). This may be due
to (1) the larger computational budget needed to
maximise T5DST performance8 and (2) T5DST’s
sensitivity to noisy descriptions owing to its prompt
format (Appendix C). We control hallucination by
pruning candidates with J > 0.5 and entailment

6It appears in 4 unseen services in the test set.
7Lee et al. (2021b) report 72.6% JGA on SGD and 64.0%

SGD-X but we could reproduce only 69.98% and 50.42%.
8Each training example is seen only once.

smaller than 0.58 and maximise J while minimis-
ing S to produce an augmented dataset 4x larger
than SGD (Pegasus B + BART 4x). Limiting
lexical diversity improves entailment compared to
Pegasus + BART 6x (Table 6, Appendix D.1), and
the scheme improves DST robustness compared to
the backtranslation baseline (rows 11&14).

The best augmentation schemes fail to improve
robustness and generalisation relative to the human
baseline (rows 9&15). This is due to the intrinsic
challenge of generating diverse yet semantically
faithful paraphrases but also due to the fact that hu-
mans use common sense and schema information
when paraphrasing, so the SGD-X paraphrases are
not strictly semantically equivalent. However, the
proposed automatic process of paraphrase genera-
tion enhances DST, yielding non-trivial improve-
ments in model robustness, while being less costly
and more scalable compared to gathering human-
written schemata paraphrases.

6 Conclusion and Future Work

We presented a simple tree-based ranking algo-
rithm for optimising lexical diversity and semantic
faithfulness during schema generation. The syn-
thetic schemas improve both the DST models’ ro-
bustness to schemata writing style and their gen-
eralisation. Our framework will allow researchers
working on paraphrase generation and semantic
faithfulness to measure the generalisation of their
models in a way that may be difficult to capture
by existing benchmarks: it can generate schemata
paraphrases and train SOTA dialogue state trackers
which were shown to benefit from augmentation
with high quality, crowdsourced paraphrases.



Limitations

The optimality of our ranking method depends on
the ability of the underlying paraphrase model to
generate a search space that contains paraphrases
which are lexically and syntactically diverse and
preserve the meaning of the input description.
This is sometimes challenging with schema inputs
which tend to be short (e.g. name of event) and
contain little information. Our future work will
focus on addressing this by contextualising these
inputs to enable the paraphrase model to produce a
richer space of candidates. Secondly, our method
requires that the semantic faithfulness metrics cap-
ture semantic similarity well even as the vocab-
ulary of the candidates and their syntax are very
diverse. Previous work on abstractive summarisa-
tion (Narayan et al., 2022; Maynez et al., 2020;
Kryscinski et al., 2019) finds entailment scores to
be best correlated with human judgment of faithful-
ness. However, the correlations are not perfect so
the output of the ranking algorithm is still expected
to contain noisy candidates. For slot description
paraphrases, this is challenging because different
inputs are very closely semantically related and
the entailment model may not identify paraphrase
model errors that map a slot description (e.g. de-
parture time) to one with related semantics (e.g.
arrival time). We intend to address this in future
work by developing finetuning schemes for seman-
tic faithfulness metrics.

Ethics Statement

Our work is concerned with the use of language
generation models to augment training datasets for
schema-guided dialogue datasets. The generation
phase is unconstrained, so the model may generate
candidates that exhibit biases inherited from the C4
(Raffel et al., 2020) and HugeNews (Zhang et al.,
2020a) pre-training datasets. In our experiments,
we did not observe toxic or harmful outputs, but
on one occasion the model did generate the word
apartheid as part of an incoherent sentence. For
this reason, our filtering stack rejects any candi-
dates containing sensitive words. The list of words
that parameterize the sensitive words filter is de-
fined by the user.
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A The SGD and SGD-X datasets

SGD As mentioned in Section 1, the conversa-
tions in the SGD dataset are grounded in schemata,
which describe a set of service APIs. The most
important schema elements are9:

• a service name (e.g. Messaging_1) followed
by a service description (e.g. Connect and
share locations with your contacts)

• one or more API functions to be invoked as
users solve tasks, referred to as (user) intents;
each intent has a name (e.g. ShareLocation)
and an intent description (e.g. Send your lo-
cation to a contact)

• optional and required arguments for each API
function, or slots; each slot has a name (e.g.
location) and a slot description (e.g. Location
to share with the contact)

SGD-X Lee et al. (2022) observe that 71% of
intent names and 65% of slot names from unseen
APIs exactly match the train set. Furthermore, de-
scriptions are stylistically uniform across the train
and test sets. For example, all boolean slots be-
gin with the phrase Boolean flag ... or Whether....
Therefore, they create the SGD-X dataset as fol-
lows:

• crowdsource schema element paraphrasing
to more than 400 authors via Amazon Me-
chanical Turk. Each crowdworker either para-
phrases all names or all descriptions for a
given schema

9Examples below are taken from the SGD test set.
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• manually vet responses for quality and cor-
rectness.

