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Abstract

Stochastic acoustic models are an important component in Automatic Speech Recog-
nition (ASR) systems. The model parameters in Hidden Markov Model (HMM)
based speech recognition are normally estimated using Maximum Likelihood Estima-
tion (MLE). If certain conditions hold, including model correctness, then MLE can
be shown to be optimal. However, when estimating the parameters of HMM-based
speech recognizers, the true data source is not an HMM and therefore other training
objective functions, in particular those that involve discriminative training, are of in-
terest. These discriminative training techniques attempt to optimize an information
theoretic criterion which is related to the performance of the recognizer.

Our focus in the first part of this work is to develop procedures for the estimation
of the Gaussian model parameters and the linear transforms (used for Speaker Adap-
tive Training) under the Maximum Mutual Information Estimation (MMIE) criterion.
The integration of these discriminative linear transforms into MMI estimation of the
HMM parameters leads to discriminative speaker adaptive training (DSAT) proce-
dures. Experimental results show that MMIE/DSAT training can yield significant
increases in recognition accuracy compared to our best models trained using Maxi-
mum Likelihood Estimation (MLE). However by applying MMIE/DSAT training in
ASR systems, performance is optimized with respect to the Sentence Error Rate met-
ric that is rarely used in evaluating these systems.

The second part of this thesis investigates how ASR systems can be trained using
a task specific evaluation criterion such as the overall risk (Minimum Bayes Risk) over
the training data. Minimum Bayes Risk (MBR) training is computationally expen-
sive when applied to large vocabulary continuous speech recognition. A framework for
efficient Minimum Bayes risk training is developed based on techniques used in MBR
decoding. In particular lattice segmentation techniques are used to derive iterative
estimation procedures that minimize empirical risk based on general loss functions
such as the Levenshtein distance. Experimental results in one small and two large
vocabulary speech recognition tasks, show that lattice segmentation and estimation

techniques based on empirical risk minimization can be integrated with discriminative
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training to yield improved performance.
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Chapter 1

Introduction

1.1 Motivation

Automatic Speech Recognition (ASR) is the automatic transcription of human
speech by machines. These systems have been around for many years with numer-
ous applications such as dictation, telephone directory assistance, call routing and
human-computer interface. During this period a large body of knowledge and expe-
rience has been acquired that has resulted in significant improvement in the ability
and performance of ASR systems for processing speech and natural language.

The progress achieved during the past years can be attributed mainly to ad-
vances in statistical modeling techniques used for acoustic, language modeling and
the ability for learning from large speech and text corpora. Due to this progress
ASR systems are now becoming a reality and in the past few years they have started
to see greater usability on a wide-spread scale, primarily due to the availability of
continuous-speech dictation systems for the personal computer (PC). Nevertheless
the performance achieved is still not comparable to that achieved by humans. The
goal of this thesis is to develop discriminative training procedures to improve perfor-

mance of ASR systems.



1.1.1 Likelihood vs Discriminative based training

The model parameters in Hidden Markov Model (HMM) based speech recogni-
tion systems are normally estimated using Maximum Likelihood (ML) [13, 3]. HMMs
have been used successfully in speech recognition for many years, in a large variety
of tasks ranging from recognition of a few hundred words for small vocabulary tasks
to large vocabulary conversational speech recognition. However, in many aspects the
assumptions behind the HMM framework are poor. The limitations of the Maximum
Likelihood Estimation (MLE) procedures used widely in (HMM) speech recognition
systems are well known. One of the most commonly cited problems is the violation
of the model correctness assumption [62],[84].

Parameterized models obtained via MLE [13, 3, 66] can be employed optimally
for detection and classification in the large data case if the data encountered is gen-
erated by some distribution from the model family. In speech, various conditional
independence assumptions are made so that HMMs can be implemented efficiently,
but these surely lead to violations of the model correctness assumption. Given these
assumptions, it is unlikely that the processes that actually generate speech can be
closely modeled by HMMs. Therefore ML estimation of HMMs cannot be relied upon
to yield models that are optimum for ASR.

During ML training, the Gaussian model parameters are adjusted to increase
the likelihood of the word strings corresponding to the training utterances, but do
so without taking account of the probability of other possible word strings. As an
alternative to ML estimation, there are modified estimation procedures that directly
attempt to optimize automatic speech recognition (ASR) performance criteria |2,
59, 61, 84] such as the sentence error rate (SER) in the training set leading to the
Maximum Mutual Information (MMI) criterion [2, 61]. This Discriminative training
scheme attempts to increase the a posteriori probability of the reference transcription.

Unfortunately discriminative re-estimation of the Gaussian model parameters un-
der the Maximum Mutual Information (MMI) criterion is much more complex and
requires substantially more computation than the corresponding ML case[62]. Nev-

ertheless, lattice based MMI estimation techniques have recently been shown to be



useful in improving the recognition performance in large vocabulary conversational
speech recognition (LVCSR) tasks [77, 84]. Its success has triggered an interest to
applying discriminative training to all aspects of the ASR system.

The next section provides an overview of previous research in the field and serves
as an introduction to some of the issues tackled in this thesis. Finally an outline of

the thesis is presented.

1.2 Proposed Work

This thesis focuses on two research areas, namely discriminative training of acous-
tic models for speaker adaptation and minimum Bayes risk estimation in large vo-

cabulary continuous speech recognition.

1.2.1 Linear transforms in ASR

Speech recognition performance degrades significantly when there is a mismatch
between training and testing conditions. In typical state-of-the-art large vocabu-
lary conversational speech recognition (LVCSR) systems a single model is developed
using data from a large number of speakers to cover the variance across dialects,
speaking styles, etc. However there are speakers who are poorly modeled using this
paradigm. Because it is difficult to estimate separate models for these speakers, lin-
ear transforms have been used extensively in the estimation of HMM-based ASR
systems[25, 32, 43, 1], either for feature-space or for model-space transformation.

One application of linear transforms in feature space modeling is the decorrelation
of the feature vector, typically termed Maximum Likelihood Linear Transformation
(MLLT) [32, 26]. It is well known that explicit modeling of correlations between spec-
tral parameters in speech recognition results in increased classification accuracy and
improved descriptive power. However, computational, storage and robust estimation
considerations make the use of unconstrained, full covariance matrices in HMM ob-
servation distributions impractical. The Maximum Likelihood Linear Transformation

(MLLT) [32, 26] framework applies a linear transform to the acoustic features in an



attempt to capture the correlation between the feature vector components.

A second application done in the model space is the constrained adaptation of the
acoustic models to the speaker, the channel, or the task, and this is termed Maximum
Likelihood Linear Regression (MLLR)[46, 47, 15]. In general, adaptation techniques
are applied to well trained speaker independent model sets to enable them to better
model the characteristics of particular speakers. Thus, it would be advantageous using
a small amount of a test speaker’s data to adapt the speaker independent (SI) model
to the speaker. Speaker Adaptation has been shown to be effective in improving the
performance of speaker independent (SI) LVCSR systems by adapting the system to
the test set.

Adaptation can also be applied to the speakers in the training set, to produce
matched conditions with the test set and this is termed Maximum Likelihood (ML)
Speaker Adaptive Training (SAT) [1]. The goal of SAT is to reduce inter-speaker
variability within the training set. SAT is an iterative procedure that generates one
or more transforms to represent each training speaker and/or acoustic environment.
Then a canonical model is trained given these speaker dependent transforms. SAT
is a powerful technique for building speech recognition systems on non-homogeneous

data.

1.2.2 Discriminative Linear Transforms

It is also possible to formulate Discriminative estimation procedures for these
applications of linear transforms. When estimated in this manner they are called
Discriminative Linear Transforms (DLT) [75]. One approach to the use of DLTs is
Maximum Mutual Information Linear Regression (MMILR) which was introduced
by Uebel and Woodland [75, 76], who showed that it can be used for supervised
speaker adaptation. Gunawardana and Byrne [35] introduced the Conditional Max-
imum Likelihood Linear Regression (CMLLR) algorithm and showed that CMLLR
can be used for unsupervised speaker adaptation.

Maximum likelihood linear transforms have also been incorporated with MMI

training. McDonough et al. [54] combined SAT with MMI by estimating speaker



dependent linear transforms under ML and subsequently used MMI for the estima-
tion of the speaker independent HMM Gaussian parameters. Similarly, Ljolje [50]
combined MLLT with the MMI estimation of HMM Gaussian parameters. These
transforms were found using ML estimation techniques and were then fixed through-
out the subsequent iterations of MMI model estimation. These are hybrid ML/MMI
modeling approaches.

Discriminative criteria have also been combined with Linear Discriminant Anal-
ysis (LDA)[68]. In LDA [38, 36, 43] a transform is estimated by a class separability
criterion and is used to select a compact subset of the original feature set which results
in improved processing time and yields minimal decrease in the overall performance
of the system. Linear MMI Analysis (LMA) [68], on the other hand, replaces the
class separability criterion of LDA with a MMI criterion. As observed by Schliiter
[68], although for single densities a relative improvement in word error rate could be
observed for LMA in comparison to LDA, the prominence of LMA diminishes with
increasing parameter numbers.

Until recently the most widely used estimation technique for MMIE training came
from the Extended Baum-Welch Algorithm (EBW) by Gopalakrishnan et al [31].
Normandin [62] extended the EBW algorithm to HMMs with continuous Gaussian

densities by using a sequence of discrete approximations.

1.2.3 Novel contributions in Speaker Adaptive Training

Here we propose training procedures that can be used both for MMIE estima-
tion and for speaker adaptive training. In speaker adaptive training the conventional
HMM parameter framework 6 is extended to accomodate speaker specific transfor-
mations in order to produce matched conditions with the test set. They are based on
the Conditional Maximum Likelihood (CML) criterion and estimate both the HMM
gaussian parameters used in MMIE (4.4) and the linear transforms used in speaker
adaptive training (5.7). Thus we obtain fully discriminative procedures for speaker
adaptive training termed (DSAT)[73]. These procedures are derived by maximizing

Gunawardana’s Conditional Maximum Likelihood (CML) auxiliary function (equa-



tion 4,[34]) that does not require the quantization of the continuous Gaussian densities

and can be applied to arbitrary continuous emission density HMMs.

1.2.4 Minimum Bayes Risk Discriminative Training

The training and decoding procedures of most current state-of-the-art Automatic
Speech Recognition (ASR) systems are optimized with respect to the sentence error
rate (SER) metric that is rarely used in evaluating these systems. Rather than using
the (SER) metric as a training criterion we estimate the acoustic models under a
criterion that is more closely related to the ASR recognition performance namely the
word error rate (WER). The second part of this thesis investigates the use of dis-
criminative training algorithms that estimate the Gaussian model parameters so as
to reduce the overall risk over the training data. Risk minimization techniques have
been applied successfully in many fields such as defense (war games), finance (equity
investments), gambling (game theory) [64, 80, 74].

Prior research into the use of minimum Bayes-risk criteria for training speech rec-
ognizers were performed by Nadas [57, 58] and by Kaiser [41, 42]. The measurement
of risk derives from a loss function that is appropriately chosen for the recognition
task; for example, in ASR the Levenshtein distance [49] that measures the word error
rate (WER) is most commonly used. Kaiser’s approach which was applied on a small
vocabulary task, is a generalization of MMIE and uses the Extended Baum Welch
algorithm [31] for the estimation of the HMM model parameters.

While reducing expected loss on the training data is a desirable training crite-
rion, these algorithms can be difficult to apply in large vocabulary continuous speech
recognition systems. These systems typically have several million parameters and
require many hours of training data. Unlike MMI estimation where efficient lattice
based estimation techniques have been developed [77, 84], these algorithms require
an explicit listing of the hypotheses to be considered and in complex problems such
lists tend to be prohibitively large. The problem is that although lattice based struc-
tures used for large vocabulary tasks make likelihood estimation easy, they do not

help with the computation of the risk.



1.2.5 Novel contributions

To overcome this difficulty, modeling techniques originally developed to improve
search efficiency in Minimum Bayes Risk (MBR) decoding[28, 30] can be used to
transform these estimation algorithms so that exact update, risk minimization proce-
dures can be used for complex recognition problems. Minimum Bayes Risk Decoding
is an alternative ASR search strategy that produces hypotheses in an attempt to
minimize the empirical risk of speech recognition errors [71, 30]. MBR decoding has
been found to consistently provide improved performance relative to straightforward
mazimum-a-posteriori (MAP) decoding procedures. This is usually credited to the
integration of the task performance criterion (WER) directly into the decoding pro-
cedure. In our case we use lattice segmentation strategies discussed in section (6.3)
that decompose a single large lattice into a sequence of smaller sub-lattices and obtain
a “pinched” lattice. This approach can be thought of as identifying the recognition
problems that remain after the initial recognition pass.

During training presented in section (6.4) we re-estimate the model parameters
over these pinched lattices in order to minimize the empirical loss over the training
data. We call this estimation strategy Pinched Lattice Minimum Bayes Risk Dis-
criminative Training [17, 18, 16]. Experimental results in sections (9.2), (8.5) show
that Minimum Bayes Risk Discriminative Training can yield improvement over MMI
in the overall word error rate and in the distribution of individual word recognition

errors (8.5.1).

1.3 Organization

The main body of this thesis is mostly concerned with discriminative training in
large vocabulary conversational speech recognition(LVCSR). However before going
into detail it is necessary to understand some of the basic principles of ASR systems
and have some appreciation of how training and decoding is done.

Chapter 2 provides an overview of how continuous speech recognition systems are

built today. Conventional speech recognition systems require a decoding criterion, a



family of acoustic models, a language model and the basic performance criteria. The
acoustic models incorporate knowledge extracted from the speech waveform and they
are commonly based on Hidden Markov models (HMMs).

Chapter 3 provides a brief description of the Expectation Maximization (EM) al-
gorithm, along with commentary about its strengths and weaknesses. In likelihood
based training, via the Baum-Welch algorithm, given an initial HMM model and the
corresponding observation sequence we generate new HMM model parameters that
are more likely to have produced the observation sequence. Although it is quite pop-
ular, EM is not optimal in reducing the error rate of the ASR system.

Chapter 4 describes a popular form of discriminative training, maximum mutual
information estimation (MMIE) that attempts to optimize an information-theoretic
criterion which is related to the performance of the recognizer such as the sentence
error rate (SER). Classification errors will hopefully be reduced since the likelihood
of the correct hypothesis is increased relative to the likelihoods of the competing hy-
potheses. Parameter estimation is done by maximizing Gunawardana’s Conditional
Maximum Likelihood (CML) auxiliary function (equation 4,[34]). The efficient imple-
mentation of discriminative training in LVCSR systems is also discussed and modeling
approaches are presented.

In Chapter 5 we formulate discriminative estimation procedures for the linear
transforms used in Speaker Adaptive Training (SAT). Until recently SAT techniques
have been based on the maximum likelihood (ML) parameter estimation framework.
However discriminative optimization criteria can be more effective in reducing the
word error rate than maximum likelihood estimation and hence are of interest. In
this thesis both the linear transforms and the Gaussian model parameters are reesti-
mated under MMIE criteria using the (CML) auxiliary function.

In Chapter 6 we present an extension to the standard discriminative training al-
gorithms which focuses on reducing the overall risk over the training data. Therefore
rather than using the a posteriori probability as a training criterion we estimate the
acoustic models under a criterion that is more closely related to the ASR recognition
performance. However these algorithms require an explicit listing of the hypotheses

to be considered and in complex problems such lists tend to be prohibitively large. To



overcome this difficulty, modeling techniques originally developed to improve search
efficiency in Minimum Bayes Risk decoding[28, 30] are used during training.

In Chapter 7 we present experimental results on speech material from the SWITCH-
BOARD Corpus by applying discriminative training for speaker adaptation. As an
alternative to ML estimation of the linear transforms we use the CML framework in
order to obtain fully discriminative procedures. The results show that we can achieve
improved recognition accuracy through discriminative training.

In Chapters 8 and 9 we develop estimation procedures based on minimum Bayes
Risk criteria. The experiments are conducted on speech material from one small
(Alphadigits ) and two large vocabulary (SWITCHBOARD, MALACH) tasks. From
these results we argue that it is beneficial to develop discriminative training proce-
dures that are more closely related to the recognition performance criteria.

Finally Chapter 10 provides an overview of this thesis identifying specific research

contributions and presents some suggestions for future work in this area.
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Chapter 2

An overview of Automatic Speech

Recognition

Optimal speech recognition performance depends on a number of factors such as
the speech features used, the structure of the acoustic models, the type of output
distributions (continuous or discrete), the language model and most importantly the
training and decoding algorithms used. Furthermore the construction of the stochastic
models (acoustic or language models) used in ASR systems, is dependent upon i) the
availability of large corpora of transcribed speech material and ii) text specific to the
language and the application we are interested in.

We begin with a brief introduction to the major components of Automatic Speech
Recognition systems, by describing the decoding criterion, the language model, the
use of HMMs in acoustic modeling and the basic performance criteria used. Readers

who are familiar with these terms may skip this chapter.

2.1 Decoding criterion

Speech is the most natural means of human communication and therefore much
effort has been spent in the automatic transcription by machines. The ASR problem
can be described using the source-channel framework as shown in Fig. 2.1 [39]. In

speech recognition we assume that the speech signal is a realization of some message
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encoded as a sequence W of one or more words. In general, an automatic speech
recognition (ASR) system produces a transcription W = {wy,--- , @k} from a se-
quence of acoustic feature vectors(frames) O = {0y, -, 0r}-

ASR is a very difficult task mainly due to the following two reasons. Firstly, the
mapping from words to speech is not one-to-one since different words can give rise
to similar speech sounds. Secondly, there are large variations in the realised speech

waveform due to speaker variability or speaking style.

___________________________________

| | Speaker's ' | Speech ! WW ' | Acoustic | i Linguistic | 1
1 . > | > + : > _:>_
| Mind '| Producer | i | Processor | Decoder |1 A
! Wi i Speech ! CA P W
. S ] (S R ]
Spesker | ! Speech Recognizer
Acoustic Channel

Figure 2.1: The Decoding Model

The probability of making an error is the most important factor in choosing the

optimal decoder. This probability is given by:

P.=1-)_ PW|0)s(W',W). (2.1)

S(W',W) is an indicator(delta) function between a sentence hypothesis W' =
{w}, - ,wl} and the reference transcription W. The goal of the ASR system as
shown in Fig 2.1, is to produce a transcription of the speaker’s utterance with the
least probability of error, thus the maximum a-posteriori(MAP) criterion is used.
Given an utterance O, MAP generates a sentence hypothesis that is most likely to

have produced the observed signal according to: [3, 65, 39]:

W = argmax P(W'|O). (2.2)
WI
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Computation of the a posteriori probability P(W’|O) proceeds by an application
of Bayes’ rule, which rewrites this probability in terms of the conditional probability
P(O|W"), that the observation sequence O was produced from the symbol sequence
W' and is determined by the acoustic model. We then have
PO\WHP(W")

P(0)

P(W'0) = (2.3)

The term P(W') is the prior probability that the transcription consists of the sequence
of symbols w;. This probability is usually provided by a language model. Since the
signal representation remains constant for all frames, the term P(O) is constant for

a given observation sequence and it can be ignored.

2.2 Language Modeling

Speech is not a stochastic process where sounds are generated in an arbitrary
sequence; it is rather a structured generation process. An utterance is more likely
to contain valid words than nonsense, using structures such as verb, subject, object
and prepositional phrases. All this structural information can be exploited when
performing recognition and can be useful in improving recognition accuracy.

