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Summary

Modern statistical machine translation (SMT) systems include multiple interrelated compo-
nents, statistical models, and processes. Translation is often factored as a cascaded series of
modules such that the output of one module serves as the input to the next; this is the SMT
pipeline. Simplifying assumptions, limited training data, and pruning during search mean
that the maximum likelihood hypothesis may not represent the best translation. Since any
errors will be propagated through the SMT pipeline, it is better to avoid hard decisions by
passing on as much information as possible to subsequent modules. The focus, then, is less
on finding the single-best translation and more on being able to generate a rich space of likely
translations that can be exploited through subsequent rescoring and combination techniques.
The large size of the search space in SMT means that it is not always possible to apply more
complex models in translation decoding; such models are normally applied to a translation
lattice, a space efficient representation of many translation alternatives with scores.

This thesis develops a robust inventory of large-scale lattice rescoring methods that im-
prove the quality of statistical machine translation. These rescoring methods include (i)
sentence-specific, high-order language models estimated over multi-billion word corpora, (ii)
stochastic segmentation transducers that model the phrasal segmentation process in phrase-
based SMT, (iii) efficient large-scale lattice minimum Bayes-risk decoding procedures based
on weighted path counting transducers, (iv) multi-input and multi-source lattice combination
techniques that synthesise multiple sources of translation knowledge, and (v) a novel decoding
framework based on segmentation of a word lattice into regions of high and low confidence
that supports targeted application of modelling techniques intended to address particular de-
ficiencies in translation. Efficient realisations of these lattice rescoring methods are described
in terms of general purpose weighted finite state transducer operations.

A second theme of this thesis concerns the exploitation of monolingual corpora. Although
monolingual data is much more widely available than parallel data, in SMT it is typically only
used for building word-based language models. However, there are other complementary ways
in which this data can be used to improve translation quality. Two novel lattice rescoring
methods for exploiting monolingual corpora - phrasal segmentation models that learn the
segmentation of sequences of words into sequences of translatable phrases, and monolingual
coverage constraints that address the often overlooked issue of machine translation fluency -
are proposed in this thesis.

Keywords: statistical machine translation, statistical language modelling, lattice rescoring,
minimum Bayes-risk decoding, exploiting monolingual data
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Notation

These are the terms and notation used throughout this work.

Variables, Symbols and Operations

≈ approximately equal to

∝ proportional to

argmax
x

f(x) the value of x that maximises the value of f(x)

argmin
x

f(x) the value of x that minimises the value of f(x)

log(x) logarithm base e of x

exp(x) exponential of x

E[f(x)] the expected value of f(x), where x is a random variable
∑N

n=1 an summation of terms from n = 1 to N – that is, a1 + a2 + · · · + aN

∏N
n=1 an product of terms from n = 1 to N – that is, a1 × a2 × · · · × aN

min(x, y) minimum value of x and y

max(x, y) maximum value of x and y

#x(y) count of x in y
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Weighted Finite State Transducers

K semiring weight set

R+ set of positive real numbers

T (a, b) weight associated by transducer T to string pair (a, b)

A(a) weight associated by acceptor A to string a

T1 ◦ T2 composition of two transducers T1 and T2

A1 ∩A2 intersection of two acceptors A1 and A2

T1 ⊗ T2 concatenation of two transducers T1 and T2

T1 ⊕ T2 union of two transducers T1 and T2

Π1[T ] input label projection of transducer T

Π2[T ] output label projection of transducer T

Q finite set of states

I finite set of initial states: I ⊆ Q

F finite set of final states: F ⊆ Q

E finite set of transitions – that is, edges

⊗ binary operator for combining weights along a path

⊕ binary operator for combining weights of identically labelled paths

0̄ designated value: for all x ∈ K, x⊕ 0̄ = x and x⊗ 0̄ = 0̄⊗ x = 0̄

1̄ designated value: for all x ∈ K, x⊗ 1̄ = x

⊕log log semiring weight combination: x⊕log y = − log(e−x + e−y)

E[q] set of all transitions from state q

λ[q] initial state weight function λ : I → K

ρ[q] final state weight function ρ : F → K

π complete path denoted by the series of transitions e1 · · · eK

⊗N
n=1xn operator ⊗ applied to N terms: x1 ⊗ x2 ⊗ · · · ⊗ xN

⊕N
n=1xn operator ⊕ applied to N terms: x1 ⊕ x2 ⊕ · · · ⊕ xN

σ consuming composition symbol (matches all)

ρ consuming composition symbol (matches rest)

ǫ non-consuming composition symbol (matches all)

φ non-consuming composition symbol (matches rest)
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CHAPTER 1
Introduction

Machine translation (MT) is the process of automatically translating written text or
speech in one language (the source) into a different language (the target). One possible

future application is a multilingual, real-time speech-to-speech translation device such as the
Babelfish in The Hitchhiker’s Guide to the Galaxy (Adams, 1979). Such a sophisticated trans-
lation device, however, is still very much a long-term goal; machine translation, particularly
speech translation, is a highly complex task with many unresolved difficulties. Differences
in lexical choice, word order, and grammatical structure, the use of idiomatic expressions
and non-literal translations, and the presence or absence of particular cultural conventions
all combine to make high quality automatic machine translation extremely challenging.

The statistical approach to machine translation (Koehn, 2010), driven largely by the
increased availability of parallel training corpora and widespread acceptance of automatic
quality metrics such as BLEU (Papineni et al., 2002b), addresses many of these issues by
learning correspondences between the source and target languages from a large collection
of translation examples. Statistical machine translation (SMT) chooses from the space of
all possible translations of the source language sentence, the most likely target language
translation given the source sentence and trained parameters of the statistical model.

Rapid progress has been made in statistical machine translation since the original word-
based formulation of Brown et al. (1990). Significant advances include the move to transla-
tion models based on phrases (Och, 2002; Koehn, 2010), the incorporation of discriminative
training and parameter optimisation (Och and Ney, 2002; Och, 2003), and the introduction of
synchronous context-free grammars capable of supporting sophisticated reordering and move-
ment of phrases (Chiang, 2005, 2007). Depending on the genre and nature of the translation
task, however, both fluency and adequacy are still often lacking in translations produced using
SMT. There is certainly a great deal of room for improvement.

1
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Figure 1.1: Cascaded module implementation of the statistical machine translation pipeline.

1.1 Lattice Rescoring Methods
Modern SMT systems are highly complex and include a number of interrelated components,
statistical models, and processes. Translation is normally factored into a cascaded series of
modules such that each module generates output for consumption by subsequent modules;
this series of modules forms the SMT processing pipeline illustrated in Figure 1.1.

Incorrect assumptions, insufficient training data, and pruning during search mean that
the maximum a posteriori (MAP) hypothesis may not represent the best possible translation
of the source sentence. Since errors in the output of one module are propagated to subsequent
modules, it is better to avoid making hard decisions and instead pass on as much information
as possible to subsequent modules. The focus, then, is less on producing the single best
translation and more on being able to generate a rich space of possible translations that can
be effectively exploited by subsequent post-processing and combination techniques.

The large size of the search space in SMT decoding means that it is sometimes impossible
to apply the most sophisticated models to the full space of translation hypotheses. For
this reason, it is common practice to generate a large subset of the most likely translations
according to the first-pass decoder, and then re-rank the hypotheses with more sophisticated
models. A weighted word lattice (Ueffing et al., 2002; Kumar and Byrne, 2003) is a space-
efficient representation of a large number of ranked translation alternatives and scores. The
best translation in the lattice (the oracle translation) is usually significantly better than the
MAP 1-best translation produced by the first-pass SMT system. The goal of lattice rescoring
is to re-rank translation hypotheses so that their ranking better reflects their quality.

figures/introduction/mt-processing-pipeline.eps
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This thesis develops a practical and robust inventory of large-scale lattice rescoring meth-
ods that are demonstrated to result in significant improvements in the quality of statistical
machine translation. Several rescoring strategies are empirically investigated. Efficient reali-
sations of these rescoring methods and algorithms are described in terms of general purpose
weighted finite-state transducer (WFST) operations (Mohri et al., 2008).

Translation lattices can be rescored with a more powerful language model (LM) than
is normally possible in first-pass translation. This thesis shows how WFSTs can be used
for efficient SMT lattice rescoring with sentence-specific n-gram LMs (Chen and Goodman,
1998; Huang et al., 2001) estimated over multi-billion word training corpora; significant im-
provements in BLEU score are observed with respect to the baseline system (Blackwood
et al., 2009). Phrasal segmentation models based on stochastic segmentation transducers are
demonstrated to improve the quality of phrase-based SMT (Blackwood et al., 2008b). An im-
plementation of minimum Bayes-risk (MBR) decoding for large SMT lattices (Tromble et al.,
2008) is described in terms of general purpose operations and algorithms on weighted finite-
state acceptors (WFSA). An improved lattice MBR decoder based on efficient path counting
transducers allows for fast and exact computation of the required statistics (Blackwood and
Byrne, 2010). The lattice MBR decoding framework is then extended to the task of com-
bining multiple lattices generated from alternative analyses of the source language sentence
(Kurimo et al., 2009; de Gispert et al., 2010). This lattice rescoring method combines multiple
sources of translation knowledge and leads to significant improvements in translation quality
as measured by the BLEU score (Papineni et al., 2002b).