The slot names collected are sorted in increasing
order of their Levenshtein distance to the SGD slot
names whereas the descriptions are sorted accord-
ing to the Jaccard distance between their lemma-
tized forms (excluding stop words). An example of
SGD-X description paraphrases in shown in Table
3.

Variant Description
SGD Category to which the attraction belongs

v1 The category that describes what kind of attraction it is
v2 Category of place of interest
v3 Type of tourist attraction
v4 Choose the kind of tourist landmark
v5 The kind of tourist hotspot

Table 3: Example of descriptions paraphrases from the
SGD-X test schemas. The more similar v1 description
contains overlapping vocabulary with the SGD test set
description, whereas v4 and v5 variants are dissimilar
both stylistically and lexically

While the examples above are paraphrases of
the SGD input, in general, the semantic content
of the schema element paraphrases is not perfectly
overlapping with the input as the crowdworkers use
information from the wider service context when
creating new elements.

B Ranking Framework

B.1 Candidate generation
Algorithm 2 summarises the candidate generation
procedure, which takes any paraphrase model, a
list of model-specific generation parameters and,
optionally, a list of filters as an input (line 1). These
parameters are temperature and number of beams
for Pegasus, or a grid of lexical, semantic and syn-
tactic distances for the Quality Controlled Para-
phrase Generation (QCPG) (Bandel et al., 2022)
model presented in Appendix E. The model gen-
erates one or more paraphrases, which are filtered
before returning (lines 3-8). We describe the filter-
ing process next.

Heuristic filtering Our main motivation for im-
plementing heuristic filters is to filter the majority
of poor quality candidates, without making use of
the large GPU cards required to run the entailment
model. We also address the fact that the model
is free to generate a very large number of candi-
dates and therefore is expected to hallucinate sig-
nificantly. These filters are general purpose and are

implemented in few lines of code using the spaCy
and nltk libraries. Table 4 lists active filters along
with typical examples filtered.

Entailment filtering We implement our entail-
ment filter using BART (Lewis et al., 2020)10.
This model is pre-trained on the MNLI dataset
(Williams et al., 2018). To measure entailment this
model consumes a premise and hypothesis in the
format premise <SEP> hypothesis. In our imple-
mentation we replace premise with the description
to be paraphrased. By default, the hypothesis is
a template of the form This example is {}.,
where {} is a placeholder for the user hypothesis,
in our case the paraphrased description. We find
that considering alternative templates improves the
reliability of the model, so we consider {}, This
example has the same meaning as {}., This
text is about {}., and This example implies
that {}., averaging the entailment scores across
templates to calculate the entailment score. The
same procedure is followed when computing the
entailment of candidates during ranking.

Algorithm 2: Candidate generation

1: def generate_candidates(model: Any,
inp: str, params: dict, filters:
Optional[list[Callable]]):

Data: model text generation model, inp
input sentence, params model
specific parameters, filters a
list of boolean functions

Result: cands list of inp paraphrases
2: cands← [] ;
3: for p in params:
4: c← model.forward(inp, **p) ;
5: c← [p for p in c if not any(f(p,

inp) for f in filters)]
6: cands.extend(c)

7: return cands

B.2 Ranking

Ranking Algorithm 3 summarises the tree-ranking
procedure. This procedure takes as an input the
tree constructed as described in Algorithm 1, along
with a list of decision functions f_dec. Our algo-
rithm starts by selecting a paraphrase via depth first
traversal of the subtree rooted at J = 0 (line 2).
The remainder of the candidates are selected by

10Avaialble at https://huggingface.co/facebook/
bart-large-mnli.
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Filter name Filtered example

contains advice An appointment is necessary for your hair.
describes action They commemorate the number of flights to the airport.
has named entities Enter the doctor’s Leningrad address.
has low frequency words The address is ofadvisory.
discard multiple sentences The address is the dentist’s box. Guidelines for hiring a dentist.
has repeated ngrams The dentist is Address of the dentist.
has repeated similar bigrams The type of event is stated in the title of the event.
has consecutive repeated words Average review rating for a hotel hotel.
is past tense sentence It was the dentist’s address.
is passive voice sentence The address was given by abrasives from the dentist.
is question Is there a balance of the account?
has alphanumeric words 400 baths in an apartment.