Current state of the art recognition systems form a stochastic model of word
occurrence called the language model. The purpose of the language model is to

estimate the likelihood P(W’) of a word sequence W' = w;", and is given by
N
P(W') = Puf, ... wy) = [] P! | wh, .., wi_y). (2.4)
i=1

Since it is unfeasible to calculate the probability of observing the entire word
sequence, n-grams are used to estimate the likelihoods of smaller word strings within

the sequence. Thus equation (2.4) becomes,
N
P(WI) = P(wlla wéa fe aw§V) = H P(w; | wz"fla wzl'an ce awgf(nfl)): (25)
i=1

after applying the Markov independence assumption.

Currently popular forms of n-grams are the unigram, which considers individual
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word frequencies, the bigram, which models word to word transition probabilities,
and the trigram model, which computes the likelihood of any word, based on the two
words immediately before it. Although the estimation of the language models itself is
not considered in this thesis, language models need to be used during discriminative

training of the acoustic models.

2.3 Acoustic Modeling

The acoustic model provides the connection between the acoustics and the lexical
transcription of speech. The quality of the acoustic model used in speech recognition
has a significant impact in determining the system’s performance. Furthermore an
inadequate acoustic model will limit the potential gains from other knowledge sources
such as the language model. In the ideal case, the acoustic model obtained after

training should yield the lowest possible recognition error rate.

2.3.1 HMMs in Speech Recognition

Hidden Markov models (HMMs) form an integral part of current state-of-the-art
automatic speech recognition systems. They provide a robust and simple framework
for speech modeling. HMMs are used to describe piecewise stationary signals. Al-
though it can be argued that speech signals are not actually piecewise stationary,
HMDMs have many other desirable qualities that make them popular in ASR systems.
Because their behavior can be described with simple formulas, HMMs provide a solid
theoretical foundation from a probabilistic standpoint and the full power of math-
ematics and statistical theory can be brought into play on the speech recognition
problem.

Furthermore HMMs are effective for ASR because the procedures used in their
ML estimation, such as the Baum-Welch algorithm, are efficient and straightforward
to implement. The re-estimated parameters are found so as to guarantee an improve-

ment in the training data likelihood.
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2.3.2 HMM parameters

An HMM has two types of parameters, the transition probabilities and the output
distributions. The transition probabilities capture the time-varying nature of speech
and the output distributions model the acoustic signal. In HMM based speech recog-
nition, it is assumed that the sequence O of observed speech vectors corresponding
to each utterance is generated by a Markov model as shown in Fig 2.2 borrowed from
the HTK manual[86]. A Markov model is a finite state machine which changes state
once every time unit and each time 7 that a state j is entered, a speech vector o, is
generated from the probability density b;(o,). Furthermore, the transition from state
1 to state j is also probabilistic and is governed by the discrete probability a;;.

Thus an HMM is completely specified by its state transition probabilities and the
output probability distribution for each state. Fig 2.2 shows an example of this pro-
cess where the model moves through the state sequence S =1,2,2,3,4,4,5,6 in order
to generate the sequence o; to og. Notice that, the entry and exit states of the HMM
are non-emitting. The model does not produce any output while in these states, but
they are convenient when concatenating several models together to represent words
of arbitrary length.

In ASR a separate HMM is trained for each fundamental recognition unit, which
may be either whole words or sub-word units such as phonemes or triphones. Whole
word models are well suited for small vocabulary tasks (generally less that a few
hundred words). However for large vocabulary tasks, sub-word units are a better
choice because of data sparsity. Sub-word units are used to facilitate the construction
of composite models and therefore the acoustic models can be hierarchically decom-
posed into different levels. As a result whole sentences can share word models and
word models can share sub-word models such as triphones.

In Fig 2.2, the arrows represent allowed transitions between states. At any dis-
crete time index, the model occupies one and only one state and produces only one
output. At each time increment, the model can follow one of the allowed transitions,
according to a transition probability. The topology is left to right and the temporal

characteristics of speech are captured by the transitions between the states of the
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HMM.

2.3.3 Computations with HMMs

The joint probability that O is generated by the model M moving through the
state sequence S is calculated simply as the product of the transition probabilities

and the output probabilities. So for the state sequence S in Fig 2.2:
P(O, S|M) = a12b2(01)a22b2(02)a23b3(03) . (26)

However, in practice, only the observation sequence O is known and the underlying
state sequence S is hidden. Hence the term Hidden Markov Model. When estimating
acoustic models, we typically use training data consisting of transcribed recorded
speech{W,0}. Thus, we can observe W and O, but not the corresponding state

sequence S.

1 ! \ \

,/bz(oj)"vbz(oz) (02 v’b4(o4>‘g4(os) “gs(oe)
Observation
swece | U U 0O 0O [
0, 0, 04 0, 05 Og

Figure 2.2: The Markov Generation Model

Given that S is unknown, the required likelihood is computed by summing over

all possible state sequences S = s(1), s(2),s(3),...,s(T), that is

T

P(OIM) =Y P(0,SIM) =" ay0)sq) | [ bstr)(0r)as(rysir+1) (2.7)
S S T

=1
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where s(0) is constrained to be the model entry state and s(7" + 1) is constrained to
be the model exit state.

If we assume that the total number of states is N, then it can be seen that the
computational complexity of the above calculation is O(TNT) based on the fact that
there are N1 possible state sequences with 27" terms in each product. To ameliorate
the computational complexity, recursive techniques exist that are more efficient than
direct calculation. We will discuss them briefly in the next chapter.

As an alternative to equation (2.7), the likelihood can be approximated by only
considering the most likely state sequence( Viterbi path alignment) [66], that is

T
P(O|M) = mgX {as(o)s(l) H bs(T)(OT)as(T)s(H_l) } . (2.8)

=1
This likelihood is computed using essentially the same algorithm as the forward prob-
ability calculation except that the summation is replaced by a maximum operation.

In the HMM framework the acoustic observations o, are assumed to be indepen-
dent of each other therefore speech dynamics cannot be modeled directly. However,
it is known that this is not a valid assumption for speech signals, which are by nature
highly temporally correlated. Many approaches have been proposed to overcome this
limitation of HMMs. The most successful example of these approaches is the use
of dynamic parameters where the “static” features are augmented with the first and
the second differentials. By using 12 mel-filterbanks, plus the energy estimate and
their first and second order coefficients we end up with a 39 dimensional feature vec-
tor. The two most commonly used parameter forms in speech front-end processing,
are the Mel Frequency Cepstral Coefficients (MFCC)[12] and the Perceptual Linear
Prediction (PLP) coefficients[37].

2.3.4 Output emission densities

The output probability distributions by(,)(0,) may be either discrete or continuous
depending on the observation space. For simplicity we express by(-y(0,) = q(o-|s; 0),
which is the output emission probability of observing o in state s at time 7, as a single

mixture multivariate Gaussian with mean vector u, and covariance matrix ;. We



17

use the compact representation for the model parameters § = (5, X5). Therefore the

term ¢(o,|s; ) is reparametrized as

1
bs(r) (0r) = q(o-|s; 0) = N(o;; s, T5) = ———c¢ —5(0r—hs)' 55 (0r—pis) (2.9)
(2m)"[%s]

The covariances Y4 are assumed diagonal(zero off-diagonal covariance terms) for rea-
sons of efficient Gaussian evaluation, compact storage and robust parameter estima-
tion given the limited available training data.

In order to build accurate acoustic models we use mixtures of Gaussian densities.

Thus equation (2.9) becomes,
07—|S 0 Z %(OT_Hs,j)’Es,j_l(OTfus,j)_ (210)

The mixture weights(a priori probabilities for each of the mixture components) w;
must satisfy
Y wyi=1, 0<w,; <L (2.11)
j=1
The use of such densities has several advantages, most important of which is
the ability of capturing the acoustic model variability across different samples of the
same speech sound(better resolution). However the number of mixture components
must be small enough to allow for reliable estimates of the Gaussian parameters
given the limited amount of available training data. Usually the acoustic models
are initialized by one single component density per state. Subsequently the mixture
densities are then iteratively splitted up during the training process until the desired

number(usually determined experimentally).

2.4 Decoding and Performance Evaluation

Assuming that the HMMs have been trained and that there exists a language
model that can compute P(WW'), then everything is in place to find the optimal word
sequence W according to (2.2). The acoustic and language model scores, form a

graph representing the search space. Transitions within HMMs are determined by
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the parameters  of the acoustic model, and transitions within words are determined
by the language model.

During recognition the Viterbi algorithm will return the most likely word sequence
W. By extending the original Viterbi algorithm(token passing algorithm), we can
keep track of more than just the single best partial hypothesis during recognition,
which may be used to generate a lattice of possible word hypotheses rather than only
the individual best sequence. A lattice W as shown in Fig.2.3, consists of a set of
nodes that correspond to particular instants in time, and arcs connecting these nodes
to represent possible word hypotheses. Associated with each arc is an acoustic score

(log likelihood) and a language model score.

WELL

-1.6 HOW

] YOU

——0

Ne
[ I [ I I I |
0.0 0.3 0.5 0.6 1.1 13 19 2.3

time (sec)

Figure 2.3: A lattice W. The time marks correspond to the node times and the
word ending times. The numbers on the edges are natural logarithms of acoustic plus
language model scores.

2.4.1 Levenshtein distance and SER vs WER

Once the recognizer has been developed it is necessary to evaluate its performance.
The two most commonly used measures of recognition accuracy are the WER and the

SER. The WER metric measures accuracy at the word level rather than the sentence
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level as is the case for the SER. The SER is defined as:

SER number of sentences with one or more errors

2.12
total number of sentences ( )

In order to estimate the WER, a dynamic programming algorithm|[67] that com-
putes the Levenshtein distance [49] is used to align the top hypothesis 144 produced
by the ASR system against the reference transcription W. The total error is obtained
by counting the number of words that have been substituted, deleted, and inserted:

N-S—D—I S+D+1

ER=1-
WER 5 ~

(2.13)

where S is the number of substitutions, I number of insertions, D is the number of
deletions needed to transform one word string into another and N is the number of
words in the reference transcription.

The greater the Levenshtein distance, the more different the strings are. The
metric is also sometimes called string edit distance because it measures the minimum
number of string edit operations needed to transform one string into another. An

example alignment is:

Reference : UM DID YOU TALK ABOUT — ANN
Hypothesis :  — DID YOU TALK AGAIN TO ANN
Errors : Deletion - - - Substitution Insertion -

There is a total error of three words in this example. The reference word UM is
deleted, ABOUT is substituted by AGAIN and word TO is inserted. The word error
rate (WER), the fraction of reference words in error, is 3/6 = 50%. In the example
above, the entire reference sentence is not correctly transcribed, the sentence error
rate (SER) is 100%. In the ideal case the WER should be 0% (no words in error).
Otherwise, the word error rate for this sentence may vary anywhere between 17%
(one word in error) to over 100% (six substitutions and some insertions), all of which
would result in the same sentence error rate of 100%.

The sentence error rate may therefore not be a good indicator of performance
on this task; it may be rather poorly correlated with the word error rate. We also

note that the MAP decoding criterion (2.2) will minimize the sentence-level error rate
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(SER) rather than the word error rate (WER). This observation is very important be-
cause current state-of-the-art ASR systems use either Maximum Likelihood or MMIE
techniques for training and Maximum-A-Posteriori (MAP) techniques for decoding.
These estimation criteria are optimal under the Sentence Error Rate metric which
is rarely used in evaluating these systems. As an alternative the Minimum Bayes
Risk framework attempts to minimize the cost of speech recognition errors and thus

is more closely related to ASR performance criteria.

2.5 Summary

This chapter provided an overview of the basic components of an ASR sys-
tem(acoustic and language models) along with the basic performance criteria used to
evaluate different systems. HMMs have become the most popular parametric model
used for speech recognition. They have been applied successfully in a large variety of
speech recognition tasks ranging from recognition of a few hundred words for small
vocabulary tasks to large vocabulary conversational speech recognition.

However HMMs are not the “correct” models of speech. They are based on as-
sumptions such as independence assumption, Markov assumption, which are inaccu-
rate for the speech generation process. Consequently Maximum Likelihood estimation
of the HMM parameters € can result in suboptimal performance. As an alternative to
Maximum Likelihood estimation there are Discriminative training criteria that can
yield significant improvement in speech recognition accuracy. In the next two chapters
we will show how to estimate the acoustic model parameters #, under the Maximum

Likelihood and the Maximum Mutual Information Estimation criteria respectively.
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Chapter 3

Expectation Maximization(EM)
Algorithm

We have seen in the previous chapter, how to compute probabilities using a model
M and the HMM parameter set 6 = (u,, 25). However, nothing was said about how
to estimate the acoustic model parameters 6 themselves. In general, there are two
types of training methods, likelihood-based and discriminative.

Maximum likelihood estimation (MLE), which was until recently, the most com-
monly used approach in estimating 6, is the topic of this chapter. Although the theory
behind the Maximum likelihood estimation (MLE) is well documented elsewhere, the
brief presentation of the parameter estimation formulae helps to serve as a reference
for later chapters of this thesis. Several issues related to implementation are also

discussed in order to provide an easier understanding of the experimental framework.

3.1 Estimation of Hidden Markov models (HMMs)

The estimation of Hidden Markov model (HMM) parameters for speech recogni-
tion [5, 13, 3, 66, 39] is an example of ‘estimation from incomplete data’. Thus, we
want to estimate statistical models when some of the random variables of interest are
not directly observed.

There is a large body of work that deals with optimal methods of parameter
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estimation. We will focus on mazimum likelihood [22, 6, 48] which attempts to choose
parameters that maximize the likelihood assigned by the resulting models to the
observations. It is known that such methods have desirable statistical properties such
as sufficiency, consistency, and efficiency [22, 81, 48]. As mentioned above, we are
interested in the case where only ‘incomplete’ or indirect observations of the variable
of interest are available. In other words, we only have access to observations, because
the underlying state sequence is unknown or “hidden”.

The solution of choice for problems of estimation from incomplete data in ASR
is the Ezpectation Mazimization (EM) algorithm of [13]. This is an iterative scheme
which, given the parameters from the previous iteration, first forms an auxiliary func-
tion over the parameter set, and then chooses the next parameter set to be the max-
imizer of the auxiliary function under the current parameter set. The auxiliary func-
tion is defined to be the conditional expectation of the complete data log-likelihood
given the observed data, evaluated at the current parameter.

Forming the auxiliary function is referred to as the expectation or E-step. The
maximization of the auxiliary function is referred to as the maximization or M-step.
The auxiliary function is defined so that this two step procedure ensures no de-
crease in the likelihood of the “incomplete data”. The EM algorithm is an itera-
tive training procedure that guarantees local optimality, given an initial parameter
set. For efficient implementation of the EM algorithm we either apply the Forward
Backward(Baum-Welch) algorithm, or the Viterbi algorithm if the most likely state

sequence is considered.

3.2 EM via Baum-Welch algorithm

The essential problem is to estimate the means and variances of a HMM, when the
output distribution of each state s is a single component Gaussian given by equation
(2.9). EM is a two-stage iterative procedure, the current values of the hidden data are
calculated during the expectation step using the model parameters from the previous
iteration and are then used in the maximization step to generate a new set of model

parameters. Maximum likelihood estimation (MLE) is synonymous with the Baum-
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Welch algorithm so we will use these terms interchangeably.

The MLE criterion increases the probability of the model sequence corresponding

to the correct transcription. For R training observation sequences {O1, - - -, Og} with
corresponding transcriptions {W7,- -+, W}, the MLE objective function, is given by
R
0" = argmax F'() = argmaxz logPy(O,| Myy,) (3.1)
0 6
r=1

Thus MLE tries to increase the probability of the r-th observation sequence, given
the model My, corresponding to the correct transcription. Increasing the likelihood of
the training data is one technique that often leads to improved performance in the un-
seen test set. By observing (3.1), we see that the models from other classes(competing
hypotheses) do not participate in the parameter re-estimation. As a result it is not
obvious how the MLE objective function relates to the objective of reducing the error
rate. In contrast, discriminative training methods have been developed which adjust
the model parameters to increase not the likelihood of the data given the model, but
rather increase the a-posteriori probability.

Because complex acoustic models typically employ thousands of parameters, in
general it is not feasible to find a globally optimal #*. Instead the optimization al-
gorithm starts from an initial value of # and converges to a local optimum in the

parameter space. At each iteration starting from @ we find # such that

R R
> " logPy(0;| My,) > Y " logPy(O,|My;,). (3.2)
r=1 r=1

For simplicity we consider a single utterance O = {01, - - ,or} with a duration of

T frames. The estimation procedure is done by maximizing the following auxiliary

function:
Q(89) = ZPQ (0, S|M)logP;(0, S|M) (3.3)

where S is a possible ”hidden” state sequence. The log factor is:

lngg O S|M Z logas (r)s(7+1) Z lqu 07’|87'7 ) + logas )s(1)

= ZlogaS(T ys(r+1) + Zlog]\f 073 [is, 8s) + logasoysy  (3.4)

T=1
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For the mean the auxiliary function becomes:

Q) =~ SN () loglBi] + (o, = ) S Mo, )] +C (35)

seS =1

where C' is a constant independent of 6 coefficients, o, is the acoustic vector obser-
vation at time 7 and ~,(7;0) denotes the probability of being in state s at time 7
given the current parameter estimates 6. After we have estimated the new mean, the

auxiliary function for the variance becomes:

Q(010) ———ZZ%M [log[Ss| + (0r — 1)"S (0, — )] +C (3.6)

ses =1

The usefulness of Q(6|#) comes from the fact that Q(6|6) > Q(6|) implies F(6) >
F(#) which is (3.2).

3.2.1 Training

To determine the parameters of a HMM we can use two approaches. If the most
likely state sequence( Viterbi path alignment) is available then the parameter esti-
mation would be easy. The maximum likelihood estimates of y; and X; ( assuming

single mixture gaussians) would be just the simple averages, that is

_ Zt 1 6(s(t), 7)o
M= ST 8Gs(0), ) 7

and
T ZtT:1 3(s(t), 7)ot — ;) (0 — fij)'
] > i1 0(s(2), )

where 0(s(t), 7) is an indicator function that at time ¢ the state is j.

In the second approach there is no direct assignment of observation vectors to
individual states because the underlying state sequence S is unknown. Since the full
likelihood of each observation sequence is based on the summation of all possible state
sequences, each observation vector o, contributes to the computation of the maximum
likelihood parameter values for each state j. In other words, instead of assigning each

observation vector to a specific state as in the above approximation, each observation
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is assigned to every state in proportion to v;(¢; #), the probability of the model being
in that state when the vector was observed.
By taking the gradient of Q(f|#) and setting it equal to zero, the equations (3.7)

and (3.8) given above, become the following weighted averages

j =
ZtT:1 Y5 (t;0)

(3.9)

and . ) N
5, = >t it 9;(% — ;) (o — [i;) |

> i=1 7 (50)
Equations (3.9) and (3.10) are the Baum-Welch re-estimation formulae for the

(3.10)

means and covariances of a HMM. A similar but slightly more complex formula can
be derived for the transition probabilities. Of course, to apply equations (3.9) and
(3.10), the probability of state occupation v;(t;#) must be calculated. This is done

efficiently using the so-called Forward-Backward algorithm.

3.2.2 Forward-Backward algorithm

To estimate the probability of state occupation 7;(t; #) we use the following quan-
tities, the forward probability c;(¢) and the backward probability 5;(¢). To ameliorate
the computational complexity, these quantities can be estimated efficiently using re-
cursive techniques. We discuss them briefly in this section.