Another contribution of this thesis is a novel lattice rescoring framework for improving the
quality of statistical machine translation. The motivation is to use n-gram posterior probabil-
ities (Zens and Ney, 2006) as a confidence measure to identify portions of the lattice that are
suspected to be of low quality. Starting from the best available SMT system, general purpose
WFST operations and algorithms can be applied to segment a word lattice into regions of
high and low confidence. The high confidence regions are trusted and left unmodified. Spe-
cialised models can then be applied to particular problems in the regions of low confidence.
Lattice segmentation simplifies the problem of improving SMT quality by making it easier to
integrate new modelling approaches into good baseline systems.

1.2 Exploiting Monolingual Data
A second theme of this thesis concerns the exploitation of large monolingual corpora to im-
prove the quality of statistical machine translation. Although parallel text collections such as
the proceedings of the United Nations (Graff, 1994), Canadian Hansard (Germann, 2001), and
European Parliament (Koehn, 2005) are of paramount importance in training the parameters
of statistical translation models, parallel data is expensive to produce and therefore usually
only available in limited quantities. Large Arabic↔English and Chinese↔English parallel
corpora exist, but less data is available for other language pairs. This issue of data sparsity
is a serious problem for statistical approaches to machine translation.

Much larger monolingual text collections are available. In most SMT systems, monolingual
data is only used to train the parameters of an n-gram language model (LM) (Chen and
Goodman, 1998). SMT has been shown to continue to benefit from increasing quantities of
language model training data; the largest experiments reported in the literature use a 5-gram
LM estimated over approximately 1.8 trillion tokens of English text (Brants et al., 2007). SMT
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research usually views increasing monolingual data as simply facilitating higher order n-gram
language models and better parameter estimation. However, there are other complementary
ways in which this data can be used to improve the quality of machine translation. Two novel
methods for exploiting monolingual data – phrasal segmentation models and monolingual
coverage constraints – are proposed in this thesis.

A phrasal segmentation model (PSM) can be used to rescore lattices produced by a phrase-
based statistical machine translation decoder (Blackwood et al., 2008a). The model defines
a mapping from the words of a sentence to a sequence of translatable phrases, where the
space of possible segmentations is determined by the inventory of phrase pairs extracted from
word-aligned parallel data. This thesis shows how phrasal segmentation model parameters
can be estimated from a large monolingual corpus and applied in lattice rescoring. A first-
order phrasal segmentation model implemented using WFSTs is demonstrated to result in
improved translation quality as measured by the BLEU score.

Monolingual coverage constraints are another way in which monolingual data can be used
to improve the quality of statistical machine translation. These constraints address a some-
times overlooked aspect of machine translation: hypothesis fluency. Monolingual coverage
constraints based on high-order n-gram coverage in a large monolingual text collection are
used to filter hypotheses believed to be disfluent from the hypothesis space of an MBR de-
coder. A human evaluation of the translation output shows that performing MBR search in
the filtered hypothesis space leads to improved overall fluency.

1.3 Original Contributions
The original contributions of this thesis are summarised below:

1. A comprehensive inventory of large-scale SMT lattice rescoring methods are developed,
leading to robust and significant improvements in the quality of translation. These
rescoring methods remain in continuous use at CUED for SMT system development
and research, and have contributed significant gains to highly ranked state-of-the-art
submissions in recent blind evaluations of statistical machine translation quality.

2. A fast and exact method for linearised lattice minimum Bayes-risk decoding (Tromble
et al., 2008) based on efficient path counting transducers is proposed (Blackwood and
Byrne, 2010); this method is shown to perform well even for large SMT lattices. An
original multiple lattice generalisation of the MBR decoder framework is extended to
the task of multi-input (de Gispert et al., 2009) and multi-source (Och and Ney, 2001)
translation. These methods support efficient combination of multiple SMT lattices and
lead to large gains in translation quality as measured by the BLEU score.

3. Two lattice rescoring methods are proposed for improving the quality of SMT through
the exploitation of abundantly available monolingual data: (i) phrasal segmentation
models that can be used to improve the quality of phrase-based SMT, and (ii) mono-
lingual coverage constraints for addressing the issue of poor fluency in SMT. These
rescoring methods both provide improvements in quality that are complementary to
the improvements obtained using higher-order second-pass n-gram language models.
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4. A novel lattice rescoring framework is proposed for improving SMT quality through sep-
aration of the hypothesis space and evidence space of a minimum Bayes-risk decoder.
Segmenting translation lattices into regions of high and low confidence allows the low
confidence regions to be refined through targeted application of modelling approaches
and procedures intended to address particular deficiencies in first-pass decoding. MBR
decoding in the refined hypothesis space is demonstrated to result in improved transla-
tion fluency.

1.4 Organisation of Thesis
The remainder of this thesis is organised as follows. The weighted finite-state transducer
operations and algorithms used throughout this work are described in Chapter 2. An example,
the stochastic transformation of strings under a generative model, illustrates the practical
application of these techniques. Chapter 3 presents an overview of n-gram language models,
focusing in particular on the backoff and smoothing methods required for state-of-the-art
performance. Chapter 3 includes a summary of recent approaches to large-scale distributed
language modelling, and a discussion of the finite-state implementation of a backoff n-gram
language model. The statistical approach to machine translation is reviewed in Chapter 4,
together with a detailed description of the hierarchical phrase-based decoder used to generate
the lattices for many of the subsequent rescoring experiments.

Chapter 5 describes the large language modelling experiments that serve as the baseline for
many of the rescoring methods developed throughout this work. Phrasal segmentation models
are defined and evaluated in Chapter 6. Lattice minimum Bayes-risk (LMBR) decoding is de-
scribed in Chapter 7; a fast implementation of LMBR based on efficient path counting trans-
ducers is proposed and evaluated in the context of Arabic→English and Chinese→English
translation experiments. Significant improvements in decoding efficiency are demonstrated.
Lattice MBR decoding is extended to the task of multiple lattice combination for multi-input
and multi-source translation in Chapter 8. Chapter 9 proposes a novel framework for im-
proving statistical machine translation quality based on segmenting translation lattices using
n-gram posterior probabilities. An application of this framework, monolingual coverage con-
straints, is shown to improve the fluency of Arabic→English machine translation. Chapter 10
reviews the original contributions and suggests possible areas for future research that build
upon the ideas proposed in this thesis.



CHAPTER 2
Natural Language

Processing with
Weighted Finite-State

Transducers

Weighted finite-state transducers (WFSTs) have been found useful in a variety of natural
language processing (NLP) tasks including automatic speech recognition, speech syn-

thesis, morphology, optical character recognition, part-of-speech tagging, and in other fields
such as biological sequence processing. This chapter introduces the general purpose WFST
operations and algorithms used throughout this work. The presentation derives from material
in Mohri (1997), Mohri et al. (2000), Mohri (2002), Allauzen et al. (2003), Allauzen et al.
(2007), and Mohri et al. (2008).1

2.1 Introduction
Transitions between states in a finite state transducer are labelled with both input and output
labels. Paths through a finite-state transducer thus define a mapping from input label se-
quences to output label sequences. If each transition also has a weight, then the accumulation

1See also the OpenFst documentation: http://www.openfst.org/
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of weights along a path through the WFST determines the weight of the mapping. In NLP
applications, weights often encode probabilities or, for numerical stability, log probabilities.
The weighted mapping between string pairs defined by a WFST makes it an appropriate
representation for the probabilistic finite-state models common in NLP tasks.

2.2 Semiring Definitions
A semiring (K,⊕,⊗, 0̄, 1̄) is defined by a set of values K, two binary operators ⊕ and ⊗, and
designated values 0̄ and 1̄. The ⊗ operator is used to combine weights along a path or when
matching paths in composition or intersection. The ⊕ operator is used to combine the weights
of identically labelled paths. Four commonly used semirings are shown in Figure 2.1.

Semiring Weight Set ⊕ ⊗ 0̄ 1̄

boolean {0, 1} ∨ ∧ 0 1
probability R+ + × 0 1

log R ∪ {−∞,+∞} ⊕log + +∞ 0
tropical R ∪ {−∞,+∞} min + +∞ 0

Figure 2.1: Semirings often used for natural language processing (Mohri et al., 2008).

The probability (or real) semiring is appropriate when the transition weights represent
probabilities. The log semiring (isomorphic to the probability semiring under − log) is fre-
quently used in automatic speech recognition and machine translation since it offers greater
numerical stability. The tropical semiring is derived from the log semiring under the Viterbi
approximation (Huang et al., 2001). It is appropriate when there is a need for shortest path
algorithms, e.g. to apply the argmax or argmin operations in a decoder decision rule. The
tropical and log semirings differ only in their interpretation of the ⊕ operator. In the tropical
semiring, two weights x and y are combined as x ⊕ y = min(x, y). In the log semiring, the
weights are combined as x⊕ y = − log(e−x + e−y). This is sometimes denoted x⊕log y.