Table 4: Filters implemented along with sample examples they discard

Algorithm 3: Tree ranking

1: def tree_rank(root: Node, n: int, f_dec:
list[Callable]):

Data: root, n number of candidates,
f_dec decision functions

Result: list of n ranked candidates
2: ranked← syntax_select (root) ;
3: n← n - len(ranked) ;
4: while len(ranked) ̸= n:
5: for next in level_order (root):
6: for f in f_dec:
7: cand← select (next.sents) ;
8: ranked.add(cand) ;
9: prune (next, cand) ;

10: return ranked

traversing the first level in a breadth-first manner
(line 5) and depth-first traversal of each subtree
returned during the level-order traversal (lines 6-
8). Here the semantics of f(next.children) is
that the decision function f takes all the children
of next as input and returns a single node which is
next in the traversal. A candidate is selected from
the leaf11(line 8) and subsequently removed from
the candidates list (line 10). This is to avoid select-
ing the same candidate multiple times in situations
where the paraphrase model generates few distinct
candidates.

C State Tracking Baselines

D3ST We process the data as described by Zhao
et al. (2022) with the following differences:

11There can be multiple, possibly repeated candidates in
a leaf because the generative model may generate the same
output given different parameter settings. We select the most
common one if there are repeated candidates and randomly
otherwise.

• The indices are separated by the = symbol
in both the inputs and the targets, to avoid a
parsing ambiguity which occurs for time slots
if : is used as a separator for targets

• For categorical slots which take the
dontcare special value, our output contains
slot_index: dontcare substring and we
do not include the dontcare value in the
prefix together with the other options

• We lowercase the inputs and the targets12.

We obtain 175, 780 examples from the original
SGD dataset, which are truncated to the last 1, 024
tokens on the input side. See Figure 2a for a visual
representation of the model inputs and outputs. We
optimise the model using the Adafactor optimizer
and effective batch size 32, starting from the ini-
tial weights google/t5-v1_1-base published by
huggingface (Wolf et al., 2019). We interpolate
the learning rate linearly between 0 and 10−4 over
the first 1000 steps and keep it constant thereafter.
We select the model by evaluating the development
set JGA every 5000 gradient updates, stopping the
training if said metric fails to improve after 3 con-
secutive evaluations. All numbers in Table 2 are
averages of 3 runs, except the SGD-X experiment
for T5DST which is a single run.

T5DST Given a dialogue in the SGD train-
ing set we consider all partial dialogue histo-
ries {u1, s1, ...st−1, ut} with t ∈ 0, T where T
is maximum index of the user turn in a dia-
logue. The turns in each dialogue history are
lowercased and separated [usr] and [sys] to-
kens, not treated as special tokens. For each di-
alogue history we create a training example for

12This appears in illustrations but is not explicitly stated by
(Zhao et al., 2022).



(a) Visual representation of D3ST inputs and targets. Blue font blue, preceding the [USR] special token represents the
prompt, consisting of slot descriptions extracted from the schema. Each slot is assigned an index,
which is used to recover the slot value pairs during post-processing. Note that slot 4 is categorical,
and so the string a) 1 b) 2 c) 3 d) 4 is appended to the description to indicate the model that it should output one
of the choices. The dialogue history follows the [USR] token. The model outputs only active slots, in this case omitting slot 1
because is has not been mentioned. The entire dialogue state (as opposed to turn state) is generated at every turn.

(b) Visual representation of T5DST inputs and targets. The string [slot] separates the dialogue history from the slot description.
In the first example the model outputs the special value none to indicate that the slot was not mentioned by the user. For
categorical slots (second row from the top), the slot description is concatenated with options containing all possible slot values
and the model predicts the correct option. For non-categorical slots (third row), the exact value is predicted. The ellipsis indicates
that none is predicted for all other slots in the Restaurant_1 schema that are not mentioned in the dialogue history

Figure 2: Prompt formats for a) D3ST b) T5DST

each slot in the ground truth schema, which con-
tains the concatenated turns suffixed with the string
[slot] [slot_description] where the place-
holder [slot_description] is replaced by the
lowercase descriptions extracted from the SGD
schemata. This yields 1, 601, 356 examples for
the SGD training dataset. See Figure 2b for a rep-
resentation of the model inputs and outputs.

We optimise the model using the Adafactor opti-
mizer and effective batch size 256, starting from the
initial weights google/t5-v1_1-base published
by huggingface. We interpolate the learning rate
linearly between 0 and 10−4 over the first 1000
steps and keep it constant thereafter. We perform
20, 000 optimisation steps13, limiting the number
of training steps to 40, 000 steps14 for all aug-
mented data experiments. All numbers in Table
2 are averages of 3 runs, except the Oracle experi-
ment on T5DST which is a single run.

13For a single run, this is approximately 6 hours of compu-
tation on 8 nvidia A100-80GB cards. Moreover, decoding a
single run on SGD and SGD-X takes 6 hours.