The forward probability «;(t) for some model M with N states is defined as
a;j(t) = P(o1, ..., 0 s(t) = j|M). (3.11)

Thus, «;(t) is the joint probability of observing the first ¢ speech vectors and being
in state j at time t. This forward probability can be efficiently calculated by the
following recursion
N-1
a;(t) = [Z oyt — 1)%-] bi(0y). (3.12)
i=2
This recursion depends on the fact that the probability of being in state j at time

t and observing o; can be calculated by summing over all the forward probabilities
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for all possible predecessor states 7, weighted by the transition probabilities a;;. The

initial conditions for the above recursion are
(1) =1 (3.13)
a;(1) = ay;b5(01) (3.14)
for 1 < 7 < N and the final condition is given by
ay(T) = Z a;(T)a;y. (3.15)
Notice here that from the definition of (%),
P(O|M) = ay(T). (3.16)

Hence, the calculation of the forward probability also yields the total likelihood
P(O|M) (2.7).
The backward probability 5;(t) is defined as

B;(t) = P(0411, .- .,0r|s(t) = 4, M). (3.17)

As in the forward case, this backward probability can be computed efficiently using

the following recursion

2

-1

Bi(t) = D aijbj(or41)B;(t + 1) (3.18)

<.
||
I\

with initial condition given by

for 1 <4 < N and final condition given by

50 = 3 austy(0)5,0). (3.20)

Notice that in the definitions above, the forward probability is a joint probability
whereas the backward probability is a conditional probability. The probability of
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state occupation is determined by taking the product of the two probabilities. From

the definitions,

;(t)B;(t) = P(O, s(t) = j|M). (3.21)
Hence,
7(t:0) = P(s(t) = 5|0, M) (3.22)
_ P(O,s(t) = §|M)
P(O|M)
1
= p(t)5;()

where P = P(O|M) is the total likelihood.

3.3 Practical issues & Overtraining

The Forward-Backward algorithm above, requires a set of phone-level transcrip-
tions of the utterances in the training set. Given the previous description, the steps

during the Baum-Welch training may be summarized as follows:
1. For each training utterance, the corresponding phone models are concatenated.
2. Calculate the forward and backward probabilities for all states j and times ¢.

3. For each state j and time ¢, use the probability v;(¢;#) and the current obser-

vation vector o; to update the accumulators for that state.

4. When all of the training data has been processed, the accumulated statistics
are used to calculate new parameter values for all of the HMMs according to
(3.9) and (3.10).

5. If the data likelihood for this iteration is not higher than the value at the
previous iteration then stop, otherwise repeat the above steps using the new

re-estimated parameter values.

In practice, in order to get accurate acoustic models a large amount of training

data is needed i.e several thousands of utterances are needed for speaker independent
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models. Given a set of training examples and their associated transcriptions a com-
posite HMM is constructed for each one of them. Steps 1, 2 and 3 above are simply
repeated for each distinct training sequence. Steps 1 — 5 can all be repeated as many
times as necessary to achieve the required convergence.

A good statistical model should accurately describe objects it has not yet encoun-
tered. In practice, it is usually observed that even though recognition rate on the
unseen test set initially increases with each iteration, a maximum is quickly reached
(often after as little as 3 or 4 iterations) after which performance goes down. This is
called overtraining and is caused in part by differences between the training and test
sets and in part because MLE does not necessarily decrease the error rate. Because
of this behavior, training is usually stopped after a fixed number of iterations. Fur-
thermore experimental results have shown that the initial # has a strong influence on

the system performance. This underscores the importance of a good initialization.

3.4 Summary

The MLE training criterion described here determines the parameters 6 of the
acoustic models such that the training data is optimally described. A major dis-
advantage with MLE is that it has no obvious relationship with the objective of
minimizing the recognition error rate. To decrease classification error, one must in-
stead optimize the posterior probability of a class given the data. This follows from
Bayes decision theory which states that the minimum probability of error is achieved
when a class is chosen that has the highest posterior probability.

Furthermore the rationale behind the use of MLE training relies on the assumption
that the underlying models are the ”true” models of speech and sufficient training
data is available. However this is not always the case. Discriminatively training tech-
niques discussed next remove the need for this assumption and directly attempt to

improve recognition performance criteria.
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Chapter 4
Discriminative Training

Discriminative training techniques attempt to produce statistical models that op-
timize the correct transcription relative to other rival hypotheses. This is done by
using information theoretic criteria. Unlike likelihood-based training, they adjust the
model to produce low probability scores for competing “rival” classes.

In this chapter, we discuss the maximum mutual information principle and its ap-
plication to acoustic modeling. We show how the Conditional Maximum Likelihood
(CML) auxiliary function can be applied to the re-estimation of the Gaussian model
parameters. We also address implementation issues when using discriminative train-
ing in large vocabulary applications and how to get the most from a limited amount

of training data.

4.1 MMIE Criterion

Mazimum mutual information estimation(MMIE) was proposed in [2] as an al-
ternative to MLE. It maximizes the mutual information between the training word
sequences and the observation sequences. The criterion to be maximized is

. P(w?, o; 0)
I : =1
(W, 0: 6) = log 5oy BT 0)

(4.1)

Without loss of generality we consider the single observation case. (W, ) may also

represent multiple training utterances. In that case with R training utterances equa-
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tion (4.1) becomes:

w?, o})®; 6)

) Po; 0)

IW,0; 0) = i log PZ;_(E

Since the language model P(w7) is independent of the acoustic model param-
eters #, maximizing the mutual information estimate is equivalent to maximizing
the conditional likelihood P(w?|o%; 6). Thus the MMI estimate is equivalent to the
conditional mazimum likelihood (CML) estimate of [57], so we will use these terms

interchangeably.

4.1.1 CML criterion

As mentioned before, by ignoring the language model, maximizing the mutual
information is equivalent to maximizing the conditional likelihood P(W|0). For
R training observation sequences {Oj,---,0g} with corresponding transcriptions

{W1,---,Wg}, the CML objective function, is given by:

R R =
- Py(O;| My, ) P(W:)
f* = argmax F'(f) = argmax logP(W,|0,) = argmax Y lo z
gmax F'(9) = argn ; gP(Wr|O;) = argn Z:l 95~ By{(0, M) POV
W/ew
(4.2)
where My is the composite model corresponding to the word sequence W’ and P(W')

is the probability of this sequence as determined by the language model.

Therefore CML/MMIE adjusts the model parameters by considering all models
My simultaneously. In contrast to MLE, CML/MMIE optimizes the correct models
at the expense of the set W of alternative word hypotheses. We call W the evidence
space and it can be approximated either by N-best lists or lattices as shown in Fig.2.3.
Because of the large size of W, discriminative methods require substantially more
computations than MLE. The efficient implementation of discriminative training in
LVCSR systems will be discussed in the following sections. Since (4.2) is also the
criterion used in MAP decoding( 2.2), the relationship between MMIE and error rate

is much more intuitive than it is with MLE.



31

4.2 Minimum Classification Error Criterion

There have been other discriminative training procedures proposed in the liter-
ature. An alternative discriminative training criterion, the Minimum Classification
Error principle was introduced by Juang and Katagiri [40], has been successfully ap-
plied to speech recognition [10, 33, 7]. The MCE function attempts to approximate
the error rate in the training data and its optimization by the generalized probabilis-
tic descent(GPD) algorithm results in a classifier with minimum error. Juang and
Katagiri initially used only one competing word sequence per utterance. This means
that only the best incorrectly recognized word sequence is used as competition [40].

The MCE objective function measures the negative log distance between the cor-
rect transcription and the alternative hypotheses. The “cost” function gets a small
value, if the distance becomes as negative as possible, it means that we have correct
classifications, otherwise we have incorrect classifications. A simple zero-one cost
function would measure this error rate perfectly, but it violates the constraint that
the function should be continuously differentiable with respect to the Gaussian model
parameters. Therefore the MCE criterion uses a smoothed version of the empirical
error rate on the training data such as a sigmoid function, in order to obtain a contin-
uous and differentiable objective function. For the MCE criterion, gradient descent

is usually the optimization method of choice.

4.3 Background

Initially there were no algorithms proven to be convergent for discriminative train-
ing, and gradient descent techniques that converged slowly and gave little improve-
ment were used. Then the most widely used estimation technique for MMIE train-
ing came from the Extended Baum-Welch Algorithm (EBW) by Gopalakrishnan et
al [31], which extends the well known Baum-Eagon inequality [4] for optimizing ratio-
nal functions. Gopalakrishnan et al. introduced the following reestimation formula

for rational objective functions such as R(#) = P(W|O) associated with discrete
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HMMs:
6(VologR(0) + D)

Zgl 9'(V9/logR(0') + D)

The extended growth transformation above applies only to discrete HMMs and was

= (4.3)
used to estimate the model parameters under the MMI criterion. For this case, a proof
of convergence was presented although the corresponding iteration constants lead to
very low convergence rates. Normandin [62] extended the EBW(4.3) algorithm to
HMDMs with continuous Gaussian densities. He used a sequence of discrete approxima-
tions to the Gaussian density so that the original EBW algorithm of Gopalakrishnan
can be applied. The iteration constants for which convergence could be proven in the
discrete case, map to infinity in the continuous case and hence convergence cannot
be easily proven.

These parameter estimation procedures under the maximum mutual information
criterion had a computational cost that made them impractical for large scale appli-
cations. In particular the minimization of the denominator term in equation (4.2)
involves a full recognition on all the training data for each iteration of MMIE train-
ing. For large vocabulary tasks this is computationally impracticable, therefore an
approximation to the denominator term is required and lattices are used. This step
dominates the computation and depends on the size of the vocabulary, the grammar
and any contextual constraints. Valchev et al. [77, 84] implemented MMIE training
of LVCSR systems through the use of lattices and used Normandin’s update equations
for the re-estimation of the Gaussian model parameters.

In order to limit the computational complexity arising from the need to find con-
fusable speech segments in the large search space of alternative word hypotheses,
Nornandin [61] used only one competing word sequence per utterance. This means
that only the best recognized word sequence is used as competition against the spoken

utterance, leading to “corrective training”.
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4.4 The CML Algorithm

Here, we use a simplified derivation of the CML estimation algorithm of Normandin|[61]
that does not require the discrete approximation to the Gaussian density. Further-
more, it extends Normandin’s algorithm to arbitrary continuous emission density
HMMs. These procedures are derived by maximizing Gunawardana’s Conditional
Maximum Likelihood (CML) auxiliary function(equation 4,[34]).

The iterative CML algorithm of Gunawardana chooses #P*1) given a parameter
iterate %) according to:

0*+) € argmax ) [ (st @}, of; 8P)) — g(st |of; 9(”))} log (o |st; 6)

0coO
st

+Zd' / 01\81, 0(p)logq(01|sl, 0) do’, (4.4)

; d(s : .
where d’ (sll) = A(sf) Using calculus to do the maximization, we get the

(@} 0l 0®))”
following update rule to be satisfied by the parameter estimation procedure. Given a

parameter estimate 6 = (u,, 2,), a new estimate § = (fi5, ) is found so as to satisfy

0:3" atstaf, of; 0) — q(stjol; )] Vologa(ollst; 9)

7
S1

+Zd’< )/ 01|81, )Vglogq(olﬂsl;; 6) dot =0. (4.5)

Here, O = ol; is the acoustic observation vector sequence and W = w? is the corre-
sponding word sequence, i.e. the training data. The parameter d’ (81) leads to the

well-known MMI constant as Dy =37, d (sh).

4.5 Parameter estimation

Discriminative training involves an objective function (4.2) which is optimized

by some sort of parameter update rule (4.5). The objective function measures how
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well the current Gaussian parameter set 8 = (s, 35) classifies the training data. The
update algorithm alters the system parameters to incrementally improve the objective
score. The calculation of the objective function and the re-estimation of the Gaussian
parameters are repeated until the objective score converges to an optimum value.
Next we will show how to derive the update equations for the model parameters
0 = (us,%s), mean and the corresponding variance, (assuming diagonal covariance

matrices) under the CML framework.

4.5.1 Mean reestimation derivation

The gradient of logg(o}|s}; #) with respect to the parameter component g, is

given by (ignoring all terms independent of 1)

l
1
Vi, logg(ot[sh; 0) =V, (—5 (—or "5 s — i B 0r + g % #s)> Lisy(s(7))

=1

Substituting into equation (4.5) gives

[
Z Ys(T5 0 p) —3(7; 0(p))) 2;1 (0r — fI5)
T=1

* Ds/ g(ol|sk; 095 (o, — f7.)do} = 0.

We next define (5 00)) = ~,(r; 00)) — 48 (73 00)). Here, 7,(7;09) = g, (s]?,
ol;; 9®)) is the conditional occupancy probability of state s at time 7 given the train-
ing acoustics and transcription, and 9(7;0®) = ¢, (s ol :0®) is the conditional

8 T 1

occupancy probability of state s at time 7 given only the training acoustic data.
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Rearranging the equation above we get:
i
> vl 6| =7 (0r — 1)
T7=1

+ D ( / a(0lsk; 0o, do — / a(@ls'; e@)ﬂsdoi) =0

o o

i
27;(7—; 9(17)) 371 (or = f1s) + DX (ps — f3) = 0 (4.6)
T7=1
i )
> (s 0P) o + DS g = > i 69) + D, | 571,
T=1 T=1

Finally the estimate for /i, is given by

Y (s 6P)o, + Dy
1= 7% i(m 09) + D,

(4.7)

4.5.2 Variance reestimation derivation

The gradient of logg(o}|s!; ) with respect to the parameter component X, is

given by (ignoring all terms independent of ;')

l
st—l logQ(oll‘sll; 0) = V2;1 Z (]Og |25_1‘ - (OT - ,U’s) Zs_l (OT - ,us)T)

\]
Il
—

o~

+D, / a(of[st; 09) (% — (0, = 2,) (0r — )" dok = 0.

Calculating the integral in the previous equation gives us:
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5, — / a(0]s:0%)) (o, — 2,) (0, — )" dol

=% - / (0} ]s1;0%)o-0 dol + 2 / a(otIsk; 0o, 1, " dof, — i fi,”

o o

= Xj5 - (Zs + /«Ls,usT) + NsﬂsT + /JS/J/ST - /JsﬂsT

Substituting the integral into (4.5.2) yields:

zi:/Y;(T; 9(p)) (Ss — (0r — f15) (07 — /IS)T)

+ D; (Ss - (Es + ,usﬁ"sT) + US/IST + /Is,U'sT - ﬂS/j’ST) =0

Rearranging the previous equation gives us:
i
> um 69) + D, | %, =
7=1

[
- Z’Y;(T; 9(1))) ((OT - /IS) (OT - /IS)T) +D5 (ES + MSMST) _Ds (,us/IST + /Is[ﬂs - /IS]T)
T=1

Finally the estimate for ¥, is given by

X 09) ((0r = 1) (0r = )T ) + Dy (S + ™) = Dy (ot + ilpss — ]7)

3 3=, %(r; 09) + D,
_ ZT 7;(7—; 9(7)))070; + Ds (Es + ,usﬁ"sT) - /Is (Ds,U'sT + ZT ’}/;(’7'; 0(”))0?)

>, 74(r; 0@) + D, i
i - (Ds,us + ZT 7; (T; 9(p))07) lZsT + (ZT 7; (T; e(p)) + DS) /Islst
> (T3 0®)) + D,
Finally by noticing that
_ 2 %1 0P)or + Dypis
B Y i 69) 1D,
we have S o )) . ( T)
5  Vs(7; 0%)0r0r + Dy (X5 + fisfis o
Y= - MS,U'ST- (4'8)

> (T @) + Dy



37

The above equations (4.7) and (4.8) show that the conventional MMI gaussian param-
eter estimation algorithm proposed by Normandin using the EBW, can alternatively

be derived as a maximization of the CML auxiliary function.

4.5.3 Calculating D;

The speed of convergence of MMI using the update equations (4.7) and (4.8) is
related to the value of the constant D,. Small values of D, result in a faster rate
of convergence. Using a single global value of Dy can lead to very slow convergence.
In practice a useful lower bound on D, is the value which ensures that all variances
remain positive in all dimensions as suggested by Woodland and Povey[84].

In our case a Gaussian specific value D, was used. It was set at the maximum of i)
twice the value necessary to ensure positive variance updates for all dimensions of the
Gaussian; or ii) twice the denominator 4¢(#®), numerator ,(6®) state occupancies
whichever is greatest.

By substituting (4.7) into (4.8), the condition of positive variances ¥, > 0 [84],

leads to inequalities which are quadratic of the form
aD? 4+ BD,+v>0 (4.9)

with

a = X,

B =375 0P)0} + 57 (15 0P) (S, + 1,%) — 215 32, (15 0®)o, and
v =7 0P, (s 0%)) = [0, i (r; 6P)o, ]

Since « is positive, the inequality above is valid when Dy € (—inf, D,]U[Ds, +inf)
where D; and D, are the roots of the quadratic equation aD,? + D, + v = 0.
These inequalities should be solved explicitly to give the largest constant D ensuring
positive variance. Therefore an appropriate value of D should be found by solving
the system of quadratic inequalities, such that all 39 elements of the diagonal variance

vector are positive for each gaussian of the HMM model set.
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4.6 Use of lattices in Discriminative training

Optimization of equation (4.2) requires the maximization of the numerator term,
which is identical to the MLE objective function, while simultaneously minimising

the denominator term which can be written as:

Py(Or|My) = ) Po(O;| Mw;) P(W)) (4.10)
Wiew
This minimization is done over sets W of alternative word sequences representative of
the recognition errors made by the machine. The set W of alternative word hypotheses
W' can be approximated either by N-best lists or lattices. During parameter re-
estimation WV is used in the probability v¢(r; 6®)) of being at state s at time 7 given
only the training acoustic data, which is explicitly given by:

{ 5 POrPOIW )i 09)]

W'ew
[ > POW")P(W")]

wiew

¥ (r; 0) = (4.11)

By using N-best lists, time alignment and forward/backward estimation have to
be carried out for every word sequence in the N-best list. For small vocabulary ap-
plications, this calculation(4.11) is feasible. On the other hand, for LVCSR tasks it
would be very time consuming to perform forward/backward estimation of (4.11) dur-
ing each training iteration for every word sequence in the N-best list. Because many
word sequences differ only in few words much of the calculations done are redundant.
This redundancy can be avoided by using lattices for discriminative training as intro-
duced by Valchev [77].

The use of lattices as a constraining word graph [84, 75] forms the basis of most
current state-of-the-art MMIE training algorithms, reducing the search space between
iterations, .thus making discriminative training of LVCSR systems feasible. A word
lattice forms a compact representation of many different sentence hypotheses and
hence provides an efficient representation of the confusion data needed for discrimi-

native training.
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The lattice shown above contains the most likely word hypotheses as determined
by the speech recognizer. The paths shown in green correspond to the correct tran-
scription of the utterance and encode slightly different start/end times.

Lattices are generated as a by-product of the recognition process only once, and
used for several iterations of MMIE training to speed up computations. We assume
that lattice coverage does not change during parameter re-estimation, therefore there
is no need to be regenerated again. For large vocabulary tasks, unconstrained recog-
nition for the whole training set in every iteration of discriminative training is clearly
unrealistic in terms of computation time.

The probability 9(7; 6®) can be estimated by summing over all paths in the
lattice that pass through the triphone that state s belongs and normalizing by P(O).
This can be done by using the lattice forward /backward probabilities of the triphone
that state s belongs.

4.7 MMIE implementation

Fig. 4.1 shows the MMIE implementation used in our experiments. The acoustic
models used for discriminative training have the same complexity as those used for ML
training, i.e same number of mixtures per state, therefore the number of parameters

is the same for each training method. It involves the following steps:

1. Allocate and zero accumulators for all parameters of all HMMs. The numerator
statistics for state s, are Y__7,(7; 0%))o, and Y__~,(r; 0%))0? for the mean and
variance update equations. The denominator statistics are >__~¢(r; 0%®))o, and

> (13 0®)o? respectively.
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training
data

denominator
statistics

recognition
grammar

MMI Estimated ML Estimated
Models Models

Figure 4.1: MMIE implementation

. Get the next training utterance.