2.3 Transducers, Paths, and Weights
Formally, a weighted finite-state transducer T = (A,B, Q, I, F,E, λ, ρ) over weight set K is
defined by an input alphabet A, an output alphabet B, a set of states Q, a set of initial states
I ⊆ Q, a set of final states F ⊆ Q, a set of weighted transitions E, an initial state weight
assignment λ : I → K, and a final state weight assignment ρ : F → K (Mohri et al., 2008).
The sets A, B, Q, I, F , and E are all of finite size. For each state q ∈ Q, let E[q] denote the
set of all transitions (i.e. edges) leaving state q. The weighted transitions of T form the set

E ⊆ Q× (A ∪ {ǫ})× (B ∪ {ǫ}) ×K×Q, (2.1)

where each transition includes an origin or source state from Q, an input symbol from A∪{ǫ},
an output symbol from B ∪ {ǫ}, a cost from K, and a destination or target state from Q.

Weighted finite-state acceptors are a special case of weighted finite-state transducers in
which the input or output labels are omitted. An acceptor A for the input strings or output
strings of transducer T is created by projecting on the input or output labels. This operation
is denoted by A = Π1(T ) for input projection and A = Π2(T ) for output projection.
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For transition e ∈ E, let p[e] denote its source state, n[e] its target state, i[e] its input
label, o[e] its output label, and w[e] its weight. Let π = e1 · · · eK denote a complete path in
T from initial state p[e1] to final state n[eK ], so that n[ek−1] = p[ek] for k = 2, . . . ,K. The
weight of the path π is the ⊗-product of the weights of the transitions:

w[π] =

K
⊗

k=1

w[ek] = w[e1]⊗ · · · ⊗ w[eK ] (2.2)

Let p[π] = p[e1] and n[π] = n[eK ]. If P(I, a, b, F ) denotes the set of all paths in T starting
from an initial state in I with input label sequence a ∈ A∗ and output label sequence b ∈ B∗

and ending in a final state in F , then the weight T (a, b) associated by transducer T to any
pair of input-output strings (a, b) is obtained as the ⊕-sum over all matching paths:

T (a, b) =
⊕

π∈P(I,a,b,F )

λ[p[π]]⊗ w[π]⊗ ρ[n[π]] (2.3)

The weighted finite-state transducer T thus defines a weighted relation between strings a ∈ A∗

in the input alphabet and strings b ∈ B∗ in the output alphabet. The weight T (a, b) = 0̄ is
associated to string pairs (a, b) not in T . The weight A(a) associated by an acceptor to string
a is computed as the ⊕-sum over paths π ∈ P(I, a, F ).

2.4 Operations and Algorithms
This section gives a brief overview of the general purpose WFST operations and algorithms
that will be used in this thesis (see Mohri et al. (2008) for details). The operations and
algorithms manipulate the set of strings and weights in transducers and acceptors in accor-
dance with the semiring definition (K,⊕,⊗, 0̄, 1̄). WFST operations include concatenation
and union of string sequences, probabilistic model combination through weighted compo-
sition, time and space optimisation through determinization and minimisation, and weight
pushing for distributing transition weights appropriately for particular tasks.

The union of two transducers T1 and T2 contains the union of the string pairs in T1 and
the string pairs in T2. The weight associated by the union is

(T1 ⊕ T2)(a, b) = T1(a, b)⊕ T2(a, b) (2.4)

The concatenation of two transducers T1 and T2 contains the concatenation of the string
pairs in T1 and the string pairs in T2. For each string pair (a, b) formed from the concatenation
of substring pairs (a1, b1) in T1 and (a2, b2) in T2, the weight associated by concatenation is

(T1 ⊗ T2)(a, b) =
⊕

a=a1a2,b=b1b2

T1(a1, b1)⊗ T2(a2, b2) (2.5)

Subsequent chapters will rely heavily on weighted composition. The weight associated to
the string pair (a, b) by the composition of two transducers T1 and T2 with matching respective
output and input alphabets C is defined as

(T1 ◦ T2)(a, b) =
⊕

c ∈ C∗

{

T1(a, c)⊗ T2(c, b)
}

(2.6)
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The finite-state acceptor equivalent of composition is weighted intersection. The weight
associated to string a by the intersection of two acceptors is (A1 ∩ A2)(a) = A1(a) ⊗ A2(a).
Other operations that manipulate the language of strings represented by a WFST include
closure, reverse, invert, and difference (Allauzen et al., 2007).

2.4.1 Optimisation and Search Procedures
General purpose operations and algorithms are available for optimising WFSTs with respect to
time and memory. Optimisation does not affect the language of accepted strings or associated
weights – only the transducer topology and distribution of weights is modified.

The connect operation removes unreachable states and arcs. The rmepsilon operation
removes transitions that have both input and output label ǫ. The determinize and min-
imise operations can be used to create an equivalent, minimal, deterministic transducer with
the property that no state has more than one transition with the same input label. These
operations can significantly reduce the number of states and arcs.

The shortest-path algorithm in the tropical semiring can be used to find the k lowest cost
paths in a transducer (Mohri, 2002). This allows the best string(s) to be efficiently extracted
using the Viterbi approximation and provides a generic implementation of the argmax and
argmin operations in probabilistic models. The prune operation discards paths based on a
cost threshold relative to the cost of the shortest path in the transducer.

The push operation redistributes transition weights in a way that does not affect the
weight associated to complete paths. Pushing weights towards the initial state results in
a stochastic machine with the property that for each state q ∈ Q, the ⊕-sum of outgoing
transition weights and final state weight {

⊕

e∈E[q] w[e]} ⊕ ρ[q] is 1̄. If weights are instead
pushed towards the final states, then for each state q ∈ Q the ⊕-sum of incoming transition
weights

⊕

e∈E:n[e]=q w[e] is 1̄. Weight pushing is useful for optimising search procedures and
for converting path weights to normalised probabilities.

2.4.2 Special Label Matching
Special symbol matching (Allauzen et al., 2007) can be used in weighted composition. Special
symbols act as transition filters in composition and enable more compact topologies and faster
matching. The special symbols are ǫ (epsilon), σ (all), ρ (rest), and φ (fail). Their behaviour is
summarised in Table 2.2. Transitions labelled σ match and consume any arc in composition.
Transitions labelled ρ match and consume any arc without an explicit transition from the
state. Non-consuming φ-transitions are similar to ǫ transitions but can only be taken when
no regular symbol match is possible. φ-transitions are required for the exact implementation
of backoff in the WFST representation of an n-gram language model (Allauzen et al., 2003).

Matches
Consuming
Y N

All σ ǫ
Rest ρ φ

Figure 2.2: Special label matching in weighted composition.
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0

a1/0.511

a2/0.916

0

a1:b1/1.204

a1:b2/0.357

a2:b1/0.511

a2:b2/0.916

0 1 2
b1 b2

P L B

Figure 2.3: WFST implementation of a simple decoder that models the stochastic transfor-
mation of strings. Acceptor P encodes the prior distribution P (a), transducer L encodes the
conditional distribution P (b|a), and acceptor B encodes the observed string b = b1b2.

2.4.3 Stochastic Decoding with WFSTs
This section provides examples of the main WFST operations and algorithms used throughout
this work. Suppose the transformation of strings a ∈ A∗ to strings b ∈ B∗ is modelled as a
generative stochastic process. The goal is to find the most likely source string a given the
observed string b. This is the string â that maximises the conditional probability P (a|b).
Using Bayes’ rule, the maximum likelihood decoder decision rule has the form:

â = argmax
a

P (a|b) = argmax
a

P (b|a)P (a) (2.7)

For a string of length I, let P (a) =
∏I

i=1 P (ai) and P (b|a) =
∏I

i=1 P (bi|ai). Let the
alphabet A = {a1, a2} and B = {b1, b2}. Suppose the model parameters P (ai) and P (bi|ai)
for all ai ∈ A and bi ∈ B have been estimated as follows:

P (a) P (b1|a) P (b2|a)

a1 0.6 0.3 0.7
a2 0.4 0.6 0.4

The most likely source string â for observed string b can be found using the WFSTs
shown in Figure 2.3. Weights are shown for the tropical semiring so that probability p is
represented as weight − log p. The prior distribution P (a) is implemented by acceptor P and
assigns P (a) =

∏I
i=1 P (ai) to any sequence a ∈ A∗. The conditional distribution P (b|a)

is implemented by transducer L which transduces source sequences a to observed sequences
b with probability P (b|a) =

∏I
i=1 P (bi|ai). The product P (b|a)P (a) is found by weighted

composition. The search space of the maximum likelihood decoder of Equation (2.7) can be
found by the composition chain

A = P ◦ L ◦ B, (2.8)

where B accepts the observed string b and input label sequences in A are source strings a
that might have generated b, each with weight − log P (b|a)P (a) according to the model. The

figures/wfsts/wfst-example.P.eps
figures/wfsts/wfst-example.L.eps
figures/wfsts/wfst-example.B.eps
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0 1 2
a1:b1/1.715

a2:b1/1.427

a1:b2/0.868

a2:b2/1.833

Figure 2.4: Decoder search space A for the input sequence b = b1b2.

transducer A resulting from the composition of Equation (2.8) is shown in Figure 2.4. The
most likely source string â is the input label sequence in A with least cost:

â = shortestpath(Π1(A)) (2.9)

For input string b = b1b2 encoded by acceptor B in Figure 2.3, the shortest path in A is the
sequence â = a2a1 with joint probability P (a2a1, b1b2) = P (b1|a2)×P (b2|a1)×P (a2)×P (a1) =
0.6 × 0.7 × 0.4× 0.6 = 0.1008. This corresponds to weight − log P (a2a1, b1b2) = 2.295 in the
log semiring. The joint probabilities of all source strings a generating b are as follows:

a − log P (a,b) P (a,b)

a2a1 2.29461670 0.1008
a1a1 2.58229899 0.0756
a2a2 3.25969768 0.0384
a1a2 3.54737997 0.0288

The marginal probability P (b) =
∑

a
P (a,b) can be computed efficiently from the decoder

search space transducer A by projecting on the input labels and then pushing weights towards
the final state in the log semiring. The resulting acceptor is shown in Figure 2.5.