14This is sufficient so that the model sees every example
once when working with an augmented training set six times
the size of SGD.

D Additional Results

D.1 Increasing backtranslation dataset size

We include Table 5 to substantiate our intuition that
the training with the Backtranslation 6x scheme
does not yield further improvement compared to
the Backtranslation 4x scheme as the additional
data does not significantly increase the prompt di-
versity. Most clearly, this is indicated by the fact
that the v5 variant has similar BLEU to variant v3
in Backtranslation 4x, indicating that a large pro-
portion of additional data has some overlaps more
with the SGD distribution than the data backtrans-
lated to Chinese, Korean and Japanese. This is also
indicated by how self-BLEU decays as more data is
added, comparatively, between Backtranslation
4x and Backtranslation 6x.

D.2 Controlling schema generation diversity

Table 6 shows that the alternative schema scheme
generates schemas with lower average Jaccard dis-
tance and higher entailment with respect to the
SGD schemata. We find this effectively controls the
noise in the data, leading to improved performance



Metric Ranking v1 v2 v3 v4 v5

Jaccard Dist Backtr. 4x 18.2 29.9 43.9 - -
Backtr. 6x 12.9 22.7 27.8 35.6 46.7

Entailment Backtr. 4x 97.5 96.5 95.9 - -
Backtr. 6x 98.0 97.5 95.2 94.8 95.5

BLEU Backtr. 4x 36.4 26.01 18.9 - -
Backtr. 6x 51.3 37.2 29.5 23.4 18.2

self-BLEU Backtr. 4x - 49.3 41.7 - -
Backtr. 6x - 55.3 49.7 44.6 39.6

Table 5: Effect of using French and Russian as addi-
tional pivot languages on automatic metrics

Metric Ranking v1 v2 v3 v4 v5

Jaccard Dist
Pegasus + BART 13.0 61.2 68.8 71.2 76.2

Pegasus B + BART 10.2 38.3 46.9 55.1 54.5
SGD-X 55.6 65.6 71.2 78.1 85.7

Entailment
Pegasus + BART 99.1 96.3 94.6 94.2 94.2

Pegasus B + BART 98.8 98.2 96..4 96.2 96.7
SGD-X 89.7 88.0 88.4 86.8 87.5

Table 6: Comparison of diversity and semantic faith-
fulness metrics for slot description paraphrases

Index Augmentation JGAorig JGAv1−5 JGAseen
v1−5

JGAunseen
v1−5

SSJGA

1 Pegasus+BART 6x 71.2 63.9 85.9 56.6 46.5
2 Pegasus+BLEURT 6x 72.4 64.0 86.6 56.4 46.6
3 QCPG+BLEURT 6x 72.7 63.2 85.2 55.9 47.3
4 Backtranslation 4x (Lee et al., 2021b) 72.1 62.2 84.0 54.9 53.1

Table 7: Ranking with a more accurate semantic faithfulness metric (row 2) or generating candidates with a
controllable paraphrase model (row 4) can be used to boost SGD performance over our Pegasus+BART approach
(row 1). Bold font marks column maximum, underlined second largest number.

for T5DST and similar performance to PEGASUS +
BART for D3ST.

E Schema Generation with BLEURT and
QCPG

BLEURT (Sellam et al., 2020) is a BERT-based
natural metric commonly used in translation, so it
is expected to be highly sensitive to semantic differ-
ences. In Table 7 we show that simply re-ranking
the Pegasus output space with BLEURT improves
SGD performance comparably with backtransla-
tion (rows 2&4) and the robustness and generalisa-
tion improvements are maintained.

Bandel et al. (2022) exploit high quality exam-
ples in paraphrase corpora by conditioning the
model with a string quality parameters string out-
lining target semantic, syntactic and lexical dis-
tances of the generated paraphrase during finetun-
ing. At inference one must specify these parame-
ters to obtain diverse yet high quality paraphrases.
We could not apply the quality parameter selection
method proposed by QCPG authors at inference
time as the code had not been fully released at the
time of writing. Instead, we generated a large num-
ber of paraphrases with different quality targets and
greedy decoding, and re-ranked the candidates us-
ing our framework. This demonstrates the versatil-
ity of our framework. In Table 7 we show that this
model can equally achieve improved performance
on SGD. The improvement on SGD-X is slightly
less than achieved by PEGASUS+BART 6x, as ex-
pected since greedy decoding and better semantic
faithfulness optimisation generate schemata closer

to the SGD distribution so less out-of-distribution
improvement is achieved.

This experiments in this section and Appendix
D.2 demonstrate the versatility of our framework
and its usefulness as a tool for generating synthetic
schema prompts.