. The numerator lattice is produced by aligning the acoustic data against a net-
work of HMMs built according to the ”correct” transcription. The numerator

lattice may contain alternative pronunciations of the same word.

. The denominator lattice corresponds to running an unconstrained recognition
pass. As mentioned before, we assume that lattice coverage does not change,

therefore there is no need to be regenerated again.

. Use the forward and backward probabilities to compute the probabilities v(7; 0(7’))
and v9(1; ™) of state occupation at each time frame. Collect numerator/denominator

statistics.
. Repeat from step 2 until all training utterances have been processed.

. Use the accumulators to calculate new parameter estimates for all of the HMMs
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according to equations (4.7), (4.8) and (4.9).

These steps (except for step 4) are repeated as many times as is necessary to achieve

the required convergence.

4.8 Improving Generalization

Despite the discussion so far, there are a number of modeling issues that the
basic theory does not address, but which are important when building discriminative
models. An important issue in MMIE training is the ability to generalize to unseen
test data. While MMIE training often greatly reduces training set error, the reduction
in error rate on an independent test set is normally much less, the generalization
performance is poorer. Furthermore, as with all statistical modeling approaches, the
more complex the model, the poorer the generalization. We have considered two
methods of improving generalization that both increase the amount of confusable

data processed during training: weaker language models and acoustic model scaling.

4.8.1 Weaker language models

It was shown in[68, 69] that improved test-set performance could be obtained
using a unigram LM during MMIE training, even though a trigram was used during
recognition, which means that the language model used for discriminative training has
to be less accurate than the optimal language model used for decoding/evaluation.
The aim is to provide more focus on the discrimination provided by the acoustic model
by loosening the language model constraints [68, 69]. In this way, more confusable

data is generated which improves generalization.

4.8.2 Acoustic Scaling

When combining the likelihoods from an HMM-based acoustic model and the LM
it is necessary to scale the LM log probability. This happens because, due to invalid

modeling assumptions, the HMM underestimates the probability of acoustic vector
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sequences. An alternative to LM scaling is to multiply the acoustic model log likeli-
hood values by the inverse of the LM scale factor (acoustic model scaling). While this
produces the same effect as language model scaling when considering only a single
word sequence as for Viterbi decoding, when likelihoods from different sequences are
added, such as in the forward-backward algorithm or for the denominator of (4.2),
the effects of LM and acoustic model scaling are very different.

If language model scaling is used, one particular state-sequence tends to domi-
nate the likelihood at any point in time and hence dominates any sums using path
likelihoods. However, if acoustic scaling is used, there will be several paths that have
fairly similar likelihoods which make a non-negligible contribution to the summa-
tions. Therefore acoustic model scaling [77] tends to increase the confusable data set
in training by broadening the posterior distribution of state occupation that is used
in the update equations (4.7) and (4.8). This increase in confusable data also leads

to improved generalization performance.

4.9 Summary

This chapter has described an implementation of MMIE for HMM gaussian model
parameter estimation using Gunawardana’s CML auxiliary function which does not
require the discrete approximation to the Gaussian density of Normandin.

Since the MMIE criterion is also the criterion used in MAP decoding, MMIE is
related to reducing the sentence error rate in the training set. Ideally, during recog-
nition of the unseen test set the number of errors will be reduced thus improving
recognition performance.

Finally a discriminative training framework based on the use of lattices was pre-

sented which will be used to perform MMIE training efficiently in our experiments.
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Chapter 5
Speaker Adaptation

In the previous two chapters we discussed how to estimate the acoustic model
parameters #, under the Maximum Likelihood and the Maximum Mutual Informa-
tion Estimation criteria. In this chapter, we discuss adaptation techniques used to
compensate for differences between the training and testing conditions. We briefly
present the popular adaptation techniques such as MLLR and SAT that are based on
Maximum Likelihood estimation.

However discriminative optimization criteria can be more effective in reducing the
word error rate than maximum likelihood estimation and hence are of interest. In
the previous chapter we used the CML auxiliary function in order to estimate the
gaussian model parameters. It is also possible to formulate discriminative estimation
procedures for the estimation of the linear transforms used in speaker adaptive train-
ing. We will show how the CML auxiliary function can be applied to the re-estimation
of the Gaussian model parameters and the linear transforms used in speaker adaptive

training, therefore obtaining fully discriminative procedures.
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5.1 Speaker Independent and Speaker Dependent
Models

Typical state-of-the-art large vocabulary conversational speech recognition (LVCSR)
systems use a single model, developed on data from a large number of speakers to cover
the variance across dialects, speaking styles, etc. With this, we expect our systems
to generalize well to any particular speaker. Although the training and recognition
techniques described previously can produce high performance recognition systems,
these systems can be improved upon by customizing the HMMs to the characteristics
of a particular speaker.

The voice characteristics of different speakers vary widely due to many reasons
such as: gender, age, height(vocal tract length), speaking style, emotional condi-
tion, or accent(native vs non-native). Speaker independent(SI) systems require com-
plex acoustic models from a large amount of data(more training time) to capture
these characteristics and model the inter-speaker variability. In training, by averag-
ing statistics over a number of speakers, speaker independent models lose specificity
and, along with it, discriminating capabilities. As a result there are speakers who are
poorly modeled using this paradigm.

One solution is to use speaker-dependent(SD) models. Speaker dependent systems
are trained to recognize speech from a single speaker, whereas speaker independent
systems are capable of recognizing speech from any speaker. These systems achieve
better recognition performance because of the limited variability in the speech signal
coming from the same speaker. However, in order to achieve the desired level of ac-
curacy, speaker-dependent systems require a large amount of training data from each
individual speaker using the system. This is often undesirable, which is why speaker

adaptation techniques have been developed.
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5.2 Speaker adaptation

The purpose of speaker adaptation is to enable the speaker-independent models to
capture the characteristics of particular speakers using a small amount of enrollment
or adaptation data. The end result of this procedure is a speaker adapted system.
Speaker Adaptation has been shown to be effective in improving the performance of
speaker independent (SI) LVCSR systems by adapting the system to the test set.
Many approaches have been developed which try to produce this effect.

Current speaker adaptation techniques for HMM-based speech recognition systems
fall into two basic categories. The first of these employs methods which transform
the input speech[32, 26, 43] of the new speaker to a vector space that is common
with the training speech. These are known as spectral mapping techniques. Second
are methods which transform the model parameters[46, 47, 15] to better match the
characteristics of the adaptation data. These techniques are known as model mapping

approaches and are the focus of this chapter.

5.2.1 Model Mapping Techniques

The most popular model-based adaptation techniques can be grouped into three
families[82]: Maximum a posteriori (MAP) techniques[45, 27, 14], linear transfor-
mation techniques including MLLR [46, 47] and speaker clustering based techniques
including CAT[23, 78] and eigenvoice [20, 19]. The most effective technique of adap-
tation will depend on the application.

Because it is difficult to reliably estimate a large number of parameters, linear
transforms have been used extensively during adaptation of HMM-based ASR sys-
tems. By only estimating the transformation matrix or matrices on the adaptation
data, the number of parameters that have to be estimated is very limited. This re-
sults in a robust estimation, while preserving the possibility of effectively adapting
the HMM’s distribution densities to the observed adaptation data.

One approach is the constrained adaptation of the acoustic models to the speaker,

the channel, or the task, and this is termed Maximum Likelihood Linear Regression
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(MLLR) [46, 47]. In MLLR, a transform is applied to the Gaussian model parameters
in the estimation of the state independent observation distributions in order to best
match the specific conditions of interest. These can be speech from an individual
speaker or a particular acoustic environment, causing large variations in the realized
speech waveform due to speaker variability, mood, environment, etc. MLLR finds the
optimal affine transformation by maximizing the likelihood of the adaptation data.
Adaptation can also be applied to the speakers in the training set to produce
matched conditions with the test set, and this is termed Maximum Likelihood (ML)
Speaker Adaptive Training (SAT) [1]. SAT is a well-established technique aiming at
reducing inter-speaker variability within the training set. SAT is an iterative pro-
cedure that generates a set of speaker independent (SI) Gaussian parameters along
with matched speaker dependent transforms for all the speakers in the training set.
Another popular framework for doing speaker adaptation is the Bayesian-MAP
(maximum a-posteriori) approach[45, 27, 14]. In MAP a prior density 7(f) on the
parameter set 6 is used to extend the EM auxiliary function. Thus if we know what
the parameters of the model are likely to be using the prior knowledge, we may be

able to get a decent estimate given the limited adaptation data available.

5.3 MLLR Adaptation

Maximum likelihood linear regression or MLLR[46, 47] computes a set of transfor-
mations that will reduce the mismatch between an initial model set and the adaptation
data. MLLR estimates a set of linear transformations for the mean and/or variance
parameters of a Gaussian HMM system.

The effect of these transformations is to shift the component means and alter the
variances in the initial system so that each state in the HMM system is more likely
to generate the adaptation data. The transformation matrix is usually applied to
the mean vector of each Gaussian, because they define major characteristics of the
distributions. Covariance adaptation is less commonly used and it is less effective

than mean adaptation|24].
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The new estimate of the adapted mean is given by:
=T =Au+b, (5.1)

where T is the n x (n + 1) transformation matrix (where n is the dimensionality of
the data) and £ is the extended mean vector,

E=[1ppo oo ]’

Hence T can be decomposed into
T=[bA] (5.2)

where A represents an n X n transformation matrix and b represents a bias vector.
The transformation matrix 7" is obtained by solving a maximisation problem us-
ing the Fzpectation-Mazimization (EM) technique( shown in section 5.5.2), and can
be either a full unconstrained matrix or a block-diagonal one. By using full regres-
sion matrices we can model the correlation among the mean vector parameters more
precisely and thus provide better description of speaker characteristics. However the
large number of parameters (n? + n, in the full case) makes robust estimation of full

regression matrices very difficult when the amount of adaptation data is small.

5.4 Regression Class Tree

MLLR adaptation can be applied in a very flexible manner, depending on the
amount of adaptation data that is available. When performing speaker adaptation,
the more data that is available, the more parameters we can reliably estimate. If a
small amount of data is available then a global adaptation transform can be generated.
A global transform (as its name suggests) is applied to every Gaussian component in
the model set.

However as more adaptation data becomes available, improved adaptation is pos-
sible by increasing the number of transformations[47, 86]. Each transformation is now
more specific and applied to certain groupings of Gaussian components. MLLR im-

plementation in the HTK Toolkit [85] makes use of a regression class tree (Fig 5.1).
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The regression class tree is constructed so as to cluster together gaussian mixture
components that are close in the acoustic space and must be transformed in a similar
way. The number of transformations to be estimated can be chosen according to the
amount and type of adaptation data that is available. The tying of each transforma-
tion across a number of mixture components makes it possible to adapt distributions
for which there were no observations at all. With this process all models can be
adapted and the adaptation process is dynamically refined when more adaptation

data becomes available.

Figure 5.1: Regression Tree

5.5 Speaker Adaptive Training

Speaker Adaptive Training (SAT) [1] has been shown to be effective in improving
the performance of speaker independent (SI) LVCSR systems by reducing the inter-
speaker variability within the training set. The variability in SI acoustic models is
attributed to both phonetic variation and variation among the speakers of the training
population, that is independent of the information content of the speech signal. In
SAT a transform is used to represent a speaker, both during training and testing.
For each speaker k, a transform matrix T,.") = [b") A®)] is applied to the (extended)

mean vector & = [1 u7]" according to

a® = T®g = A® 4 p®), (5.3)
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Here Agk) and bg«k) are respectively the speaker-dependent transformation matrix and
the additive bias associated with speaker k.
Due to (5.3), the emission density (2.9) of state s is reparametrized for each
speaker k =1,2,..., K as
1 1 e N1 (o k)
G(or]s, b 0) = ———¢ 3 (o TV6) B (o T

(2m)"[3s]

To avoid introducing more parameters than can be reliably estimated, transfor-
mations are tied across sets of states. Thus the extended speaker dependent trans-
(k)

formation matrix 7" is associated with a group of states S, = {s|R(s) = r} for
classes r = 1,..., R. The function S, gives the set of mixtures belonging to the same
regression class r.

Under this framework the augmented state dependent parameter set is defined as
0 = (Tr(k), s, Xs), for all speakers & in the training set. Next we briefly show how
to compute the speaker dependent transforms and speaker independent Gaussian

parameters of the state dependent distributions under the ML criterion.

5.5.1 Maximum Likelihood Estimation

We first maximize the ML criterion with respect to the speaker dependent affine
transforms while keeping the speaker independent means and variances fixed to their
current values. Subsequently, we compute the speaker independent means and vari-
ances using the updated values of the speaker dependent affine transforms. All these
estimation steps are done under the ML criterion.

The estimation procedure is done by maximizing the following auxiliary function:

Q1) = ——Zzzwe )[log]%4] + (0, = )T Mo, — ] + € (5.4)

k,r seS(r

where C' is a constant independent of 6 coefficients and o, is the adaptation data.
In SAT the training data are collected from a population of K speakers. Before
training all utterances are partitioned according to speaker identity. To incorporate

information about the speaker identities into the ML framework we denote by {r :
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k, = k}, the sequence of feature vectors o, belonging to speaker k. The parameter

update equation then becomes:

0 : Z Z Z 7s(7;0)Vglogg(os]s, k; ) =0 . (5.5)

kyr s€Sr mik(r)=k

where 7,(7;8) = g, (s|%", of, k; 8) is the conditional occupancy probability of state s

at time 7 given the training acoustics and the reference transcription.

5.5.2 Estimation of SAT Transforms

With the HMM parameters fixed, the parameter update relationship of equa-

tion (5.5) can be expressed as:

[9:37 3 %(m0) - Vyw logalo s, kTP, p, 2) = 0. (5.6)
5€Sr 7:k(T)=k

The gradient of logarithm of the emission density ¢ with respect to 7

be

is found to

Vo logq(os, k;0) = 1 (o, — TVE,) &F
Substituting this into equation (5.6) it follows that the new transform estimates T

should satisfy:
DS 0ol =D Y w(m )T TR LS (5.7)
SESy T:k(T)=k $CSr rik(T)=k

Here, the state occupancies 7;(7; ) are found via counts accumulated for each speaker

under the initial parameters (Tr(k), sy Xs)-

5.5.3 Gaussian Parameter Estimation

The state independent Gaussian mean and variance parameters for ML-SAT are
estimated under the ML criterion with the use of the parameter update relationship

of equation (5.5) using the updated values of the speaker dependent affine transforms
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7). The parameter set is § = (Tr(k), s, 2s). The derivation of the update formulas
involves the gradient of the reparametrized emission density with respect to us; and

¥, ! in equation (5.5). Subsequently, we solve for ji; and 3.

S

Mean estimation

From equation (5.5), the Gaussian means are found as:
s Y, Y 7s(0) - Vi, logq(orls, b T, e, 5s) = 0., (5.8)
k T:IE(T):IC
In a similar fashion by taking the derivative with respect to the (SI) mean and

taking into account all the training speakers we have

V.., logq(o,|s; 6) ZA(k St (op — B — AR ) (5.9)

Substituting the above expression for the gradient into the update rule of equa-

tion (5.8), speaker independent means are then reestimated as

-1

-2 X wmnarsiar)
k' rik(r)=k
SAE Y () o - ). (510

k 7:k(7)=k
The term to be inverted need only be accumulated once for all speakers, thus making

the parallel execution of ML-SAT algorithm across a network of machines feasible.

Variance estimation

From equation (5.5), the Gaussian variance is found as:
I Z Z 7(736) - Vot log q(or|5; 7™, fis, £5) = 0 . (5.11)
k' rik(r)=k

By taking the derivative with respect to the speaker independent variance %'

have:

st—l IOg Q(OT‘S; Tr(k)a ﬂs; Zs) = E5 - (O’T - ﬂgk)) (O'r - ﬂgk))T :
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Substituting the above expression for the gradient into the update rule of equa-

tion (5.11), the speaker independent variances are then reestimated as

where

_ Zk ZT:]}(T):IC ,YS(T; é) (072' - QOTﬂg’k) + ﬂgk)z)
Zk ZT:];‘(T):]C Vs (7—’ 0)
= (k) (k)

fs ' = Ay’ jis + l_)sk), are the new speaker dependent means.

3, (5.12)

5.6 The ML-SAT Algorithm

The derivation described above is a two-stage iterative procedure as shown in

Fig 5.2. It can be summarized in the following steps:

1.

For each training utterance, the corresponding phone models are concatenated.

. The forward and backward probabilities for all speakers k, and for all states s

and times 7 are calculated.

. Initially, speaker dependent transforms are estimated via equation (5.7) while

holding all other HMM parameters fixed at their current values.

. The speaker dependent transforms T,«(k) are applied to obtain the speaker de-

pendent(SD) models. The forward and backward probabilities are calculated

again for all speakers k, and for all states s and times 7.

For each speaker k£ and foreach state s and time 7, the probability of state
occupation ~y,(T; 0~) and the current observation vector o, are used to update

the mean and variance accumulators for that state.

. When all of the training data has been processed, the accumulated statistics are

used to calculate new parameter values for all of the HMMs according to (5.10)
and (5.12).

These steps can then all be repeated as many times as is necessary to achieve the

required convergence.
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Initial MLLLR Matrices Initial S1 Models
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Re—Estimate MLLR Matrices

T e =,

Re—Estimate S1 Models

T Hs s

Figure 5.2: SAT implementation

5.7 Discriminative Linear Transforms

Until recently adaptation techniques have been based on the maximum likelihood
(ML) parameter estimation framework. However discriminative optimization crite-
ria can be more effective in reducing the word error rate than maximum likelihood
estimation and hence are of interest. As a result, discriminative procedures for the
estimation of the linear transforms used in speaker adaptation have been developed.
When estimated in this manner they are called Discriminative Linear Transforms
(DLT) [75].

One approach to the use of DLTs is Maximum Mutual Information Linear Regres-
sion (MMILR) which was introduced by Uebel and Woodland [75, 76], who showed
that it can be used for supervised speaker adaptation. Gunawardana and Byrne [35]
introduced the Conditional Maximum Likelihood Linear Regression (CMLLR) algo-
rithm and showed that CMLLR can be used for unsupervised speaker adaptation.

Maximum likelihood linear transforms have also been incorporated with MMI
training. McDonough et al. [54] combined SAT with MMI by estimating speaker de-

pendent linear transforms under ML and subsequently used MMI for the estimation
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of the speaker independent HMM Gaussian parameters. This is a hybrid ML/MMI
modeling approach. In the next section both the linear transforms and the gaussian
parameters used in speaker adaptive training are reestimated under MMIE criteria

using the (CML) auxiliary function.

5.8 Discriminative Speaker Adaptive Training

Our objective is to compute both the speaker dependent transforms and the
speaker independent parameters of the state dependent distributions used for speaker
adaptive training under the CML criterion. As a result we obtain fully discriminative
procedures. We call this Discriminative Speaker Adaptive Training (DSAT)[73].

We first maximize the CML criterion with respect to the speaker dependent affine
transforms while keeping the speaker independent means and variances fixed to their
current values. Subsequently, we compute the speaker independent means and vari-
ances using the updated values of the speaker dependent affine transforms. All these
estimation steps are done under the CML criterion.