0 1
a1/0.847

a2/0.560

a1/0.323

a2/1.288
2/1.412

Figure 2.5: Source strings acceptor after pushing weights towards the final state.

The final state cost is − log P (b) = − log
∑

a
P (a,b). Summing P (a,b) in the table of

joint probabilities gives P (b) = 0.2436 and − log 0.2436 = 1.412 which agrees with the final
state cost. Removing the final state cost normalises the path probabilities. A then defines
the posterior probability distribution P (a|b) over strings a ∈ A given the observed string b
so that

∑

a∈A P (a|b) = 1. The cost of each a ∈ A is then − log P (a|b). The cost of each
path in A is the negative log of

P (a|b) =
P (a,b)

∑

a′∈A P (a′,b)
. (2.10)

Weight pushing in the log semiring thus provides an efficient method for marginalisation
over identically labelled sequences, and for the conversion of likelihoods or model scores to
a normalised posterior probability distribution. These marginalisation and normalisation
operations are used extensively throughout this work.

figures/wfsts/wfst-example.A.eps
figures/wfsts/wfst-example.X.eps


CHAPTER 3
Statistical Language

Modelling

Sentences in a natural language consist of an ordered sequence of words and punctuation
symbols. A statistical language model (LM) trained from a large corpus of monolingual

training text can be used to assign a likelihood to a sequence of words, or to predict the word
most likely to follow a given history (or context) of preceding words. Language models have
applications in any field where the goal is to produce fluent natural language as the output.
Statistical language models are particularly important in automatic speech recognition (ASR)
(Huang et al., 2001) and statistical machine translation (SMT) (Koehn, 2010) since they are
used to guide the search procedure of the decoder and ensure that the resulting output is of
high quality (Jelinek, 1998).

3.1 Introduction
This chapter first reviews the n-gram approach to statistical language modelling that is inte-
gral to many of the lattice rescoring methods described in this thesis. The n-gram language
model is described and defined in Section 3.2. Sections 3.2.1 and 3.2.2 summarise techniques
for addressing the issue of data sparsity: frequency discounting, interpolation with lower-
order distributions, and backing off to more reliable probability estimates. Section 3.2.3
summarises the main n-gram smoothing methods used in this thesis. Large-scale statistical
language models trained using multi-billion word corpora are described in Section 3.3. The
chapter concludes with a description of the finite-state representation of a backoff n-gram
language model in Section 3.4.

12
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3.2 N-gram Language Models
In automatic speech recognition and statistical machine translation, n-gram language mod-
els (as summarised in Jelinek (1998), Huang et al. (2001), Jurafsky and Martin (2008), and
Koehn (2010)) can be used to assign a likelihood to a sequence of words. This likelihood
is related to the a priori probability of the sequence of words in the language. Intuitively,
word sequences that are grammatical and express sensible semantic relationships should be
assigned a high likelihood by the language model; other sequences should be assigned a low
likelihood. The language model probability is usually combined with a conditional probability
(e.g. of acoustic observations in ASR or foreign words in SMT) to calculate the posterior prob-
ability of hypotheses during maximum likelihood decoding under the source-channel model
of information processing.

The n-gram approach to language modelling is effective because (i) the models capture
both syntax and semantics, (ii) they focus on important local grammatical relationships, and
(iii) they have a simple dependency structure that allows for efficient training and integration
in ASR and SMT decoding. The main disadvantages are that they ignore the structure of
natural language, and that limited training data can result in unreliable estimates, particularly
for those word sequences that were not observed in the training data.

An n-gram language model defines a probability distribution over sequences of words,
where the probability assigned to each word sequence is related to the likelihood of occurrence
of the sequence of words as a sentence in the language. Formally, the probability assigned
to the word sequence w = w1w2 . . . w|w| of length |w| is computed using the chain rule as
the product of the conditional probability of each word in the sequence given the history of
preceding words:

P (w) =

|w|
∏

i=1

P (wi|w1w2 . . . wi−1) (3.1)

Since there are a potentially infinite number of possible word sequences in natural language
there will never be enough data to reliably train a model conditioned on the entire history
of words w1 . . . wi−1. The model must be able to generalise to provide good predictions of
word probabilities even for sequences that were not present in the training data. The Markov
assumption that only local context is relevant when predicting which word follows a given
history defines a set of equivalence classes between strings that share the same initial sequence
of words. This reduces the number of possible histories to a much more manageable level.
The length of the sequence is the n-gram order. The Markov independence assumption for
an n-gram model of order n approximates the probability of a sequence of words w as

P (w) ≈

|w|
∏

i=1

P (wi|w
i−1
i−n+1) (3.2)

Maximum likelihood (ML) estimation can be used to train the parameters of an n-gram
language model from the relative frequency of n-gram word sequences in a large training
corpus. For a model of order n, the conditional probability of word wi given the preceding
history of words wi−1

i−n+1 is computed by relative frequency as

P (wi|w
i−1
i−n+1) =

c(wi
i−n+1)

c(wi−1
i−n+1)

, (3.3)
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where the function c( · ) simply counts the frequency of the specified n-gram in the language
model training data. These parameter estimates maximise the training data likelihood.

Although the Markov assumption in Equation (3.2) significantly reduces the number of
model parameters, the problem of data sparsity means that the majority of higher-order n-
gram word sequences will not be observed in the training data. The ML probability assigned
by Equation (3.3) to such n-grams is zero, regardless of how likely the sequence of words
might be. This is clearly undesirable since the n-gram may be a perfectly grammatical
and quite probable sequence of natural language that just happened to be missing from the
training data. Sections 3.2.1, 3.2.2 and 3.2.3 discuss standard strategies for addressing the
data sparsity issue.

3.2.1 Language Model Discounting
The sum of conditional probabilities P (wi|w

i−1
i−n+1) taken over all n-grams with the same

history must be 1 for Equation (3.3) to be a valid probability distribution. In order to assign
probability mass to unseen events it is necessary to discount the probabilities of seen events.
The discounted n-gram probability estimate is

P (wi|w
i−1
i−n+1) = d(r)

c(wi
i−n+1)

c(wi−1
i−n+1)

, (3.4)

where d(r) is a discount coefficient that specifies the amount of the discount and is usually
a function of the frequency r of the n-gram being predicted. Simple discounting schemes
such as absolute discounting or linear discounting subtract a small fixed constant or scale
the observed counts so that the discounted probability mass can be reassigned to unobserved
n-grams. Witten-Bell discounting (Bell et al., 1990) computes discount coefficients that are
proportional to the number of distinct words that follow the n-gram history.

Good-Turing discounting (Good, 1953) adjusts the observed frequencies such that an n-
gram that occurs r times in the training data is treated as if it had occurred r∗ times. The
modified counts are computed from the observed counts as

r∗ = (r + 1)
nr+1

nr
, (3.5)

where nr denotes the number of n-grams that occur r times in the training data. Only the
counts of low frequency n-grams are adjusted in this way since the counts of high frequency
n-grams are assumed to be reliable. Good-Turing discounting reserves a proportion n1/N
of the total probability mass for unseen n-grams, where N is the total number of tokens
in the training corpus. Estimating the parameters of a language model using Good-Turing
discounting requires computing both the regular n-gram counts and also the count-of-counts
nr for r < k where k is the maximum order at which discounting should be applied.

3.2.2 Language Model Interpolation and Backoff
Interpolation and backoff are two common strategies for improving the reliability of word
predictions in an n-gram language model. Both techniques compensate for the problem of
data sparsity through the use of lower-order probability distributions. The use of lower-order
distributions in backoff and interpolated models differs since the interpolated model always
smoothes estimates using the lower-order distribution, while the backoff model does so only
for n-grams with counts lower than the cutoff threshold.
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3.2.2.1 Backoff Models

Most n-gram language models used in ASR and SMT are backoff models (Katz, 1987).
The general form of a backoff n-gram language model defines the conditional probability
PBO(wi|w

i−1
i−n+1) of word wi given history wi−1

i−n+1 recursively as

PBO(wi|w
i−1
i−n+1) =

{

α(wi|w
i−1
i−n+1) if c(wi

i−n+1) > k

γ(wi−1
i−n+1)PBO(wi|w

i−1
i−n+2) otherwise

(3.6)

where α is the discounted probability distribution that allows mass to be reassigned to unseen
n-grams, γ is a backoff weight specific to the n-gram history wi−1

i−n+1 (this is required for
normalisation), and k is the n-gram frequency cutoff point that determines the counts for
which the backed-off (n − 1)-gram probability is used. The cutoff frequency is often k = 0
so that the lower-order distribution is only used for unseen n-grams. Intuitively, this model
continues backing off until an n-gram with sufficient frequency for a reliable estimate of the
word probability is found. The recursion ends at the unigram distribution.

3.2.2.2 Interpolated Models

The n-gram probabilities in an interpolated language model are computed from a linear
interpolation of higher-order and lower-order distributions. Effectively, the lower-order distri-
butions are used to smooth the higher-order sparser distributions, resulting in more reliable
parameter estimates. The interpolated probability is computed recursively as follows:

PINTERP(wi|w
i−1
i−n+1) = λPML(wi|w

i−1
i−n+1) + (1− λ)PINTERP(wi|w

i−1
i−n+2) (3.7)

Interpolation is thus a weighted sum of probabilities computed from n-grams of different
orders. The weights of the interpolated model can be optimised on a corpus of representative
held-out data using deleted interpolation (Bahl et al., 1990). The interpolation weights can
also be conditioned on the context. The optimised weights then indicate the reliability of the
distribution at each order, given the history.

3.2.3 Language Model Smoothing
Language model smoothing combines discounting, interpolation, and backoff to obtain esti-
mates of word sequence probabilities that are closer to the true distribution of words in the
language. There are several smoothing strategies of varying complexity and effectiveness.

3.2.3.1 Additive Smoothing

One of the simplest methods of language model smoothing consists of adding a small fixed
constant to the counts of each n-gram observed in the training data:

PADD(wi|w
i−1
i−n+1) =

c(wi
i−n+1) + δ

c(wi−1
i−n+1) + δ|V |

(3.8)

An example of this form of additive smoothing is to choose δ = 1 such that each n-gram
is assumed to have occurred once more than is actually found to be the case in the training
data. This ensures that no word sequences are assigned a probability of zero. However, this
technique is known to perform poorly since it significantly overestimates the probability of
unseen n-grams (Gale and Church, 1994).
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3.2.3.2 Katz Smoothing

Katz smoothing (Katz, 1987) combines Good-Turing discounting (Good, 1953) of low fre-
quency unreliable n-gram counts with backing off to lower-order distributions for unseen
n-grams. The conditional probability of word wi given history wi−1

i−n+1 is

PKATZ(wi|w
i−1
i−n+1) =



















c(wi
i−n+1)

c(wi−1
i−n+1)

if r > k

d(r)
c(wi

i−n+1)

c(wi−1
i−n+1)

if 0 < r ≤ k

γ(wi−1
i−n+1)PKATZ(wi|w

i−1
i−n+2) if r = 0

, (3.9)

where k determines the range of count frequencies r = c(wi
i−n+1) which should be discounted

in order to reserve probability mass for unseen n-grams. Those n-grams with frequency
r > k are assumed to be reliable and assigned conditional probability PML(wi|w

i−1
i−n+1). The

probabilities of n-grams with frequencies 0 < r ≤ k are discounted according to the discount
coefficient d(r):

d(r) =
r∗

r −
(k+1)nk+1

n1

1−
(k+1)nk+1

n1

(3.10)

The probability assigned to n-grams that are not observed in the training data is computed
using the lower order (n−1)-gram distribution. The context-specific backoff weight γ(wi−1

i−n+1)

ensures that the distribution satisfies the probability constraint
∑

wi
PKATZ(wi|w

i−1
i−n+1) = 1.

The backoff weights γ(wi−1
i−n+1) are computed as follows. Let β(wi−1

i−n+1) denote the probability
mass that remains after discounting the probabilities of n-grams with frequencies 0 < r ≤ k.
This probability is computed by subtracting from 1 the probabilities of all n-grams with
non-zero counts:

β(wi−1
i−n+1) = 1−

∑

wi:r>0

PKATZ(wi|w
i−1
i−n+1) (3.11)

This is the total discounted probability mass for context wi−1
i−n+1 that will be distributed

evenly amongst the lower-order backed-off (n − 1)-grams. The backoff weight γ(wi−1
i−n+1) is

obtained by normalising the discounted probability mass β(wi−1
i−n+1) by the total probability

of all (n − 1)-grams wi
i−n+2 that begin backed-off n-grams wi

i−n+1 of frequency r = 0. The
backoff weight is

γ(wi−1
i−n+1) =

β(wi−1
i−n+1)

∑

wi:r=0 PKATZ(wi|w
i−1
i−n+2)

=
1−

∑

wi:r>0 PKATZ(wi|w
i−1
i−n+1)

1−
∑

wi:r>0 PKATZ(wi|w
i−1
i−n+2)

, (3.12)

where the sum over wi : r = 0 in the denominator is rewritten in terms of the sum over
wi : r > 0 since, for higher-order n, it is much more efficient to sum over the observed
n-grams than the more numerous unobserved n-grams.

3.2.3.3 Kneser-Ney Smoothing

Kneser-Ney smoothing (Kneser and Ney, 1995) is the most commonly used smoothing method
in modern ASR and SMT systems. A modified version that includes interpolation with
lower-order distributions has been demonstrated to obtain better perplexities than any other
smoothing method (Chen and Goodman, 1998).
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The motivation for Kneser-Ney smoothing is that some words occur almost exclusively
with certain other words and therefore any smoothing scheme that ignores the context (e.g.
the backed-off unigram distribution in Katz smoothing of a bigram language model) will
result in artificially high smoothed counts for word pairs that almost never co-occur. The
canonical example is the bigram san francisco (Chen and Goodman, 1998). Since this bigram
occurs frequently in the training data, the unigram probabilities of san and francisco are
both relatively high. However, if it is necessary to back off to the unigram distribution then
francisco should have low probability for any context other than san.

In a Kneser-Ney smoothed language model, the smoothed lower-order distribution is not
computed from counts of n-grams, but instead depends on the number of unique words that
precede the backed off n-gram. The Kneser-Ney smoothed probability is computed as

PKN(wi|w
i−1
i−n+1) =







max{c(wi
i−n+1)−D, 0}

c(wi−1
i−n+1)

if c(wi
i−n+1) > 0

γ(wi−1
i−n+1)PKN(wi|w

i−1
i−n+2) otherwise

, (3.13)

where the context-specific backoff weight γ(wi−1
i−n+1) ensures the distribution is properly nor-

malised. The lower-order distribution is computed from the counts of unique histories as

PKN(wi|w
i−1
i−n+2) =

C(• wi
i−n+2)

∑

wi
C(• wi

i−n+2)
(3.14)

where C(• wi
i−n+2) = |{wi−n+1 : c(wi

i−n+1) > 0}| denotes the number of unique words that
precede the backed off n-gram wi

i−n+2. The modified version of Kneser-Ney smoothing re-
places the single discount parameter D with separate discount parameters D1, D2, and D3+

for discounting n-grams with counts of 1, 2 and 3 or more respectively. The best language
model performance is obtained by interpolating with the lower order distributions as in Equa-
tion (3.7). The interpolated modified Kneser-Ney smoothed probability is

PMKN(wi|w
i−1
1−n+1) =

c(wi
i−n+1)−D(c(wi

i−n+1))

c(wi−1
i−n+1)

+ γ(wi−1
i−n+1)PMKN(wi|w

i−1
i−n+2) (3.15)

The count-specific discount parameters are defined as

D(c) =















0 if c = 0
D1 if c = 1
D2 if c = 2
D3+ if c ≥ 3

(3.16)

The distribution must sum to 1, so the context specific term γ(wi−1
i−n+1) is defined as

γ(wi−1
i−n+1) =

D1C1(w
i−1
i−n+1 •) + D2C2(w

i−1
i−n+1 •) + D3+C3+(wi−1

i−n+1 •)

c(wi−1
i−n+1)

, (3.17)

where Cx(w
i−1
i−n+1 •) is the number of unique words following history wi−1

i−n+1 amongst n-grams
that are found to occur x times in the training data. The optimised discount parameters are
computed from the counts-of-counts nr in the training corpus as follows:

Y = n1
n1+2n2

D1 = 1− 2Y (n2
n1)

D2 = 2− 3Y (n3
n2

)

D3+ = 3− 4Y (n4
n3

)

(3.18)
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To compute the smoothed probabilities of a Kneser-Ney n-gram language model requires
the regular counts c, the count-of-counts nr, and the continuation counts C. This makes
estimating the parameters more expensive than other smoothing schemes.

3.3 Large-Scale Statistical Language Models
The size of the training data used to estimate the parameters of an n-gram language model is
continually increasing. This is particularly true in English where multi-billion token corpora
are increasingly the norm. The challenge is how to most effectively exploit this vast quantity
of data. This section describes some of the problems associated with large-scale statistical
language models, and surveys some recent approaches that seek to exploit the full set of
available training data.