In SAT the training data are collected from a population of K speakers. To incor-
porate information about the speaker identities into the CML framework, we modify
the observed random processes to include a sequence that labels each observation
vector by the speaker who uttered it: (ol;, l%{,w’f) The training objective therefore
becomes the maximization of p(w?| ol;, /Afll ;0). The parameter update relationship of

equation (4.5) can be modified to include the speaker identity as follows:

0 - Z [q(sll\w?,oll,l%ll; 0) — q(st |0}, kL; 0)} - Vologg(of, ki |sy; 0)
st

+32a (s1) [t Hlshs 0) - Vologatol, Hisls 8) dof =0. (5.3
:

Using the Markov assumptions we can write logg(o!, k![s!; 8) a
S ks oy log q(or|s, k5 0)14(k(7))14(s,)1:(R(s)), where 14(k(r)) = 1 if k = k(r), 0

otherwise. Equation (5.13) then becomes:

S
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0:> > Y i(r:0)Vologq(os, k; 0)

ki s€Sr rik(r)=k

+ZZD(k/ (ols, k; 0)Vylogq(ols, k; 0) do=0. (5.14)

k,r SES,

where . (7;0) = v5(7;0) — 79(7;0) as defined in the previous chapter and D =

> rhr)mk Sosts(ryms 4 (51):

5.8.1 Estimation of DSAT Transforms

With the HMM parameters fixed, the parameter update relationship of equa-

tion (5.14) can be expressed as:

[N Y Ai(m30) - Viw logglor]s, ks T, s, 5)

SESy ’T:I:J(T):k

+ Z D / (07|, k; T™) | s, ES)VT,(k) log q(o,|s, k; T®), jus, B5) do=0. (5.15)

SES,

The gradient of logarithm of the emission density ¢ with respect to T® can be found

as

V00 1089(0r 15,k 0) = = - V0 ((0r = TVE)" £, Mg, + €T 5, )

1
2
=3 (o, - TME,) €7

Substituting this into equation (5.15) gives

YoS DY A 0) (o = TWE) €8 + DE / q(o|s, k; T (0, — TME) €Tdo| =0

SES, T:I::(T):k

)

from which it follows that the new transform estimates 7. should satisfy:

SO DD v 0)o, + DET, =Y 5| Y 0+ DP | TR

SES, TZIE)(T):IC SES, T:I;:(T)Zk
(5.16)
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Here, the state occupancies are found via counts accumulated for each speaker under

the initial parameters (T,«(k), fsy Xs)-

5.8.2 Gaussian Parameter Estimation

The state independent Gaussian mean and variance parameters for DSAT are
estimated under the CML criterion with the use of the parameter update relationship
of equation (5.14). The derivation of the update formulas involves the gradient of the
reparametrized emission density with respect to u, and 37! and the calculation of

the integral (5.14) . After these steps, we solve for u; and ¥;. The parameter set is
0 - ( 7 :U’-S" 26‘)
Mean estimation

From equation (5.14), the Gaussian means are found as:

'ELS : Z Z 7;(7—’ é) : vIJ's 10gq(07—|3,k;T1.(k),ﬂs,Es)

k' rik(r)=k

+ZDk)/ (orls, &; TV, s, S5) -V, log a(or|s, ks TV i, Bg)do = 0. (5.17)

In a similar fashion by taking the derivative with respect to the (SI) mean and

regarding all the training speakers we have:

I
V.. logq(d|st; 8) =V, Z Z ( b(k TzslAgk)us)>
k T=1
A (

k T=1

(1T ABTE (B — o, + qu$k>Tz;1Am>1{s}<s<f>>))

l\DI»—l

=33 (AW (0, — b — ABp) ) 1y (s(7)) - (5.18)

k =1

Substituting the above expression for the gradient into the update rule of equa-

tion (5.17) gives



o7

> AW [ 75(750) (o — ) +D§k)/q(07|8,k;us)( or (k))dO} =0

7:k(T)=k

where ﬂgk) = A&’“) ﬁs+5$k), is defined as the new speaker dependent mean. Calculating
the integral yields

Y AEOAPTS ! (o — 5F) + ) DPARTS TAF (g — i) do =0

(k)

Finally, given the new estimate of the speaker dependent transform 7", speaker

independent means are then reestimated as

-1

Z AWTy -1 V(73 0) (0 — B(k)) + D A® L ) (5.19)
k

Variance estimation

From equation (5.14), the Gaussian variance is found as:

S Y Y 7(r30) - Vi log (o5 TR, i, 5)

k' rk(r)=k

+ Z D(k / ( ), Hs; ES)VES_I logQ(0|S; Tr(k)a Hs, 2is)do =0. (520)

In a similar fashion by taking the derivative with respect to the speaker indepen-

dent variance we have:

vz* logq(oT|s; T(k)’ s, Es) =2 — (OT - ﬂgk)) (O’T - ﬂgk))T
where ,us = AW s + b , defined as the speaker dependent mean. Substituting the

above expression for the gradient into the update rule of equation (5.20) gives
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S im0 (5 - (o= BY) (or - i)
ko rik(r)=k
+ZD(k/ olsi ) (%5 — (0r = 1) (0, = )" ) do =0.

Rearranging the previous equation and calculating the integral yields

SIS A0 +0® ) 5= 3 20 (or — ) (0, — 59)

k Tik(T)=k k rik(T)=k
- - 2
+ E DI (3, + (AW, — A ,)"]

Finally, given the new estimate of the speaker dependent transform Tr(k)

and the new
estimate of the speaker independent mean j,, the speaker independent variances are

reestimated as

S (ZTk ()= Vs (T3 6) ( ﬂgk)> ) + D (Es + (/ﬁk),us - AW}%)Q)
Y= :

4 (Srbrrs 14073 8) + DY)

(5.21)

5.9 The DSAT Algorithm

The derivation described above is a two-stage iterative procedure that can be

summarized in the following steps:
1. For each training utterance, create the numerator and denominator lattices.

2. Calculate the probabilities v,(7; ) and v9(7; 6) of state occupation for all speak-

ers k, and for all states s and times 7. Collect numerator/denominator statistics.

3. Initially, speaker dependent transforms are estimated via equation (5.16) while

holding all other HMM parameters fixed at their current values.
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4. Apply the speaker dependent transforms Tr(k) to obtain the speaker depen-
dent(SD) models. Calculate again the probabilities v,(7; ) and v9(7; §) of state

occupation for all speakers k, and for all states s and times 7.

5. For each speaker k and foreach state s and time 7, use the probabilities 7(7; 9)
and 9 (7; 0~) and the current observation vector o, to update the mean and

variance accumulators for that state.

6. When all of the training data has been processed, the accumulated statistics are
used to calculate new parameter values for all of the HMMs according to (5.19)

and (5.21).

These steps can then all be repeated as many times as is necessary to achieve the

required convergence.

5.10 Relationship between DSAT & MMIE

If we set A®) = I and b%*) = 0 in the update equations (5.19) and (5.21) we end
up with the standard MMIE update equations (4.7) & (4.8). Indeed for the mean

we get:

- Zk ZT:E T)=k ry.ls (T; é)ofr + Dg’k),us
_ (7)
s 5 %

or

,U,_ _ Zk ZT:I;:(T):IC 7;(7—7 5)07' + Ds,u's
Zk ZT:’::(T):]C ry‘ls (T7 0) + DS

This last equation corresponds to standard MMIE mean update with
D~ Yot
k

Similarly the variance becomes
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o = Lk r (70007 + DI(Z, +12)
2k (Zr;fc(f):k 74(7:8) + Dﬁk))

which is the standard MMIE variance.

5.11 Summary

This chapter has presented a speaker adaptive training (SAT) framework based
on discriminative criteria. SAT is a powerful technique for building speech recogni-
tion systems on non-homogeneous data. A transform is generated for each speaker
in the training set in order to produce matched conditions with the test set. These
transformations are applied to the mean vectors before they enter the output distri-
butions of the HMMs. We use a regression class tree to cluster together groups of
output distributions that are to undergo the same transformation. The number of
transforms is usually determined experimentally.

We briefly discussed the popular adaptation techniques such as MLLR and SAT
that are based on Maximum Likelihood estimation. As an alternative to ML-SAT,
the input transform and the gaussian model parameters are estimated using the CML
auxiliary function. Thus we obtained fully discriminative procedures. Discriminative
training is well suited for speaker adaptive training because of the very good perfor-

mance on the training corpora.
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Chapter 6
Minimum Bayes Risk Estimation

The discriminative modeling techniques MMI and DSAT discussed so far are the
analog to the ML and ML-SAT maximum likelihood estimation procedures respec-
tively. Although computationally expensive, they are efficient enough to be used for
large vocabulary speech recognition tasks because of the existence of lattice based
estimation procedures. However during MMIE/DSAT training the acoustic models
are optimized with respect to the sentence error rate (SER) metric that is rarely
used in evaluating these systems. The Minimum Bayes Risk modeling framework al-
lows us to develop training procedures using a task specific evaluation criterion such
as the word error rate (WER). Efficient Minimum Bayes Risk estimation for large

vocabulary speech tasks is the topic of this chapter.

6.1 Risk Based Training and MMIE

MMIE increases the a posterior: probability of the correct transcription given the
observed speech data. Since the ultimate goal is to reduce the number of words in
error, estimation procedures that reduce the loss are more closely related to the ASR
performance criteria. The Minimum Bayes Risk framework can compensate for the
mismatch between the estimation and the evaluation criteria used in ASR systems.

Given a database (W,0) we want to estimate model parameters to minimize the
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empirical loss

0* = argmin R(W, W; 0) (6.1)
[
where
RW,W; 0)= Y I(W,W)P(W'|0; 0) (6.2)
w'ew

W is the set of hypotheses that are alternatives to the truth. The risk is measured
under a loss function that is appropriately chosen for the recognition task; for exam-
ple, in ASR the most commonly used loss function is the Levenshtein distance [49]
that measures the word error rate(WER).

Therefore Empirical Risk Minimization estimates the model parameters so as to
directly reduce the expected classification error on the training data. The interpreta-
tion is that the estimation procedure should attempt to minimize the empirical loss
R(W,W; 0) by assigning low conditional likelihood P(W’|0;0) to the hypotheses
W' that are far from the truth W in terms of /(W,W') and move probability mass
towards those hypotheses that are close to the truth.

Under the 0/1 loss function between word strings W, W'

_ 0if W =w'
W)
1 otherwise.

the above equation (6.1) becomes

§* = argmin Z P(W'|O; 0) = argmin(1—P(W|0; 0)) = argmax P(W|0; 0)
O wewwrw b 6
(6.4)

which is the MMIE objective function as shown in equation (4.2).

We note that MMI is a special case of risk minimization under the Sentence Error
Rate loss function on the acoustic training set. This immediately suggests that be-
yond the usual difficulties of ensuring that performance on the training set generalizes
to the test set, there may also be issues in generalization under different performance
criteria.

The close relationship between MMI and minimum risk estimation is widely

known, and MMlI-variants for the training criterion of (6.1) have been developed
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[41, 42, 83]. Normandin used the Extended Baum Welch (EBW) algorithm by
Gopalakrishnan et al [31] for MMI estimation, while Kaiser et al [41, 42] also used
(EBW) for risk minimization of (6.1).

6.1.1 Gaussian Parameter Estimation

Kaiser et al[41, 42] used the Extended Baum Welch algorithm by Gopalakrishnan
et al [31] for risk minimization of (6.1) by observing that the overall risk R(W, W; 0)
is a rational function similar to P(W|]O; ). We briefly present his estimation in the
Appendix (A).

Following Kaiser we can express the derivative of — Loss(#) in terms of VylogP(O|W')

—VyLoss(0) = Y K(W',W)VylogP(O|W’) (6.5)
where
KW' W) =[>_ PW"O)(W,W") = I(W,W)] P(W'|0). (6.6)
whew

K(W', W) determines the contribution of each hypothesis W’ to the gradient of
the loss. It plays the same role in the Extended Baum Welch update rule as the
gradient of the likelihood does in the derivation of MMI.

Given the K(W', W) and VylogP(O|W'; 6), the new estimates for the means and
variances can be estimated by the extension of the EBW as proposed by Normandin

[62]. For the means, the estimate for s, is given by

Z K(Wla W) ZT 'YZV, (T)OT + Dsps

b T KWW S 0 () + D, (67)

w’'ew

For the variance we have

S KWL W), (1) + Dy (S, + o)
3, = VW — a5, T 6.8
AR HCEY) Hstt 6.8
wW'ew

These estimates are such that R(W,W; ) < R(W,W; 6).
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However there are obvious difficulties with this approach. By observing equations
(6.7) and (6.8) it follows that the estimation of the Gaussian model parameters to
minimize the empirical risk differs from MMI in that it is necessary to compute the
contribution of K (W', W) in addition to the posterior likelihood P(W’|O; ). This
quantity (6.6) needs to be found over all paths W’ in W. The problem then is to
choose the set WW. We refer to VW as the “evidence space” since it determines the

hypotheses over which the risk will be estimated.

6.1.2 Collecting Statistics over the Evidence Space

In large vocabulary speech recognition tasks, W is often a lattice generated by the
ASR decoder. Lattices are used because the most likely hypotheses are so numerous
that listing them explicitly is impractical, and probabilities such as P(W]0; 6) can be
found conveniently by summing over lattice paths so that procedures such as lattice-
based MMI are feasible.

However finding K (W', W), which must be computed and maintained for each
path W’ € W, is not as readily done over lattices. The source of the problem is
the presence of {(W,W’). For instance, this quantity requires finding the Levenshtein
distance between the reference W and every other path W’ in W. These distances are
not as easily computed as path likelihoods, since Levenshtein distance between two
strings does not distribute over lattice arcs in the manner of path likelihoods. Beyond
the computational difficulty in finding the [(W,W’) over all paths W’ € W, there
are complications in accumulating the statistics for the mean and variance updates of
Equations (6.7) and (6.8). The summation over W must be performed pathwise by
explicitly enumerating W' so that the weighting terms K (W', W) can be incorporated
correctly into the statistics.

Given the framework described thus far, the only possibility for lattice based
estimation is simply to expand first-pass ASR lattices into N-Best lists so that the
string-to-string comparisons and the gathering of statistics (done via the Forward-
Backward procedure) can be carried out explicitly. This was the approach proposed

developed and validated by Kaiser on a small vocabulary task. While correct this
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approach is not feasible for large vocabulary continuous speech recognition. These
N-Best lists would have to be extremely deep to contain a significant portion of the
most likely hypotheses, and the computation of loss over them and the gathering
of statistics needed to perform the parameter updates of Equations (6.7) and (6.8)
would also be costly, leading to considerable higher training times than standard
MMIE training.

An easy solution might be to use a subset of W, although this subset must be
representative of the errors that actually exist during training. While this approach
avoids the high memory, computational and storage costs, the problem of estimating
the loss (W, W') for every W' still remains.

This problem of merging the computation of loss and likelihood also arises in the
application of Minimum Bayes Risk decoding [28, 30], to large vocabulary ASR tasks.
We now discuss how efficient techniques to compute risk over lattices can be used to
obtain the statistics needed to implement the risk-based minimization criteria for

parameter estimation in large vocabulary speech recognition tasks.

6.2 Minimum Bayes Risk Decoding

Minimum Bayes Risk(MBR) Decoding is an alternative ASR search strategy that
produces hypotheses|[71, 28, 30], with the least expected loss under a given task
specific loss function. Let {(W,W') be a real valued function that measures the loss
incurred when an utterance W is mistranscribed as W'.

Under {(W, W') between word strings W and W', the MBR recognizer seeks the

optimal hypothesis given the acoustic data O as:

W = argmin » (W, W')P(W'|O) (6.9)
wew Wiew

Thus the hypothesis with least expected loss is selected. MBR decoding has been
found to consistently provide improved performance relative to straightforward max-
imum a posteriori (MAP) decoding procedures.

Prior work in MBR decoding has treated it essentially as a large search problem in
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which W are N-Best lists or lattices that incorporate P(W’|O) as a posterior distribu-
tion on word strings obtained using an HMM acoustic model and an N-gram language
model[71, 28]. Thus in implementing the MBR, decoder there are conceptually two

distinct steps:

Step 1 Compute the risk for each W € W

RW, W) = > I(W,W')P(W'|0) (6.10)
wrew

Step 2 Select the minimum risk hypothesis

A

W = argmin R(W, W) (6.11)
Wew
A special case of MBR decoding is particularly useful; when (W, W) is the 0/1 val-
ued identity function that measures the sentence error rate. Under these conditions
the MBR, recognizer of Equation( 6.9) leads to the standard MAP rule.

Efficient algorithms have been developed to compute the risk R(W;W) of a hy-
pothesis W under the Levenshtein loss function[30]. Since it is straightforward to
compute P(W'|O) over lattices, the key is an efficient lattice-to-string alignment al-
gorithm to find [(W, W) for all W' in any lattice W. Such an algorithm has been
developed, and it yields the (nearly) optimum alignment of every W to W'. The
lattice-to-string alignment algorithm is described in detail in Goel et al.[30]. For the

purposes of this thesis, the algorithm will be described briefly in the next section.

6.3 Lattice-to-string alignment

The goal is to find [(W, W’) for all W' in a lattice W. The algorithm described
here yields an (nearly) optimum alignment of every W' to W called the lattice-to-
string alignment. The top lattice in (Fig. 6.1), shows a lattice generated by an ASR
system. The lattice arcs are labelled by word hypotheses and these arcs carry the
negative log likelihood of each word. In this example, the lattice will be aligned to

the reference string W
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W: HELLO HOW ARE YOU ALL TODAY
it appears in the lattice marked in bold. The output of the lattice-to-string alignment

algorithm is a lattice itself, as shown in the second lattice of Figure 6.1.

TODAY/0.7.

HELLO/0.7

WELL/O.9

N1 N2 N3 nNa NS N6
) -

WELL.INS:0/1 —

HEL LO:0/0

\
N L
N
N
w007 O< | ; D 27 0. 2m 3 ALLDT, O e
~. s Nowg N , < . 306 O > %
T~ / N / AREDS oo voum 18 009 N o
S~ v N /U188, 198 2088 -00- -0 m’\o ! 37557%%
s 0——> (0 ----- 00" O ----- \OQ* =0—0— DAY? Ooq ~
.
" kX \ \ t \
WELLO9 009 N w / \ 218 7 009 0 L, 4 w0
\ ’ 1% N ARE7 7 VOU’UB WELLI0O9 03, \
[ZEN , 0 0 / .
N " 7 o Isent_end0.7
Nowio

HOWI09 O’
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Figure 6.1: Lattice Segmentation for LVCSR Minimum Bayes Risk Estimation. Top:
First-pass lattice of likely sentence hypotheses with reference path in bold; Middle:
Alignment of lattice paths to reference with node cut sets and sublattices; Bottom:
Pruned pinched lattice used for training.

The alignment of an arbitrary string from the first lattice, e.g.
W’: WELL O NOW ARE YOU ALL TODAY
can be read from the corresponding string in the alignment lattice:
WELL.INS:0/1 0:0/1 NOW:1/1 ARE:2/0 YOU:3/0 ALL:4/0 TODAY:5/0
The notation WELL.INS:0/1 indicates that WELL is aligned as an insertion with cost
1 to the word at position 0 in the reference string (which is HELLO the alignment
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index starts at 0); similarly, O is aligned to HELLO and NOW is aligned to HOW,

each with a substitution cost of 1. The overall alignment reads as

Word Index : 0 1 2 3 4 )
Reference : HELLO HOW ARE YOU ALL TODAY
Hypothesis : WELL O NOW ARE YOU ALL TODAY
Per Segment Cost: 2 1 0 0 0 0

with a total loss of [(W,W’) = 3. By tracing a path through the lattice and accu-
mulating the Levenshtein alignment costs and weighting them by the arc likelihoods
(which are copied from the original ASR output lattice), the risk R(W, W) of W can
be computed. The connection between MBR decoding and Minimum Risk estimation
becomes apparent when we note that a key quantity in risk based minimization train-

ing can be written in terms of the same lattice based risk needed for MBR decoding:

KW', W) = [R(W, W) — (W, W')] P(W'|0O). (6.12)

6.3.1 Risk-Based Cutting of W

Even with the aid of the lattice-to-string alignment algorithm, computing lattice-
based risk can be computationally challenging for long or deep lattices. We have used
risk-based lattice segmentation techniques that simplify MBR decoding and we now
discuss how these methods can be applied to risk-based parameter estimation. Risk-
based lattice segmentation proceeds by segmenting the lattice with respect to the
reference string by following the lattice-to-string alignments. For the K words of the

reference string, we identify K-1 node cut sets. To form the cut set N;,z =1,..., K —1
e - identify all lattice subpaths that are aligned to the reference word W;
e - the cut set IV; consists of the final lattice nodes of all these subpaths

The second panel of (Fig. 6.1) shows the cut sets for that lattice. The paths between
adjacent cut sets are tied at their ends so that they form sublattices, and these are
then concatenated to form a pinched lattice as shown in the third panel of (Fig. 6.1)
and the second panel of Figure (Fig. 8.1). Each of these sublattices contains one
word from the reference string and the other word sequences which aligned to it. The

dashed arcs show the likelihood of the word hypotheses. For instance, —logP (W5 =
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ALL,0O) = 2.16 + 0.7 + 1.196, is the log likelihood of all the paths whose fifth word
is ALL.

The pinched lattice is a sequence of sublattices each of which is aligned to a single
word in the reference string. These sublattices are called confusion sets because they
contain likely and errorful hypothesis segments that the ASR system might confuse
with the reference words. It is important to stress that all the sentence hypotheses
from the original ASR lattice are preserved in creating the pinched lattice and that no
paths are removed by pinching. In fact, pinching may actually introduce new paths
by piecing together subpaths from the original lattice; however these new paths are
insignificant from a modeling point of view, in that they should be of lower probability

than any of the original lattice paths.

6.3.2 Pruning of W

The evidence space is pruned in two steps. In the first step, the likelihood of
each lattice arc is used to discard all paths through every confusion set so that only
the most likely alternative to the reference word remains. This is illustrated in the
transition from the second to the third panel of(Fig. 8.1). When the confusion sets
are pruned to contain binary alternatives, we call them confusion pairs.

In the second pruning step, we simply count all the confusion pairs in the training
set lattices, and if any pair has occurred fewer times than a set threshold, that pair is
everywhere pruned back to the reference transcription. As an example, the bottom
panel of (Fig. 8.1, Bottom), shows that some segment sets not in the final collection
(e.g. OH+4) are discarded. The end result is a greatly reduced evidence space W
derived from the original lattice YW. This reduction is controlled by the occurence
threshold and we usually determine through experimentation what value gives a rea-
sonable sized N-best list expansion. For example if we have 3 binary confusion pairs

the N-best list depth is 23.
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6.3.3 Induced Loss Function

Our original motivation was to speed up training, but this approach also allows us
to redefine the string-to-string loss within W. Suppose the reference string W has N
words W;,i=1,2,..., N. Another string W’ is not allowed to be aligned arbitrarily

to W; it must follow the constraints of WW. We call this the “induced loss function”
LW, W) =) 13, W) (6.13)

Thus we assume that the loss function distributes over the segmentation. Ideally,
we should satisfy the strong requirement that the loss function between any two
word sequences W, W', is not affected by the lattice cutting, i.e. that [(W,W') =
S W W)

In summary, lattice segmentation produces both a reduced hypothesis space as well
as an induced loss function. Once a lattice has been segmented, the original lattice
W is approximated by the pinched lattice W and the distance between two strings
in the lattice is constrained by the segmentation. We next discuss how to use these
quantities to reduce the computational cost of minimum bayes risk discriminative

training.

6.4 Pinched Lattice Minimum Bayes Risk Discrim-
inative Training

In our approach to direct risk minimization we first incorporate lattice pinching,
which produces both a reduced hypothesis space W as well as an induced loss function
I;(W,W"), with the goal of focusing the estimation procedures on individual recogni-
tion errors. Because we apply discriminative training on the pinched lattice we term
the procedure Pinched Lattice Minimum Bayes Risk Discriminative Training.

By approximating the original lattice YW by the pinched lattice W, and using
equation (6.13) then the initial equation (6.1) becomes
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4)

Estimation is done with equations (6.7) and (6.8) with W replaced by W and

taking

W)=Y PW"|O)(W,W") — Ly(W,W")] P(W'|O) . (6.1

W!ew

which can be written as

KW' W) = [Ri (W, W;8) — I;(W,W")] P(W'O), (6.1

5)

6)

for all W' € W, where Rr(W,W;0) = 3" uep P(W"|0) (W, W") is the expected

induced loss.

This leads to the following training algorithm.

6.4.1 The PLMBRDT Algorithm

Step 1 Generate lattices over the training set

Step 2 Align the training set lattices to the reference transcriptions W
Step 3 Segment the lattices

Step 4 Prune the confusion sets to confusion pairs

Step 5 Discard infrequently occurring confusion pairs

Step 6 Expand each pinched lattice into an N-Best list, keeping I;(W, W)
Step 7 Compute R (W, W;0) as defined above

Step 8 For all W’ € W compute K (W', W) by equation (6.16)
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Step 9 Perform Forward-Backward pass for all W’ € W using the weighting K (W', W)

to accumulate statistics

Step 10 Estimation is done by equations (6.7) and (6.8)

This implementation does expand lattices into N-Best lists of sentence hypothe-
ses. However, it is the pinched lattices that are expanded, not the original lattices
generated by the ASR decoder. The pinched lattices are much reduced relative to the
original lattice and, since we have control over the degree of pinching and pruning,
we can control the size of the N-Best lists. These pinched lattices are also represen-
tative of the errors that actually exist during training. In this way we can reduce
the evidence space drastically so that the original formulation by Kaiser et al can be
applied directly to large vocabulary ASR, albeit under the induced loss function.

Next we consider two simplifications to W. The first variant is Pinched Lattice
MMIE which is appropriate for small vocabulary ASR tasks based on whole-word
models. The second variant is One-Worst Pinched Lattice MBRDT which is a form
of corrective training against a competing hypothesis extracted from the pinched

lattice.

6.5 Pinched Lattice MMIE

With lattice cutting, the hypothesis space W is segmented into N segments,
Wi, W, ... Wy. In regions of low confidence, the search space contains portions
of the MAP hypothesis(truth for training) along with confusable alternatives. In re-
gions of high confidence, the search space is restricted to follow the MAP hypothesis
itself (Fig. 8.1, Bottom). We can then express the empirical risk equation (6.14) above
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0 —argmln > u(W,W)P(W'|0;6) = argmin Zz W, WHP(W'|0:0)
[’

W'eWw WiW;.. WN =1

= argmmz Z Z LW, w)P(W'|0;0) = argmlnz Z LW, w) Py(w|O; 6)

i=1 weWw; WW/=w o =1 weWw;
(6.17)

In (6.17) P;(w|O;0) is the probability of observing the string w in the i segment
set and is given by:
P(wlO;0)= > PW'|0) (6.18)
W'eW:w!=w
Next we introduce the global confusion class C' C {1,..., K} to indicate the segment
sets that permit alternatives to the MAP path, i.e. i € C' implies that W, contains

at least one segment not in the MAP hypothesis. We can then write the objective as

= argmlnz Z 1(W;, w) Py(w|O, W; 6). (6.19)

1eC wEWl

Finally, we assume that we have a 0/1 loss function within the segment sets and arrive

at the “pinched lattice” MMI objective function
0" = argmaxz P,(W;|O0, W: ). (6.20)

o ec

Therefore the empirical risk is minimized by maximizing the likelihood of the
correct hypothesis in the confusable segments. Initially lattice segmentation is used
to segment lattices produced by an ASR system into sequences of separate sublattices
involving small sets of confusable words. Then we train acoustic models specialized
to discriminate between the competing words in these classes. We have developed
the following strategy to integrate the estimation and decoding procedures described

here.

6.5.1 The PL-MMIE Algorithm

Step 1 Generate lattices over the training set
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Step 2 Align the training set lattices to the reference transcriptions W
Step 3 Segment the lattices

Step 4 Prune the confusion sets to confusion pairs

Step 5 Discard infrequently occurring confusion pairs

Step 6 Tag word hypotheses in confusion pairs (Fig. 8.1, Bottom)

Step 7 Regenerate lattices over the training set using the tagged and pinched lattices
to constrain recognition (in contrast to Step 1). If the task requires a grammar,
compose the tagged and pinched lattices with the task grammar before lattice
regeneration /rescoring. The grammar should be (trivially) extended to cover

the tagged words.

Step 8 Perform lattice-based MMI [84] using the word boundary times obtained from
the lattice. The procedure differs from regular MMI in that statistics needed in
Equations (4.7) and (4.8) are gathered only over the tagged word hypotheses.
Statistics from the un-tagged word hypotheses, which correspond to the high-

confidence regions in the pinched lattice, are discarded.

In PLMMI the Levenshtein distance is not used explicitly in the reestimation
procedure. It is used to create a pruned search space that contains only the confusable
pairs identified by lattice segmentation. Statistics are compiled over these lattices as
usual for lattice-based MMI, with the exception that statistics are gathered only for
those word instances that appear in confusion sets. This modification forces the MMI

procedure to focus on the low confidence regions identified by lattice pinching.

6.6 One Worst Pinched Lattice MBRDT

In this occasion we approximate the set of paths W’ € W by considering only the
truth W and the worst alternative defined by:

W* = argmax [;(W, W'). (6.21)
W'ew
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So that the set of hypothesis becomes W ~ {WW,W*}. For the lattice shown in Figure
(Fig. 8.1, Bottom) I;(W,W?*) = 4. Under this approximation the loss function (6.14)

becomes
0* = argmin [;(W, W*)P(W*|0; ) (6.22)
9

That is we consider only 2 word sequences W and W*, thus reducing the amount of
computations significantly.
We are interested in applying the update rules of equations (6.7) and (6.8) based

on this reduced loss function. By simple arithmetic in (6.6) it follows that:

Ri(W; W) = P(W*O)lr(W, W*)

KW, W) = [R{(W; W) — lt(W,W)|P(W|O) = P(W|O)l;(W,W*)P(W*|O)
KW* W) = [R(W; W) = (W, W*)]|P(W*|O) = —P(W|0)l;(W,W*)P(W*|0)

leading to K (W, W) = —K(W*,W). Note that in the above we restrict the acoustic
likelihood P(O) to the 2 word sequences W and W*, that is P(O) = P(O|W)P(W)+
P(O|W*)P(W*). Substituting in equations (6.7) and (6.8), the new estimates for the
Gaussian model parameters 0 = (ji,, ©,) are:
KW W) (X, (s W)or = 32 (15 W*)oy) + Dypus
T KW, W)(7s(W) = 7(W*)) + D,
5, = KW, W)(ZT 73(7:; VTf)O? - ZT Vs (13 W*)o?) + D (85 + p1s%) — 2. (6.24)
KW, W)(ys(W) = 7s(W*)) + Ds
A futher approximation is to discard the terms [;(W, W*)P(W|O)P(W*|0O). The
update equations become:
1, = 2n 28(Ts W)or =35, 3(75 W)or + Do
22 7s(T3 W) = 32 %s(m5 W) + D
For the variance we have

. T 2 . * 2 2
— ZT 7S(Ta W)OT __ZT 75(7—a W )OT + D (Es + s ) _ ﬂ52. (6.26)
> Ys(ms W) =32 (T W) + D

We term this procedure One Worst Pinched Lattice MBRDT. The algorithm can be

(6.23)

(6.25)

s

summarized in the following steps.
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6.6.1 The One Worst Pinched Lattice MBRDT Algorithm

Step 1 Generate lattices over the training set

Step 2 Align the training set lattices to the reference transcriptions W
Step 3 Segment the lattices

Step 4 Prune the confusion sets to confusion pairs

Step 5 Discard infrequently occurring confusion pairs

Step 6 Extract the most errorful hypothesis W*

Step 7 Perform Forward-Backward pass with respect to W and W* to accumulate

statistics

Step 8 Estimation is done by equations (6.25) and (6.26)

This approach is closely related to MCE [40] where we consider the truth W and
the best incorrect hypothesis W’. What distinguishes this approach from other forms
of corrective training is not the update procedure itself, but rather the way in which

the competing hypothesis W* is obtained.

6.7 Summary

We have demonstrated how techniques developed for Minimum Bayes Risk De-
coding make it possible to apply risk-based parameter estimation algorithms to large
vocabulary speech recognition tasks. Our approach starts with the original deriva-
tions of Kaiser et al.[41, 42], which show how the Extended Baum Welch algorithm
can be used to derive a parameter estimation procedure to reduce expected loss over
the training data.

However this estimation procedure is computationally expensive when applied to
large vocabulary continuous speech recognition. It requires the explicit enumeration

of competing hypotheses representative of the recognition errors made by the machine
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in order to estimate the loss. These competing word hypotheses are produced either
by expanding N-Best lists or lattices. For large vocabulary ASR tasks, these word
lattices or N-best lists are large and the MBR training is computationally expensive.

To alleviate the computational complexity, lattice segmentation techniques ini-
tially developed for MBR search over large lattices are used to derive iterative esti-
mation procedures that minimize empirical risk based on general loss functions such
as the Levenshtein distance. We use the formulation of Kaiser et al.[41, 42], and
replace the Levenstein distance with the induced loss function. Through this ap-
proximation, we are able to efficiently compute the statistics needed to apply the
risk-based parameter estimation algorithm over large vocabulary speech recognition

tasks.
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Chapter 7

Speaker Adaptive Training Results
on SWITCHBOARD

The recent advances in continuous speech recognition have resulted in high recog-
nition accuracy for simple recognition tasks such as scripted speech and small vocabu-
lary tasks. Attention has therefore shifted to more challenging and realistic problems
posed by the spontaneous conversational speech. The recognition performance of an
ASR system is affected by the confusability of the vocabulary. As a result LVCSR
tasks achieve lower accuracy than small vocabulary tasks. The experimental results
in this chapter are performed on the SWITCHBOARD Corpus|8].

7.1 System Description

The SWITCHBOARD Corpus is a database of spontaneous dialogue, among En-
glish speakers. It is collected over standard telephone lines and the speech is extem-
poraneous and not scripted. It contains disfluencies, pauses, non-grammatical usage
and channel distortion, all of which have major impact on the recognition perfor-
mance. Our ASR system is a speaker independent continuous mixture density, tied
state, cross-word, gender-independent, triphone HMM system. The baseline acoustic
models used as seed models for our experiments, were built using HTK [86] from 16.4

hours of Switchboard-1 and 0.5 hour of Callhome English data. This collection de-
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fined the development training set for the 2001 JHU LVCSR system [8]. The speech
was parameterized into 39-dimensional PLP cepstral coefficients with delta and ac-
celeration coefficients [37].

Cepstral mean and variance normalization was performed over each conversa-
tion side to remove the channel effect of the features. The acoustic models used
cross-word triphones with decision tree clustered states [86], where questions about
phonetic context as well as word boundaries were used for clustering. There were
4000 unique triphone states with 6 Gaussian components per state. Lattice rescoring
experiments were performed using the AT&T Large Vocabulary Decoder [56], with a
33k-word trigram language model provided by SRI [70].

The recognition tests were carried out on a subset of the 2000 Hub-5 Switchboard-
1 evaluation set (SwBD1) [53] and the 1998 Hub-5 Switchboard-2 evaluation set
(SwBD2) [52]. The SwBDI test set was composed of 866 utterances consisting of
10260 words from 22 conversation sides, and the SWBD2 test set was composed of
913 utterances consisting of 10643 words from 20 conversation sides. The total test
set, was 2 hours of speech.

Discriminative training requires alternate word sequences that are representative
of the recognition errors made by the decoder. These are obtained via triphone lattices
generated on the training data. Our approach is based on the MMI training procedure
developed by Woodland and Povey [84]. However, rather than accumulating statistics
via the Forward-Backward procedure at the word level, we use the Viterbi procedure
over triphone segments. These triphone segments are fixed throughout MMI training.
The Baseline SI acoustic models yield a word error rate (WER) of 41.1% & 51.1%.
These models were used to generate hypotheses in a compact lattice representation
[63], which were then rescored with discriminative trained acoustic models in the

subsequent experiments.

7.1.1 Conventional MMIE

This section describes a series of MMIE training experiments, shown in (Table 7.1).

We start with a well trained ML-system(41.1%/51.1%). We update the model param-
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eters = (us, X5), mean and the corresponding variance, under the CML framework
using equation (4.7) and equation (4.8). The learning rate constants D, for the mean
and variance parameters are set on a per Gaussian basis and quarantee that the vari-
ance remains positive as suggested by Woodland and Povey|[84].

To validate our approach we calculated the value of (4.2) as a function of the
iteration number. These results shown in the second column of Table 7.1 confirm
that the MMI objective function is increasing under the estimation procedure. Since
the denominator includes all possible word sequences(including the correct one) the

objective function(4.2) has a maximum value of zero.

Table 7.1: Results on the SWBD training set, SWBD test set

MMIE SWBD Training set SWBD Test set
WER | OBJECTIVE F(§) | SWBD1 | SWBD2
ML Baseline | 29.42 -2.37E05 41.1 51.1
1 iteration 27.55 -2.05E05 40.6 50.5
2 iteration 26.24 -1.81E05 40.5 50.0
3 iteration 25.62 -1.647E05 39.9 49.7
4 iteration 25.66 -1.53E05 40.2 50.5

Next we present results after MMIE training on the SWBD training set and on the
SWBD test set. From the results in Table 7.1 we see that significant improvement over
the baseline can be obtained by MMI. Thus MLE, although widely used, is not optimal
in reducing the error rate of the ASR system. It can be seen that the best WER is
obtained after 3 iterations( after that performance degrades: we have overtraining).
Experimental results show that the proposed method is very effective in reducing
the word error rate on the training set, a reduction of 4.0% absolute is achieved.
While MMIE training greatly reduces training set error from an MLE baseline, the
reduction in error rate on an independent test set is normally much less(39.9%/49.7%,
1.3% absolute reduction), so the generalization performance is poorer.

In the next experiment we compare MMIE training versus conventional MLE
training recognition performance on the test set. This experiment (Table 7.2) shows
that the accuracy of a speech recognition system trained with Maximum Likelihood

Estimation (MLE) can be further improved using discriminative training. From the
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experimental results we argue that MMIE training is more appropriate than MLE for

reducing the error rate.

Table 7.2: Results comparing MMIE versus MLE training evaluated on Swhdl and
Swhd2 test sets. Both systems were initialized by ML trained models.

MODELS MMIE MLE
TEST SET | Swbdl | Swbd2 | Swbdl | Swbd2
Baseline 41.1 51.1 41.1 51.1
1 iteration | 40.6 50.5 41.0 51.2
2 iteration | 40.5 50.3 40.7 51.1
3 iteration | 39.9 49.7 40.7 51.2
4 iteration | 40.2 50.5 40.5 01.0

7.2 Speaker Adaptation Results

The next section presents a speaker adaptive training framework based on dis-
criminative criteria as discussed in Chapter 5. Until recently the popular adaptation
techniques such as MLLR and SAT were based on Maximum Likelihood estimation.
Nevertheless from the results in (Table 7.1) we see that discriminative optimization
criteria can be more effective in reducing the word error rate than maximum likeli-
hood estimation. As an alternative to ML-SAT, the input transform and the gaussian
model parameters can be estimated using the CML auxiliary function. Thus we ob-

tain fully discriminative training procedures termed (DSAT).