3.3.1 Distributed Language Models
The predictive power of n-gram language models usually increases at higher orders since there
is a longer context on which to condition each word prediction. It is therefore desirable to
use the highest possible order that can be reliably estimated from a given quantity of training
data. However, higher order n-gram language models estimated over large corpora result in a
huge number of model parameters; it is often impossible to store all of these probabilities in
memory during decoding. Count frequency cutoffs (Stolcke, 2002), probability quantisation,
entropy-based pruning (Stolcke, 1998), and Bloom filters (Talbot and Osborne, 2007) can be
used to reduce the memory requirements of a language model, but these techniques discard
potentially useful information that may degrade the quality of the model.

One solution to the problem of large-scale language models is to use distributed computing
based on the client-server paradigm. In this framework, decoder clients connect to one or
more remote language model servers and request n-gram probabilities or counts. Requests
are typically batched for efficiency. For example, a stack-based machine translation decoder
(see Chapter 4, Section 4.2) iteratively extends partial hypotheses by translating a single
source language word or phrase. The n-grams required to compute the language model score
of each partial hypothesis extension can be batched together and requested in a single remote
procedure call. This substantially reduces the amount of network traffic during decoding.

Distributed language modelling is used for re-ranking k-best lists produced by a machine
translation decoder in Zhang et al. (2006). The lists are re-ranked using a combination of
n-gram language model probabilities and sentence likelihood features computed on demand
from raw counts. The training corpus (3 billion tokens) is split into chunks and n-gram counts
(orders n = 1 . . . 4) for a single chunk are loaded into each server in the form of a suffix array.
To obtain the n-gram probabilities required to re-rank each k-best list requires a separate
query to each server in order to aggregate counts over the full corpus. The aggregate counts
are then used to compute the required probabilities.

A similar n-gram counts server approach to implementing a distributed language model is
integrated into a statistical machine translation decoder in Emami et al. (2007); experiments
using a 5-gram language model estimated over 4 billion tokens show improved SMT quality.
Again, n-gram probabilities are computed on demand by aggregating the counts obtained
from each individual language model server.
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An alternative distributed architecture for SMT decoding is described in Brants et al.
(2007). Clients are served smoothed language model probabilities instead of counts so that
only a single server needs to be contacted per n-gram request. This avoids the aggregation
of counts over multiple servers. They describe a context-independent backoff scheme that
considerably simplifies the parameter estimation and run-time complexity of the language
model. The distributed architecture and simplified backoff implementation allows a 5-gram
LM estimated over 1.8 trillion tokens to be efficiently integrated directly in SMT decoding.

3.3.2 Stupid Backoff Smoothing
Stupid backoff (Brants et al., 2007) is a simple form of language model smoothing that replaces
the n-gram conditional probabilities P (wi|w

i−1
i−n+1) in Equation (3.6) with non-normalised

scores based on relative frequencies. The motivation for stupid backoff smoothing is that (i)
it is inexpensive to calculate in a distributed environment and (ii) the quality approaches that
of Kneser-Ney smoothing (Kneser and Ney, 1995) for very large training corpora. Zero-cutoff
stupid backoff language model scores are defined recursively as

S(wi|w
i−1
i−n+1) =

{

P (wi|w
i−1
i−n+1) if c(wi

i−n+1) > 0

γ(n)S(wi|w
i−1
i−n+2) otherwise

(3.19)

where the backoff weight γ(n) depends only on the order n and is independent of the n-gram
context. The conditional probability P (wi|w

i−1
i−n+1) of n-grams observed in the training data

is computed by maximum likelihood estimation from the relative frequency of counts:

P (wi|w
i−1
i−n+1) =

c(wi
i−n+1)

c(wi−1
i−n+1)

(3.20)

There is no discounting of the maximum likelihood estimates. The recursion in Equation
(3.19) ends with the definition for unigrams

S(wi) =
c(wi)

∑

j c(wj)
=

c(wi)

N
, (3.21)

where N is the total number of tokens in the training corpus. Only n-gram frequencies are
required to compute the parameters of a stupid backoff language model. There is no need to
compute the count-of-counts required by most other smoothing methods.

The simplicity of stupid backoff smoothing means that the language model parameters
may be distributed in a way that allows the model to be scaled up to a very large size,
while still allowing for efficient integration in a real-time translation decoder. In Brants et al.
(2007), the effectiveness of stupid backoff smoothing is compared with Kneser-Ney smoothing
at a range of different training corpora sizes; they show that translation quality continues
to improve with larger training corpora and that there is no significant difference in quality
between Kneser-Ney smoothing and stupid backoff smoothing once the size of the training
data exceeds several billion tokens.
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3.4 Finite-State Acceptor Language Models
One of the advantages of n-gram language models is that they have a very simple dependency
structure. The parameters of a backoff n-gram language model can be encoded in a space effi-
cient representation as a weighted finite-state acceptor (Allauzen et al., 2003). In the WFSA
representation, each state encodes a word history. Arcs from states encode the conditional
probability P (w|wi−1

i−n+1) of target word w given the preceding history of words wi−1
i−n+1.

Let G denote the WFSA representation of a language model. Let the strings in acceptor L
denote word sequences w that are to be scored by the language model. The language model
can be easily applied using weighted composition: L ◦ G. After composition, each string in L

has probability P (w) =
∏|w|

i=1 P (wi|w
i−1
i−n+1). Figure 3.1 shows the subset of states and arcs in

G that encode the conditional probabilities and backoff weights for the trigram P (wi|w
i−1
i−2),

as defined by the n-gram backoff language model of Equation (3.6).

wi/α(wi|w
i−1

i−2)

wi/α(wi|wi−1)

wi/α(wi)

φ/γ(wi−1

i−2)

φ/γ(wi−1)

φ/γ(wi
i−1)wi−1

i−2

wi
i−1

wi−1

∅

wi

Figure 3.1: Finite-state acceptor representation of a trigram backoff language model. Only
states and arcs that implement the conditional probability P (wi|w

i−1
i−2) are shown for clarity.

The probability P (wi|w
i−1
i−2) assigned to word wi preceded by history wi−1

i−2 in the composi-
tion L ◦ G depends on whether or not it is necessary to backoff to a lower-order n-gram. If the
trigram word sequence wi

i−2 did not occur in the language model training data, then its prob-
ability is computed by backing off to the lower-order bigram distribution. The probability is
the ⊗-product of the backoff weight and bigram probability:

P (wi|w
i−1
i−2) = γ(wi−1

i−2) ⊗ α(wi|wi−1) (3.22)

To ensure that the composition L ◦ G assigns the correct n-gram language model prob-
abilities to strings, failure φ-transitions (Chapter 2, Section 2.4.3) must be used instead of
ǫ-transitions for backoff arcs. φ-transitions ensure that the highest possible order of n-grams
is used for each word prediction by allowing backoff arcs to be taken only if there are no
regular word transition matches. This avoids the problem of assigning incorrect language
model probabilities whenever γ(wi−1

i−2) ⊗ α(wi|wi−1) > α(wi|w
i−1
i−2).

This way of encoding the parameters of a conditional distribution as an automaton is used
extensively throughout this work. In Chapter 5, general purpose WFSA operations allow for
efficient rescoring of large statistical machine translation lattices. A similar topology is used
to encode the parameters of first-order phrasal segmentation models in Chapter 6. In Chapter
9, a variant of the WFSA n-gram language model is described that applies a fixed penalty
to strings in proportion to the number of times backoff arcs were used. These penalties are
the basis for monolingual coverage constraints that can be used to improve the fluency of
machine translation output.

figures/langmod/wfst-language-model.eps


CHAPTER 4
Statistical Machine

Translation

The mass availability of large quantities of electronic text in multiple languages and ready
access to powerful and inexpensive computer hardware has made possible a data-driven,

statistical approach to the problem of translating between natural languages. Statistical ma-
chine translation (SMT) combines the fields of natural language processing, computational
linguistics, pattern recognition, and machine learning. One of the main motivations for statis-
tical machine translation is that it consistently achieves state-of-the-art quality in evaluations
such as those conducted by the National Institute of Standards and Technology (NIST)1.

4.1 Introduction to Statistical Machine Translation
Classical approaches to machine translation (as summarised by Jurafsky and Martin (2008))
use linguistically motivated transfer rules or an intermediate representation known as an
interlingua. The transfer approach in rule-based MT systems requires specialised linguistic
knowledge to formulate rules that specify how different language features are mapped between
the source and target language. In the interlingua approach, the aim is to extract semantic
information and syntactic relationships from the source language sentence. The extracted
information can then be mapped to any target language in order to render a translation of
the input sentence. However, extracting meaning from a sentence requires a deep analysis

1http://www.itl.nist.gov/iad/mig/tests/mt
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and sophisticated knowledge representation, together with some degree of world or domain-
specific knowledge. High levels of linguistic expertise in the source and target languages are
also required; this expertise is not always directly transferable to other language pairs.