7.2.1 Optimal number of Regression Classes

Initially we conducted a series of experiments to compare MLLR with different
number of transforms to determine the optimal number of regression classes. These
experiments are shown in Table 7.3. We get the best result with 2 regression classes.

In MLLR the characteristics of a speaker are estimated from the test data itself
and not from some transcribed enrollment data. Although we can estimate a large
number of transforms for any of the training speakers; since in training we have the

correct transcription and adequate amount of data, this is not the case for test speak-
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ers (unsupervised adaptation with few data). Therefore the number of transforms
that can be reliably estimated is limited, because it is necessary to match the test set
transforms to the training set transforms.

Using multiple regression classes resulted in sub-optimal performance which is not

MLLR Adaptation SWBD Test set

#TRANS | #PARAMS | SWBD1 | SWBD2
2 (2*¥1600) 36.1 46.8
4 (4*1600) 36.9 47.5
6 (6*1600) 37.9 48.9

Table 7.3: Word Error Rate (%) of systems with test set MLLR adaptation, for
various regression classes. All systems were initialized by MMI trained models.

surprising given the unsupervised nature of the adaptation, the high word error rate
and the large number of parameters that have to be estimated given our limited train-
ing data. In parentheses the number of parameters estimated for each test speaker is

shown under different number of transforms.

7.2.2 DSAT Results

We then conducted a series of experiments to compare DSAT to ML-SAT es-
timation as described in sections (5.7) and (5.5) respectively. Throughout these
experiments we used a fixed set of 2 regression classes corresponding to speech and
non-speech states based on the results in Table 7.3. During test set recognition on
the first pass(5 iterations) global adaptation is performed. We then use the global
transform to generate better frame/state alignments which are then used to estimate
a set of more specific transforms, using a regression class tree.

Table 7.4 shows the performance of the ML-SAT and DSAT estimation proce-
dures. ML-SAT was performed starting with the best MMIE trained model indicated
at iteration 0(35.9%/47.0%). In this implementation of ML-SAT, the transformation
parameters and the Gaussian mean and variance parameters, are estimated at each
iteration via Baum-Welch over the transcribed training data. In the DSAT experi-

ments only the mean and the transformation parameters are reestimated under the
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CML criterion. The variance is not updated between iterations; we keep the variance
value estimated at ML-SAT iteration 5. Furthermore the lattice link posteriors used
in DSAT are those obtained using the ML baseline model (41.1%/51.1%). Our goal
is to show that DSAT can improve over ML-SAT through improved estimation of
the speaker dependent models. We expect that further gains could be obtained by
optimizing variances as well.

We performed multiple iterations of ML-SAT on the training set. DSAT was
initialized by a well-trained ML-SAT system found at iteration 5. A comparison
between DSAT (as described in Section 5.7) and ML-SAT is presented in the columns
DSAT-2 and ML-SAT of Table 7.4. The DSAT-2 mean and transformation parameters
were reestimated at each iteration under the CML criterion. The best DSAT-2 result
was obtained after 5 iterations (33.4%/44.2%). For comparison we present results with
further iterations of ML-SAT (34.1%/44.9%). These results show that discriminative
estimation improves over ML estimation of speaker dependent transforms and speaker
independent mean parameters. Since we start from a well trained MMIE system, the
gains obtained from DSAT-2 are due to the fact that we incorporate speaker adaptive
training into MMIE parameter estimation.

While DSAT-2 was found superior to ML-SAT, performing ML-SAT subsequent to
MMI is needed for the best initialization of DSAT. In the DSAT-1 column of Table 7.4
the performance of DSAT initialized with MMIE is presented for a fair comparison
with ML-SAT. Experimental results suggest that DSAT should be applied following
several iterations of ML-SAT.

Finally, we compare DSAT with MMI-SAT. The previously developed MMI-SAT
procedure by McDonough et al.[54] proceeds by fixing the ML-SAT transforms prior
to subsequent iterations of MMIE estimation. A comparison between DSAT and
MMI-SAT is presented in the columns DSAT-2 and MMI-SAT of Table 7.4. The
experimental results show significant improvement over ML-SAT. Also DSAT gives
slightly better results after 5 iterations, an absolute difference of 0.2%/0.4%, which

is attributed to the discriminative calculation of the transformation matrices.
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ML-SAT DSAT-1 DSAT-2 MMI-SAT
SwsD1 | SwBD2 || SwBD1 | SwBD2 | SWBD1 | SWBD2 | SWBD1 | SWBD2

0 35.9 47.0 35.9 47.0 * * * *
1 35.4 46.2 36.1 46.5 34.1 44.7 34.1 44.8
2 35.2 45.6 36.5 46.5 33.8 44.6 33.8 44.6
3 34.8 45.1 36.5 46.7 33.6 44.5 33.7 44.4
4 34.7 45.2 - - 33.5 44.4 33.5 44.4
Hk 34.5 44.8 - - 33.4 44.2 33.6 44.6
6 34.6 45.0
7 34.3 45.0
8 34.3 44.7

Table 7.4: Word Error Rate (%) of systems trained with ML-SAT, MMI-SAT and
DSAT estimation and evaluated on Swbdl and Swbd2 test sets. The ML-SAT and
DSAT-1 models were initialized by MMI trained models. The MMI-SAT and DSAT-2
models were seeded from models found after 5 ML-SAT iterations. Results include
unsupervised MLLR test speaker adaptation.

7.2.3 Summary of DSAT Results

In speaker adaptive training the conventional HMM parameter framework is ex-
tended to accomodate speaker specific transformations in order to produce matched
conditions with the test set. As an alternative to ML estimation we used the CML
framework in order to obtain fully discriminative procedures. We conducted a se-
ries of experiments to compare DSAT to ML-SAT estimation. We have found that
discriminative versions of speaker adaptive training outperform ML training. These
new training procedures were evaluated on the Switchboard corpus and gave approx-
imately (1.1%,0.6%) absolute Word Error Rate improvement over the ML estimation

procedures.
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Chapter 8

Minimum Bayes Risk Estimation

on Whole Word Models

In this chapter we present experimental results based on minimum Bayes Risk
criteria on speech material from a small (Alphadigits ) vocabulary task. The system
was based on word level HMMs. Word models are the most natural form of speech
and they form the output of the ASR systems. They are the obvious choice for small
vocabulary applications. Because our system uses whole word models we can use the
PL-MMIE Algorithm described in (6.5). Analysis of its performance, shows that it

does indeed reduce the individual types of word errors in a way that MMI does not.

8.1 System Description

To develop the basic estimation and decoding mechanisms, we present results on
the OGI Alpha-Digits task [60]. This is a fairly challenging small vocabulary task
on which we still encounter a relatively high baseline WER (approx. 10%). This
ensures that we have a significant number of errors to identify and correct. We
begin by presenting the MMI baseline system and analyzing its performance and
the errors it makes. The baseline system is built using the HTK Toolkit [85]. The
acoustic data is parameterized as 13 element MFCC vectors with first and second

order differences. The training set consists of 46,730 utterances. The test set consists
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of 3,112 utterances.

The baseline maximum likelihood models contain 12 mixtures per state, esti-
mated according to the usual HTK training procedure. Starting from these models,
several iterations of MMI estimation were performed. The AT&T Large Vocabulary
Decoder [55] was used to generate lattices for the training set where are then trans-
formed into word posteriors based on the lattice total acoustic score. MMI training
is then performed at the word level using the word time boundaries taken from the

lattices.

8.2 MMIE Results

Using the lattices obtained by the AT&T Decoder above, word level posteriors
were then estimated based on the lattice total acoustic score. MMIE was then per-
formed at the word level using the word time boundaries taken from the lattices.
The Gaussian model parameters § = (us, X5), means and variances are updated by
equations (4.7) and (4.8).

The Alpha-Digits task does not have a specific language model, thus recognition
both for MMI lattice generation and test set decoding is performed using an un-
weighted word loop over the vocabulary. Table 8.3, Row 1 shows that significant
improvement over the baseline can be obtained by MMI: the initial ML performance
of 10.42% WER is reduced to 8.41% before overtraining is observed in the WER. We
performed the ‘sanity check’ of rescoring the pinched lattices with the MMI-5 models:
performance was identical to unconstrained rescoring. This verifies that the search
space refinement introduces no new errors. Pinching does reduce the lattice search
space substantially, however. The Lattice Word Error Rate of the original lattices is

1.27%, which increases to 3.11% after pinching.

8.3 Lattice Cutting and Search Space Refinements

As mentioned before MBR training is computationally expensive and lattice seg-

mentation techniques initially developed for MBR, search over large lattices are used
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to derive efficient iterative estimation procedures. Here we segment the lattice word
strings by aligning each path in the lattice to the MAP sentence hypothesis, although
in training, the segmentation is found relative to the correct transcription [29, 44].
This segmentation procedure is performed carefully so as to retain the structure of
the original lattice in regions of low confidence [44]. No reordering of links from the
original lattice is allowed. The process starts by identifying the MAP path in a first-
pass ASR lattice (Fig. 8.1, Top). Period-1 risk-based lattice cutting is used to reduce
the lattice to a sequence of segment sets. In some regions only the MAP path remains
(Fig. 8.1, Middle).

The pinched lattice can be further pruned so that each low confidence region con-
tains a certain number of competing hypothesis. Thus we further simplify the problem
by restricting the segment sets to contain only two competing word sequences. We
note that except for pruning, no path in the original lattice is excluded from pinch-
ing(Fig. 8.1, Bottom). Segment sets that occur less than ten times are discarded.

We then perform the same process on the training set to obtain a collection of
segment sets representative of recognition errors found in the training data. We use
these two collections to identify the 50 test segment sets that were also observed most
frequently in training. In this way we identify a final collection of segment sets that
are likely to contain recognition errors and that also occur frequently in the training
set. The final step in the search space refinement is to restrict the segment sets ini-
tially identified in the test set to the final 50 that also occur frequently in the training
set (Fig. 8.1, Bottom). Some segment sets not in the final collection (e.g. OH+4) are
discarded.

8.4 Unsupervised Selection of Segment Sets

The effectiveness of the approach depends on the unsupervised selection of segment
sets and the reliability with which they can be associated with ASR errors. We need to
establish first that lattice cutting finds segment sets that are similar to the dominant
confusion pairs observed in MMI decoding. We also need to establish that the segment

sets identified in the test set are also found consistently in the training set. If these
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Figure 8.1: Lattice Segmentation for Estimation and Search. Top: First-pass lattice
of likely sentence hypotheses with MAP path in bold; Middle: Alignment of lattice
paths to MAP path; Bottom: Refined search space W consisting of tagged segment
sets selected for Pinched Lattice MMIE.

two conditions hold, there is the possibility of training discriminative models on the
segment sets in the training data and applying them to the test data to resolve the
dominant errors remaining after MMI training.

We establish the first point by comparing the dominant MMI confusion pairs in
Table 8.2 with the test set segment sets found in Table 8.1 by lattice cutting. There
is good agreement among the top eight sets identified in each case, after which there
is some divergence. A similar relationship holds between the segment sets identified
in test and training reported in Table 8.1. We briefly present the changes in errors
as MMI training proceeds on the Alphadigits Task [60].

Table 8.2 presents the most frequently confused words (‘confusion pairs’) observed

after five iterations of MMI estimation. Iteration 5 is chosen because MMI perfor-
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H Test Set H Count H Training Set H Count H

1  F+S5 699 1 F+S 15130
4 P+T 660 4 P+T 10652
6 8+H 650 6 8+H 10706
3  M+N 584 3 M+N 9677
2 V4Z 493 2 V+Z 8005

10 B+D 344 0 B+D o774
7 L+OH | 300 7 L+OH || 5289
5

—_

5 B4V 319 B+V 9398
- A+K 238 - o+1 4014
- o5+1 236 - J+K 3628

Table 8.1: Frequent confusion pairs found by lattice cutting. Indices provided for
pairs in the dominant MMI confusable pairs.

mance is nearly optimal at that point. We tabulate errors over each word in each

class. The notation 6(()5)(1) = 35 indicates that there are 35 instances in which 'F’ is

incorrectly recognized as ’S’, and E§5)(1) = 89 indicates that there are 89 instances in
which ’S’ is incorrectly recognized as 'F’. The superscript indicates the MMI iteration.

The process is unsupervised in that no information is required for the test set
other than what can be derived from the ASR system. Therefore lattice segmentation
can be used both to identify potential errors in the MAP hypothesis and to derive a
new search space for the subsequent decoding passes. Because the structure of the

original lattice is retained whenever we consider alternatives to the MAP hypothesis,

we can perform acoustic rescoring over this pinched lattice.

8.5 Pinched Lattice MMIE Results

Models trained after five MMI iterations (MMI-5) were used to initialize the
pinched lattice MMI training procedure described in section (6.5). These models
are refined using the training set segments identified for each W;, as described in the
previous sections. After lattice cutting given a particular error pattern found in the
test set, we can use training data associated with similar errors to train a discrimi-

native model. PLMMI, is a modified version of MMI for whole word acoustic models
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Rank | Error Pair 685) 6§5) Occurences of
Each Pair
1. F+S 35 | 89 124
2. V+7 51 | 42 93
3. M+N 24 | 56 80
4. P+T 28 | 39 67
5. B+V 30 | 37 67
6. 8+H 15 | 32 47
7. L+OH 10 | 30 40
8. A+8 20 | 18 38
9. C+V 15 | 16 31
10. B+D 11 | 17 28

Table 8.2: Dominant Error Pairs in Unconstrained Recognition after Five MMI Iter-
ations. There are a total of 615 errors identified as belonging to one of these pairs
out of a total of 1571 errors.

that is performed over pinched lattices with binary confusion pairs. The training ob-
jective for each set of distributions is to maximize (6.20), which is done using MMI
over the appropriate training set segments.

We finally apply these models in a full acoustic rescoring of the pinched lattice by
applying each P;(W|0O) in decoding over the appropriate segment set. The Period-1
cutting used to identify the segment sets in training also simplifies the MBR decod-
ing procedure of Equation (6.9). The minimum risk decoder is therefore the MAP
decoder, and empirical risk is minimized by maximizing the likelihood of the correct
hypothesis. When the search space is constrained to follow the MAP hypothesis, the
MMI-5 models are used. In regions of the search space corresponding to a segment
set W;, models P;(O|W) are used.

We observe in the second row of Table 8.3 that pinched lattice MMI estimation
(PL-MMI) can yield continued improvement in WER(7.63%). This is in sharp con-
trast to “regular lattice” MMI which shows evidence of overtraining beyond the fifth
iteration. This is done as a fair comparison between pinched lattice and regular MMI,
in that the systems being compared are of equal complexity and have the same num-
ber of parameters. The improved performance can therefore be attributed to the use

of lattice pinching in MMI estimation to refine the space of competing hypotheses.
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[Iteration | 0 | 1 | 2 | 3 | 4] 5 | 6 | 7 |
MMI [ 10.42 [9.75 | 9.18 [ 8.75 [ 8.53 | 8.41x | 8.8 | —
PL-MMI || « [811|7.98[7.82] 7.8 | 7.74 | 7.68 | 7.63

Table 8.3: Decoding performance in WER (%) using MMIE vs. Pinched lattice MMIE.
PLMMIE models are initialized with MMIE models obtained after 5 iterations.

8.5.1 Within-Class Error Analysis

Next we analyze the behavior of the substitution errors made in rescoring with
models trained with the MMI and pinched lattice MMIE procedures across 3 consec-
utive iterations. Eact confusion pair has two types of errors for example ‘F+S’, 'F’
can be misrecognized as 'S’ (F — S) or ’S’ can be misrecognized as 'F’ (S — F).
Ideally both types of errors should decrease over each of the training iterations shown.
However, as can be seen in Fig. 8.2, despite the overall reduction in WER achieved
by MMI training, error types are not reduced uniformly as training proceeds. For
example, the decrease in F' — S indicates that the number of times 'F’ is incorrectly
recognized as 'S’ decreases sharply over the three MMI iterations. While this is good
in itself, the complementary value of S — F' indicates that it is gained at the cost
of introducing errors in which 'S’ is recognized as 'F’. We find that this undesirable
behavior is less evident with the Pinched Lattice MMI models in (Fig. 8.3), where

the types of errors over each class are more balanced.

8.6 Summary

In this chapter we have described discriminative training procedures suited for
small vocabulary tasks. Pinched Lattice MMI, was derived and applied to a whole
word recognition task(Alphadigits). We considered the 50 most frequent confusion
pairs. Analysis of its performance, shows that it does indeed reduce the individual
types of word errors in a way that MMI does not. Many types of acoustic errors are
excluded from this small number of confusion pairs and as a consequence these errors
are not addressed by training. However, the value of this conservative approach is

that it allows us to control and study the behavior of the estimation algorithms over
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Figure 8.2: Error analysis using MMIE models across 3 iterations for the 10 most
dominant confusion pairs shown in Table 8.2.
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a manageable number of word pairs. The concept of focusing on confusable pairs for
discriminative training using generative models could also be discussed in the context
of large margin methods (such as SVMs) [79]. In that case the loss function of SVMs
also focuses on the strongest competitor to define the 'margin’.

In contrast to small vocabulary speech recognition where word level models are
used and each unit is observed with sufficient frequency in the training corpus, in
large vocabulary tasks word level models are not an attractive solution and instead
triphones are used. Large vocabulary tasks are likely to contain more acoustically
confusable words, thus a large number of word models will require more training data.
Sharing model parameters is the obvious solution to improve trainability. As a result
Pinched Lattice MMIE can not be efficiently implemented in LVCSR . systems were we
use triphone models rather than word level models, and time boundaries are some-

times missing or vary in lattices. In the next chapter we will consider discriminative
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Figure 8.3: Error analysis using PL-MMI models across 3 iterations for the 10 most
dominant confusion pairs shown in Table 8.2.
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training algorithms suited for large vocabulary tasks.
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Chapter 9

LVCSR Performance with
MBRDT Acoustic Models

As mentioned before the training and decoding procedures of most current state-
of-the-art Automatic Speech Recognition (ASR) systems are optimized with respect
to the sentence error rate (SER) metric that is rarely used in evaluating these systems.
Rather than using the (SER) metric as a training criterion we estimate the acoustic
models under a criterion that is more closely related to the ASR recognition perfor-
mance namely the word error rate (WER). We next evaluate discriminative training
algorithms that focus on reducing the overall risk over the training data from two

large vocabulary tasks, the SWITCHBOARD and the MALACH Corpus.

9.1 Summary of Minimum Bayes Risk Algorithms

We have used the induced loss functions and pinched and pruned lattices that
can be derived from lattice segmentation to simplify the implementation of Minimum
Bayes Risk Discriminative Training for large vocabulary ASR systems. The first al-
gorithm, PLMBRDT described in (6.4), is a direct application of the minimum risk
estimation procedure of Kaiser et al.[41, 42] under the induced loss function. The
other procedure, “One Worst” described in (6.6) is a simple form of corrective train-

ing in which the MMI-variant improves the likelihood of the reference hypothesis
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relative to the worst competing candidate found in the pinched lattice.

Both the PLMBRDT and the “One Worst” training procedures are carefully con-
structed so that they can be applied to large vocabulary ASR tasks with sub-word
acoustic models. Once the pinched and pruned evidence space is expanded into an
N-Best list of sentence hypotheses, the Forward-Backward algorithm is performed
with respect to each hypothesis to generate the statistics needed for minimum risk
reestimation. In this way we do not need to keep track of the word or subword model
boundary times found in the initial lattice generation. Applying the estimation proce-
dure to a large vocabulary task is as straightforward as performing Forward-Backward
passes with respect to the transcriptions in the N-Best list extracted from the pruned

evidence space and weighting the resulting statistics by the factor K (W', W).

9.1.1 MALACH System Description

The MALACH Czech[9] baseline acoustic models were built from 62 hours of
data with 24065 utterances. The speech was parameterized into 39-dimensional,
MFCC coefficients, with delta and acceleration coefficients. The test set consisted
of 954 utterances selected from held-out speakers (approx. 2 hours of speech). The
MALACH language model was a back-off bigram with a 83K word vocabulary.

Lattice-based MMI was performed in each domain. The SWITCHBOARD lattices
were generated once and the link posteriors were fixed for three iterations of MMI.

In MALACH, the link posteriors were reestimated after each of six MMI iterations.

9.2 Minimum Bayes Risk Discriminative Training
Steps

Following an initial lattice generation decoding pass over the training set, we
use lattice cutting with respect to the correct hypothesis to produce pinched lat-
tices that identify low-confidence segments W; that are likely to contain recognition
errors(Fig. 8.1, Middle). In regions of low confidence, the search space contains por-

tions of the MAP hypothesis along with confusable alternatives. In regions of high
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confidence, the search space is restricted to follow the MAP hypothesis itself.

This produces a very large number of “confusable” pairs and in these experiments
we focused only on the most frequently observed pairs. We identify those confusion
pairs that are observed more than 75 & 5 times in the SWITCHBOARD training
data and more than 100 times in MALACH. The less frequently occurring pairs are
discarded. As an example, suppose that the pair HOW, NOW was observed less
than 75 times in the pinched training set lattices. In each observed instance, the link
corresponding to the incorrect word hypotheses (NOW) would be discarded and only
the single link corresponding to the correct word (HOW) would be retained. This
reduces the number of different types of binary confusions in SWITCHBOARD from
31467 to 159 and from 25847 to 117 in MALACH. This corresponds to a rate of 0.2
and 0.13 confusion pair per correct word in SWITCHBOARD and MALACH, resp;

Only those utterances that contain the confusion pairs in the final collection are
selected for discriminative training while the rest are thrown out. We observed that
due to this aggressive filtering, many training set lattices are reduced to a single word
sequence, i.e. the reference transcription. These utterances do not contribute to the
overall training criterion and they are therefore removed from the PLMBRDT train-
ing data. The MALACH training set is reduced from 24,065 to 15,436 utterances,
and the SWITCHBOARD training set is reduced from 22,580 to 15,741 utterances.

We found that after filtering the average number of binary confusion pairs in
each pinched training set lattice is 2.14 in SWITCHBOARD and 3.12 in MALACH.
Hypothesis lists are then generated from these pinched lattices, resulting in an av-
erage transcription list depth of 13.1 in SWITCHBOARD and 36.5 in MALACH.
The PLMBRDT calculations of Equations (6.7) and (6.8) are carried out over these
lists of hypotheses, and the hypothesis needed for the “One Worst” algorithm is also

extracted from them.

9.2.1 Minimum Bayes Risk Performance on SWITCHBOARD

MMIE does not directly measure the number of classification errors (WER) on

the training data, but rather the sentence error rate(SER). Table 9.2 presents results
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SWITCHBOARD

MALACH

(HOURS /UTTERANCES)

16.9/22580

62.4/24065

INITIAL CONFUSION PAIRS
(TYPES/ TOKENS)

25948 /99199

31467 /120695

Occurence threshold used 5 75 100
Segment sets retained after 2139 /66349 | 159/33821 117/48302
discarding infrequent confusion pairs

Avg conf pairs 0.35/3.37 0.2/ 2.14 0.13 / 3.12
(per word/ per uuterance)

Reduced training set 15.0 /19687 | 13.0/ 15741 | 52.4 / 15436
acoustic data (hours/utterances

Avg depth of N-Best lists 48.8 13.1 36.5
from pinched lattices

Table 9.1: Training sets statistics before and after lattice cutting for different pruning
thresholds. Material comes from the SWITCHBOARD and the MALACH Corpus.

Table 9.2: Minimum Bayes Risk Results for those confusion pairs with more than 5
& 75 counts. We compare the PLMBRDT and ‘One Worst” training procedures on

the SWBD test set.

| OCCURENCE THRESHOLD |

5 |

75

ITERATION SwitchBoardl MMIE baseline it3 39.9
PL-MBRDT | One Worst | PL-MBRDT | One Worst
1 39.6(0.082) | 39.3(0.01) 39.6(0.05) 39.7(0.08)
2 39.3(0.018) | 39.4(0.11) | 39.5(0.103) | 39.2(0.011)
3 39.5(0.23 ) — 39.4(0.112) | 39.8(0.667)
ITERATION SwitchBoard2 MMIE baseline it3 49.7
PL-MBRDT | One Worst | PL-MBRDT | One Worst
1 49.7(0.826) | 49.5(0.23) | 49.7(0.826) | 49.7(0.726)
2 495(0.36) | 49.6(0.52) | 49.4(0.16) | 49.2(0.184)
3 49.4(0.23) — 49.7(0.112) | 49.8(0.928)
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with the most frequently confused words that have more than 75 counts. Again a
useful lower bound on D; is the value which ensures that all variances remain pos-
itive and a Gaussian specific value was used for our experiments. In PL-MBRDT,
the Gaussian parameters are calculated by equations (6.7) and (6.8). We see that
PL-MBRDT gives a modest (0.4%/0.3%) but significant improvement over MMIE
models. We also apply discriminative training on the pinched lattice by considering
only two hypotheses (One Worst). The Gaussian parameters are calculated by (6.25)
and (6.26) giving an improvement of(0.7%/0.3%) over MMIE models. The reduction
on (SwBD2) is less than (SWBD1) because the training set is overwelmingly from
(SwBD1) (16.4 hours) and therefore the confusion pairs in the final collection are
mostly from that set.

In parentheses the p-value is shown [11], under the significance test between each
system and the MMIE system, with the null hypothesis that there is no performance
difference between the two systems. We get a (0.7%/0.3%) improvement over con-
ventionally trained MMIE models. From these results we argue that it is useful to

develop training procedures that are more closely related to ASR evaluation criteria.

9.2.2 Minimum Bayes Risk Training on MALACH

We start with a well trained ML-system(44.3%) to seed the MMIE training. These
results are shown in Table 9.3. We get the best MMIE result after 6 iterations(41.5%),

we also re-estimate the lattice link posteriors at each iteration.

Table 9.3: MMIE results on MALACH-Cz

MALACH-Cz MMIE
ML baseline 44.3
1 43.4
2 42.4
3 42.1
4 41.9
5 41.6
6 (x) 41.5

We then apply our MBR training procedure as described before. We select those
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confusion pairs that have more than 100 counts in the training set Experimental
results are shown in Table 9.4. In parentheses the p-value is shown [11], under the
significance test between each system and the MMIE system, with the null hypothesis
that there is no performance difference between the two systems. PL-MBRDT results
are shown in the first column of Table 9.4 with an improvement of (0.5%). By
considering only two hypotheses (One-Worst) where the Gaussian parameters are
calculated by (6.25) and (6.26) we get an improvement of(0.5%). The performance
of the OneWorst approach in particular suggests that, even though sparse, the sets
of competing hypotheses identified by lattice pinching can be used for discriminative

training.

9.2.3 Contribution of the Loss Function

In most studies on discriminative training criteria, the recognition performance
of discriminative training is usually compared to ML training. In particular, there
is very limited information on direct comparison between different discriminative
training criteria. However in the last column of Table 9.4 (PLMBRDT 0/1) we use
PLMBRDT with a 0/1 loss function for calculating the K (W', W) (which corresponds
to doing MMIE over the pinched lattice), rather than using the Levenshtein distance.

This experiment shows the importance of using the WER as a training criterion
rather than the SER. Loosely speaking, we conclude that the loss function contributes
as much to the PLMBRDT gains as does the refinement of the evidence space. This is
also consistent with the performance of the One Worst approach, which is constructed
to pick the most errorful hypothesis from the refined search space. We conclude that
it is beneficial to incorporate both the refined search space and the relative costs of

the competing hypotheses in PLMBRDT.

9.3 Analysis of Minimum Bayes Risk Results

In the previous two chapters a framework for efficient discriminative training based

on Minimum Bayes risk criteria was presented for both small and large vocabulary
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Table 9.4: Minimum Bayes Risk with threshold = 100 seeded from MMIE after 6

iterations
MALACH-Cz PLMBRDT

MMIE baseline (x) 41.5

Loss Levenstein 0/1 loss One-Worst
1 41.4(0.114) || 41.4(0.134) || 41.3(0.107)
2 41.3(0.038) || 41.3(0.129) || 41.2(0.042)
3 41.3(0.112) || 41.3(0.08) || 41.0(0.003)
4 41.3(0.001) || 41.3(0.197) || 41.1(0.052)
5 41.1(0.031) || 41.4(0.522) —

6 41.0(0.013) || 41.5(0.478) —

continuous speech recognition systems. In these initial experiments we have focused
on the most simple lattice pinching and pruning procedures. Each lattice path is
aligned word-by-word against the reference transcription, and binary word confusion
pairs are identified. These confusion pairs define the errors that the system will be
trained to fix.

We have shown that discriminative training methods based on Minimum Bayes
risk criteria(Pinched Lattice MMIE) can yield improvement both in the overall WER
and in the distribution of individual word errors in a small vocabulary task such as
Alphadigits. The same lattice pinching and pruning procedures can be applied to
large vocabulary speech recognition. As in the small vocabulary case, we find that
these PLMBRDT algorithms can be used to extend the gains obtained by MMI.
These results are given on two large vocabulary recognition tasks, the conversational
English SWITCHBOARD corpus(Table 9.2), and the spontaneous Czech MALACH
corpus(Table 9.4). By varying the definition of the estimation algorithms, we find
evidence that the improvement beyond MMI comes from both the inclusion of loss
into estimation and from reducing the likelihood of the errorful hypotheses that are
identified by pinching and pruning. As mentioned earlier, MMI is a particular instance
of risk-based estimation.

From the view of minimizing risk, MMI is better matched to Sentence Error
Rate than to Word Error Rate. This is clearly not a fatal shortcoming, in that
MMI can be very effective in reducing Word Error Rate. However we find that

MMI can be improved by using discriminative training procedures that are matched
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to the task metric, and we conclude that matching the estimation criterion to the
task performance metric is beneficial for speech recognition performance. Minimum
Bayes Risk discriminative training consistently gave better results than MMI training.
From these results we argue that it is beneficial to develop discriminative training

procedures that are more closely related to the recognition performance criteria such
as the WER rather than the SER.
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Chapter 10

Conclusions & Future Work

10.1 Thesis Summary

The recognition accuracy of large vocabulary ASR systems can be improved in
many ways, i.e by optimizing the front-end, increasing the complexity of the language
model. In this thesis we have placed emphasis on improving the discriminative capa-
bilities of the acoustic model based on different performance criteria with the aim of
improving the overall recognition performance of the system. Discriminative training
approaches seem attractive because they directly optimize performance criteria such
as Sentence Error Rate in MMIE training and Word Error Rate in MBR training.

The first part of this work has described an implementation of MMIE discrimina-
tive training using the Conditional Maximum Likelihood (CML) auxiliary function.
It was motivated by the fact that Maximum Likelihood estimation does not consider
competing hypotheses. Discriminative training criteria, as opposed to the standard
maximum likelihood approaches, directly take into account the connection between
the underlying models and the recognition performance of the ASR system. The use
of lattices makes it feasible to apply MMIE training as shown in (Table 7.1) to very
large HMM-based recognition systems. The re-estimation formulae used give good
convergence on large systems. We have shown that MMIE training can yield 1.3%
absolute reduction in word error rate on the SWITCHBOARD corpus over MLE.
An improvement of 2.8% absolute was achieved on the MALACH corpus (Table 9.3)
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which shows the importance of reestimating the link posteriors after each iteration.
MMIE training provides larger improvements in performance for small vocabulary
tasks (Table 8.3) (Alphadigits) than when applied to large vocabulary tasks.

We have also described the integration of Discriminative Linear Transforms into
MMI estimation for Large Vocabulary Speech Recognition shown in Chapter 5. Dur-
ing adaptation the conventional MMIE framework is enhanced to incorporate linear
transforms that alter the means of the output distributions during training. We have
developed estimation procedures that find DLTs jointly with MMI for speaker adap-
tive training (SAT). Thus we obtain fully discriminative training procedures termed
(DSAT). This new training procedure was based on the Conditional Maximum Like-
lihood (CML) auxiliary function. It was evaluated on the SWITCHBOARD corpus
and gave approximately (1.1%,0.6%) absolute Word Error Rate improvement over
the ML estimation procedures (Table 7.4).

In the second part of this thesis shown in Chapter 6 we have presented an ASR
modeling framework that incorporates discriminative training with empirical risk min-
imization techniques. When performing minimum Bayes risk discriminative training
in large vocabulary tasks, a crucial problem is the computation and processing of the
alternative word hypotheses. Risk minimization requires explicit enumeration of the
alternative word hypotheses, and therefore lattice based estimation procedures are
not readily available.

Motivated by efficient MBR decoding techniques that incorporate lattice segmen-
tation strategies, we suggested a novel estimation method that attempts to minimize
the empirical loss over the training set. Lattice segmentation decomposes the single
large lattice into a sequence of smaller sub-lattices. This sequence is termed ” pinched”
lattice. It is significantly smaller that the original lattice yet still representative of the
speech recognition errors that occur in training. Ideally the risk of each word string
in the original lattice is unchanged after segmentation. During training each sentence
in the pinched lattice is given a different weighting based on the number of errors and
the acoustic likelihood. Lattice cutting is used first to identify distinct regions in the
search space that are likely to contain errors, and then used in rescoring with models

trained specifically to resolve these errors. This work focuses on efficiently incorpo-
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rating the Levenstein distance into parameter estimation. However the formulation
is very general and also supports other types of string-to-string loss functions.

A PLMBRDT variant, Pinched Lattice MMI, was derived and applied to a whole
word recognition task(Alphadigits). Analysis of the performance (Table 8.3), shows
that it does indeed reduce the individual types of word errors in a way that MMI
does not. The lattice segmentation framework used in Alphadigits has also formed the
basis for other novel estimation and classification procedures [79]. The same lattice
pinching and pruning procedures can be applied to large vocabulary speech recogni-
tion tasks. As in the small vocabulary case, we find that these PLMBRDT algorithms
can be used to extend the gains obtained by MMI (Table 9.2), (Table 9.4). From the
experimental results, we argue that lattice segmentation and estimation techniques
based on empirical risk minimization can be integrated with discriminative training

to yield improved performance.

10.1.1  Suggestions For Future Work

Casting the ASR problem as a Minimum Bayes-Risk decision problem provides a
rigorous framework for the integration of discriminative search and estimation pro-
cedures based on the Word Error Rate rather that the Sentence Error Rate. Lattice
segmentation techniques were used to focus more attention on the recognition of cer-
tain confusable pairs. Due to the great diversity of ASR errors in large vocabulary
tasks, we expect the primary challenge to be robust estimation of discriminative mod-
els from sparse training data. We expect that constrained, discriminative estimation
procedures will prove useful in these problems [72].

Within the minimum Bayes risk discriminative training framework presented here,
much work could be done on refining the selection of confusable pairs and the choice
of segment sets. Many extensions on the techniques reported here are possible which
could improve the effectiveness of the procedure. For example the minimum bayes risk
acoustic models developed in this thesis can be used specifically in MBR decoding.
This yields matched conditions during both training and decoding. MBR decoding

has been found to consistently provide improved performance relative to straight-
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forward maximum likelihood (ML) decoding procedures. This is usually credited to
the integration of the task performance criterion(WER) directly into the decoding
procedure[51, 21, 28].

The aim of this work was to build up a framework for efficient discriminative
training based on different performance criteria, so as to improve both small and large
vocabulary continuous speech recognition. Experimental results show that discrimi-
native training schemes such as MMIE and MBR training can yield better estimates
of the HMM gaussian model parameters thus improving recognition performance. We
hope that this work would increase understanding of discriminative training and add
further insight into the speech recognition problem, since the performance of current

state of the art recognition systems is still far worse than that of humans.
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Appendix A
Minimum Bayes Risk Estimation

We want to estimate model parameters f to minimize the empirical loss

0 = argmin » (W, W' )P(W'|0; 0) (A1)
o wew
Since we want to minimize equation (A.1) we have to reverse the sign of the
objective function. In this occasion, it is necessary to compute the derivative of some
HMM-related probability with respect to the paramerer set 6. Such derivatives are
fairly easy to compute following Kaiser et al[41, 42].

e Property: The partial derivatives of Loss(f) with respect to the gaussian pa-

rameters are given by:

—VyLoss(0) = Y Ku/V,P(O|W') (A.2)
W'ew
where

{[W;WP(O\W%P(W"MMW, W)= 3 POIW")POVIIOY, W”)]} POV
K== [ > POWHPOTP

(A.3)

e Proof: This follows Kaiser[41]. By applying the Bayes rule we get:
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, plOW)PW’)
Loss(0) = > I(W,W)P(W'0; 0) = > (W, W) 00) (A.4)
wrew wrew

where P(O) = Y. P(O|/W")P(W"). Therefore
Wew

POWHPW'

> LW, W) POIW')P(W')

W%WP(O\W”)P (W)
WIXGDWZ(W, WHVe {P(OW)P(W')} [W%ZWP OW") PW")]
- [ > pOwnP(W")

Ww"ew

WZE:WZ(W, WP(OW"P(W")V, {WZE:WP(O\W”)P(W”)}

* (> POWIP(PT (4.9)
The above equation can be written as
LY POWPW"] X U, W) P(W)V,P(O[I)
) = e
W’ZE:WZ(W, WHP(O|\W"P(W") {W;e:wP(W”)VHP(O‘W”)}
y (3 POW)PIVT (4.6)

If we exchange the variables W’ W" in the second term then we have

> W, W POIW')P( '){ > P(W")V,,P(O|W")} =

W'ew wr"ew

(W, w"PO|W")P (W”){ > P(W’)V,,P(O\W’)} (A7)

wr"ew W'ew

If we substitute (A.7) into (A.6) and rearrange with respect to the terms that contain
VeP(O|W') we get
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[= > POIW")PW")U(W,W")P(W')VeP(O|W')
— VgLoss(f) = Z Wrew

w'ew

[ > POWnPW")

wr"ew

{W;E:WP(O|W”)P(W”)Z(W, W”)} PW"\VyaP(O|W')

(A.8)

up>

e [ X2 POW"P(W)

wrew

Or equivalently by using Ky~ as we have defined them above(A.3) we get

—VyLoss(0) = Y Ky/VyP(O|W') = Y Ky P(O[W')Vylog(P(O[W")) (A.9)
wrew wrew

by using the fact that Vo P(O|W'; §) = P(O|W'; 0)VylogP(O|W'; 6). E.O.P

Ky is the term provided by Kaiser. We then introduce K (W', W) = Ky P(O|W").

Then the gradient of the loss becomes

—VyLoss(0) = Y K(W',W)Vlog(P(O[W")) (A.10)
W’'ew
After some arithmetic we have
KW\ W) =[Y_ PW"OWW,W") - I(W,W)] P(WO). (A.11)
w'ew

Or equivalently we can write
K(W', W) = [ROW, W;0) — (W, W")] P(W'|0), (A.12)

for all W' € W, where R(W,W;0) = 3, ney, P(W"|O)I(W,W") is the expected

loss.
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