Machine translation using transfer rules or an interlingua focuses on the process of trans-
lation. The statistical approach focuses on the result by framing translation as a generative
stochastic process for which parameters can be estimated from a large corpus of example
translations. This corpus is known as a parallel text or bitext and contains sentences with the
same meaning in two (or more) languages. Popular parallel texts include the proceedings of
the United Nations (Graff, 1994), Canadian Parliament (Germann, 2001), and European Par-
liament (Koehn, 2005). Large collections of Arabic↔English and Chinese↔English newswire
parallel text are also available. Although parallel text collections are much larger now than
when they first became available, they are still small in comparison with the volume of mono-
lingual data available for estimating the parameters of a statistical language model.

The main advantages of statistical machine translation are (i) almost no specialised lin-
guistic knowledge is required, (ii) the modelling procedures are largely language independent,
(iii) there is the promise that natural and fluent translations can be learned directly from real
training data, and (iv) idiomatic translations can be captured in context from observed ex-
amples. The ability of SMT systems to learn idiomatic translations is a significant advantage.
In classical MT, these translations must be encoded manually and the exact circumstances
under which they can be appropriately employed are very difficult to formalise. A popular
example of a phrase-based SMT system is available as a free online service from Google.1

This chapter follows the convention of describing translation as the process of transforming
a foreign input sentence f into an English output sentence e. The language independent nature
of statistical machine translation is one of its main benefits and e and f should be taken to
represent sentences in any two natural languages.

4.1.1 The Source-Channel Model of Statistical Machine
Translation

The first influential framework for statistical machine translation described the process of
translating between two languages in terms of the source-channel model (Brown et al., 1990,
1993). Foreign sentences are considered to be English sentences that have passed through
a noisy communication channel corrupting their surface form. The task of translation is to
recover the hidden English sentence that generated the observed foreign sentence.

In the source-channel model, the goal is to recover the source sentence e generating target
sentence f that maximises the conditional probability of translation P (e|f). Inspired by the
use of the source-channel model in automatic speech recognition (ASR) (Huang et al., 2001),
the conditional probability P (e|f) can be decomposed using Bayes’ rule as follows:

P (e|f) =
P (e, f)

P (f)
=

P (f |e)P (e)

P (f)
(4.1)

Since the denominator P (f) is constant for any given input sentence, it can be ignored during
decoding. This leads to the simplified maximum likelihood (ML) decision rule

ê = argmax
e

P (f |e)P (e), (4.2)

1http://translate.google.com
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where P (f |e) represents the translation probability, P (e) represents the language model prob-
ability, and the argmax operation denotes the search over possible translations of f for the
best translation ê. At an abstract level, the translation model favours translations that cap-
ture the semantic content of the foreign language sentence, whilst the language model favours
translations that respect the grammaticality and fluency of the source language.

The translation model P (f |e) defines a probability distribution over sentence pairs (e, f)
in the source and target language giving the probability that e generates f . One of the main
difficulties in estimating the probability that e generates f is the difference in word order
between the source and target languages.

4.1.2 Word Alignments for Statistical Machine Translation
Word alignments define a mapping between the words of a source language sentence and a
target language sentence known to be its translation. Links between words correspond to
syntactic functions or semantic relationships shared by the words of the source and target
sentences. One possible word alignment for a Spanish→English sentence pair is shown in
Figure 4.1. The links show which English word in the source sentence generated each Spanish
word in the target sentence. Some words must be reordered: the adjective and noun in the
English noun-phrase ‘green witch’ must be reordered as ‘bruja verde’ in Spanish. Differences
in word order are the main reason why high quality automatic machine translation between
languages is so difficult.

Mary did not slap the green witch

Maria no dió una bofetada a la bruja verde

Figure 4.1: Word alignment example showing the one-to-many links between source and
target words for a Spanish→English sentence pair (Jurafsky and Martin, 2008).

Brown et al. (1993) describes a series of five translation models of increasing sophistication
known as IBM Model 1 to IBM Model 5. These translation models capture various features
of the word alignment process. They describe algorithms for the unsupervised estimation of
model parameters using a corpus of aligned parallel text, and a training procedure in which
the parameters of each model serve as the initialisation for the next and more sophisticated
model. Alignments are modelled by a hidden variable that specifies the source word to which
each target word is aligned. Even though the word alignment between source and target
sentences in the parallel data is not explicit, the alignment probabilities can still be learned
using the expectation-maximisation algorithm (Dempster et al., 1977).

4.1.3 Phrase-Based Statistical Machine Translation
In the word-based generative model of statistical machine translation (Brown et al., 1993),
words are inserted, deleted, translated and reordered according to distributions learned from
the alignments. Phrase-based statistical machine translation (Koehn et al., 2003), developed
from the Alignment Template approach of Och and Ney (2004), uses phrases instead of single
words as the fundamental unit of translation.

figures/statmt/alignment-example.eps
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In phrase-based translation, phrases are defined as any contiguous sequence of words and
therefore have no syntactic or semantic significance other than that implied by their natural
grouping as a phrase in the training corpus. The only requirement is that a translation for
each phrase can be learned from parallel data. Although such an interpretation of phrases
is somewhat unusual, it is a simplification that leads to significantly improved performance
without requiring detailed knowledge of source and target language grammars.

The main advantages of phrase-based statistical machine translation are (i) a large phrase-
pair lexicon can be induced from parallel data with high precision, (ii) phrases incorporate
reorderings, insertions, and deletions that are sensitive to local context, (iii) semantic col-
locations that are useful for resolving translation ambiguities can be captured, and (iv) the
words within phrases are sequences learned from real data resulting in more fluent translation
output. Decoding with phrases also enables longer distance movement of words and can be
less computationally demanding than word-based translation since there are fewer units to
be translated. It is for these reasons that phrase-based methods have become the dominant
paradigm in statistical machine translation research and evaluations.

Phrase-based statistical machine translation starts with the segmentation of foreign sen-
tence f into a sequence of I phrases: f̄1, . . . , f̄I . The segmentation process is not usually
explicitly modelled so all segmentations are considered equally likely. Alternatives to the
uniform phrasal segmentation distribution are the subject of Chapter 6. Each foreign phrase
f̄i is translated as English phrase ēi with phrase-to-phrase translation probability φ(f̄i|ēi)
estimated from parallel data. In decoding, the translation probability P (f |e) of Equation
(4.2) is decomposed as the product of phrase-to-phrase translation probabilities so that

P (f |e) = P (f̄ I
1 |ē

I
1) =

I
∏

i=1

φ(f̄i|ēi)d(starti − endi−1 − 1), (4.3)

where the reordering distribution d(starti − endi−1 − 1) is a function of the relative number
of words skipped forwards or backwards during decoding (Koehn, 2010), with starti as the
start position of the foreign phrase translated as phrase ēi and endi−1 as the end position of
the foreign phrase translated as the preceding English phrase ēi−1. This distribution can be
estimated from parallel data or modelled as a simple exponential decay that penalises longer
distance reorderings (Koehn et al., 2003).

Phrase-based statistical machine translation requires a lexicon of phrase-to-phrase trans-
lation probabilities extracted from the parallel data. A popular approach is the phrase-extract
algorithm of Och (2002). This algorithm starts by generating IBM Model 4 word alignments
in each direction (Brown et al., 1993) (Section 4.1.2). Finding alignments in both directions
compensates for the asymmetric 1-to-1 and 1-to-n word alignment limitation of the IBM
models. The two sets of alignments are then combined to form their union – a process known
as symmetrisation. Although the union does contain most of the alignments of interest, it
does so with relatively low precision and can include many spuriously aligned words. The
second stage of the algorithm finds a subset of phrase-pairs that are well aligned according
to a set of heuristics and such that words within a phrase-pair are not aligned to any words
outside the pair. The resulting set of consistent bilingual phrase-pairs have high alignment
precision. However, some foreign phrases will not be included in the phrase lexicon because
word alignment errors failed to align them with suitable English phrases. The phrase lexicon
can be expanded using heuristics that check the alignments for additional phrases that are
consistent expansions of existing phrases.
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Mary � 2 2 2 2 2 2 2 2

did 2 � 2 2 2 2 2 2 2

not 2 � 2 2 2 2 2 2 2

slap 2 2 � � � 2 2 2 2

the 2 2 2 2 2 � � 2 2

green 2 2 2 2 2 2 2 2 �

witch 2 2 2 2 2 2 2 � 2

Figure 4.2: A word alignment matrix for a Spanish→English sentence pair that shows the
alignment between words (Jurafsky and Martin, 2008).

Figure 4.2 shows a word alignment matrix for a Spanish→English sentence pair. Phrase-
pairs identified by the phrase extraction algorithm might include 〈Maria, Mary〉, 〈no dió una
bofetada, did not slap〉, and 〈a la bruje verde, the green witch〉. A word-based model must
correctly reorder the Spanish source words ‘bruja verde’ as the English target words ‘green
witch’. In a phrase-based model, this local reordering is learned from the parallel data and
encoded directly in the phrase-pair. Phrase-based models, therefore, reduce the need for
explicit reordering in translation. For this example, a monotone translation decoder is able
to generate the correct English word order without explicit reordering.

Usually, alignment probabilities are ignored when building the phrase translation model
– only the presence or absence of alignment links is considered when computing phrase trans-
lation probabilities. Although the phrase extraction heuristics may have little theoretical
justification, they have been found to work very well in practice.

For the set of phrase-pairs defined by the lexicon, a phrase translation table containing
phrase-to-phrase translation probabilities can be estimated by relative frequency from counts
in the aligned parallel corpus. These probabilities define the set of all possible translations
of each foreign language input phrase, weighted with a probability distribution learned from
the alignments. The maximum likelihood estimate of the probability of translating phrase f̄i

given phrase ēi is

φ(f̄i|ēi) =
count(ēi, f̄i)

∑

f̄j
count(ēi, f̄j)

(4.4)

where count(x̄, ȳ) is simply a count of the number of times the phrase-pair (x̄, ȳ) is aligned in
the parallel training corpus. These conditional probability distributions define the translation
model for phrase-based statistical machine translation.

Phrase-based statistical machine translation systems are often modelled as a log-linear
combination of features (Section 4.1.4) and typically include both P (e|f) (source→target)
and P (f |e) (target→source) translation probabilities. The translation model can also be
improved through the addition of lexical translation probabilities in each direction (Koehn
et al., 2003). These features model how well the words in each phrase-pair align with one
another and act to smooth the phrase translation model using the richer statistics of the
word-to-word alignments. Lexical translation probabilities are particularly useful for rare
phrase pairs that may occur only once or twice in the training data and are therefore usually
assigned too much probability mass by the maximum likelihood estimate of Equation (4.4).
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4.1.4 Maximum Entropy Models and Direct Translation
The statistical approach to machine translation is based on the IBM word alignment models
of Brown et al. (1993). In a similar manner to automatic speech recognition, the process
of translation is formulated in terms of the source-channel model: the source sentence is
considered to have passed through a noisy-channel that corrupts its surface form into the
words of the foreign language. The decoding task is to recover the source sentence.

Och and Ney (2002) proposed a direct translation modelling framework that extends and
generalises the source-channel model, citing the following limitations as their motivation: (i)
the source-channel decision rule is optimal only if the true translation and language model
probability distributions are known, and this is never true in practice since it would require an
infinite quantity of training data; (ii) it is difficult to integrate additional sources of knowledge;
and, (iii) alternative decision rules may simplify translation decoding.

Instead of inverting and decomposing via Bayes’ rule, the posterior probability of a can-
didate translation can be modelled directly using maximum entropy (Berger et al., 1996;
Papineni et al., 1998). The maximum entropy model is defined by a set of M feature func-
tions hm(e, f) and associated feature weights λm for m = 1, . . . ,M . The direct translation
probability is given by

P (e|f) =
exp(

∑M
m=1 λmhm(e, f))

Z(f)
, (4.5)

where the normalisation Z(f) in the denominator is required to satisfy the constraint that
P (e|f) is a valid probability distribution for all f . The normalisation factor

Z(f) =
∑

e

exp(

M
∑

m=1

λmhm(e, f)) (4.6)

is constant for all hypothesised translations and can therefore be ignored during search. The
direct translation decision rule therefore simplifies as follows:

ê = argmax
e

{

P (e|f)

}

= argmax
e

{ M
∑

m=1

λmhm(e, f)

}

(4.7)

Decoding under the maximum entropy model thus selects the translation e that maximises
the dot product of feature value and feature weight vectors. More advanced features, such
as those that are a function of the alignment between source and target sentences1, can be
incorporated by decomposing the translation probability using hidden variables and extending
the feature functions and decision rule to include the hidden variable dependencies. For
features that include alignments, the feature function has the form hm(e, f ,a). Since the sum
over alignments is expensive to compute, the Viterbi approximation is normally used.

The flexibility of the model allows for arbitrary features that are a function of the source
and target sentences, although for decoding in a large search space it must be possible to
compute the feature scores efficiently. Typical features include translation and alignment
model features (e.g. phrase-to-phrase translation probabilities and lexical weights in each
translation direction), language model features (such as a high-order n-gram, and class-based
or part-of-speech features), a sentence length feature, a conventional lexicon score, lexical

1Under the direct translation model the input sentence is usually termed the source and the output sentence
the target. This is precisely the opposite interpretation of these terms under the source-channel model.
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relationship features (Och and Ney, 2002), and phrase-pair count features (Bender et al.,
2007). More sophisticated linguistic features, such as parse-tree probabilities, can also be
included. Note that if the model is restricted to just two feature functions h1(e, f) = log P (f |e)
and h2(e, f) = log P (e), and the feature weights are λ1 = λ2 = 1, then the direct translation
maximum entropy model is equivalent to the source-channel model (Section 4.1.1).

The goal in training is to find the set of model parameters λ̂M
1 that maximise the training

data likelihood. Och and Ney (2002) train the model parameters λm to maximise the class
posterior probability criterion using the Generalised Iterative Scaling (GIS) algorithm (Dar-
roch and Ratcliff, 1972) and convergence to a global optimum is guaranteed. Given training
corpus S = {(fs, es)} for s = 1, . . . , S the weights are optimised by

λ̂M
1 = argmax

λM
1

{ S
∑

s=1

log PλM
1

(es, fs)

}

(4.8)

This is equivalent to maximising the likelihood of the direct translation. However, given that
the ultimate aim is to produce good translations of unseen testing sentences, there are better
discriminative training criteria that directly maximise a translation metric over the training
data (Och, 2003) (Section 4.5).

During parameter optimisation, the expensive normalisation required by the denominator
of Equation (4.5) is approximated by an k-best list of highly probable translations. Pruning
during search means that the k-best list might not contain the required reference transla-
tion, so the k-best hypothesis that has minimum word error with respect to the reference
translations is chosen as the pseudo-reference for parameter optimisation.

4.2 Statistical Machine Translation Decoding
The goal in statistical machine translation decoding is to find the most likely target language
translation ê given source language sentence f . The name ‘decoding’ comes from cryptography
and the original formulation of SMT as a generative stochastic process in which an English
sentence e is passed through a noisy-channel corrupting or encoding its surface form as foreign
sentence f . In this framework, translation is the task of decoding the encoded sentence f to
find the most likely original sentence ê.

This section describes two approaches to phrase-based SMT decoding. An alternative
decoding architecture, hierarchical phrase-based decoding, is described in Section 4.3.3.

4.2.1 Stack-Based Decoding and Pruning
The task of the decoder is to search the space of possible translations of a given input sentence
for the most likely translation according to the model. This search can be defined as finding
the English sentence ê for foreign sentence f that maximises the conditional probability of
translation P (e|f). In a log-linear model of direct translation (Och and Ney, 2002) (Section
4.1.4), the decision rule chooses the sentence ê that maximises the dot product of feature
weight and feature value vectors:

ê = argmax
e

P (e|f)

= argmax
e

M
∑

m=1

λmhm(e, f) (4.9)
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Translation models usually include additional dependencies on hidden variables repre-
senting alignments and distortion, e.g. by including in Equation (4.9) features of the form
hm(e, f ,a) where a specifies the alignment between e and f . These dependencies significantly
increase decoding complexity such that an efficient search guaranteed to find the most likely
hypothesis under the model cannot be implemented. In practice, approximations are used
that render the search tractable at the expense of search errors.

Most phrase-based statistical machine translation decoders such as Pharaoh (Koehn,
2004), Moses (Koehn et al., 2007), and the decoder of Och and Ney (2004) generate translation
hypotheses from left-to-right in target language word order. The search space has the form of
a directed acyclic graph where states encode partial and complete target language translation
hypotheses. This style of decoder is similar in form to an ASR beam search decoder (Huang
et al., 2001).

Each state in the graph represents a partial or complete translation hypothesis. States are
defined by (i) a coverage vector listing the words of the source language sentence translated
by paths leading to the state, (ii) a language model history consisting of the n− 1 previously
generated target language words (this history allows the n-gram language model probability
of each single word extension from the state to be computed), and (iii) a score representing
the likelihood of the partial translation encoded by the state (i.e. the weighted sum of feature
values in a log-linear model). Each state also includes a heuristic-based future cost estimate
associated with translating the remaining source words not listed in the coverage vector. The
most likely translation ê for source sentence f is the sequence of target language words along
the path with least cost in the search graph. In addition to finding the 1-best translation, a
lattice or k-best list of the top translation hypotheses can be generated by recording at each
state back-pointers to previous partial hypotheses (Koehn, 2010).

Exact decoding can be implemented using an A∗ search heuristic (Cormen et al., 2001).
In practice, however, this is prohibitively slow so a beam search is used instead. In order to
apply pruning fairly, the states in the search space are organised into stacks or priority queues
so that states that cover the same source words are stored in the same queue. This ensures
that the heuristic used to estimate the future cost is only used for comparing and pruning
partial hypotheses that cover the same source words. Queues are usually pruned using a
likelihood threshold relative to the highest scoring hypothesis, or by fixing the maximum size
of the k-best translation hypotheses stored in each priority queue. The threshold can be
tuned to balance speed and accuracy. If the beam is narrow, then decoding will be fast but
many search errors will be made and the translation hypothesis selected by the decoder will
probably not be the hypothesis with maximum score under the model.

4.2.2 Word Lattices for Statistical Machine Translation
Section 4.2.1 described how a statistical machine translation decoder can be used to generate
a ranked k-best list or word lattice of the most likely hypotheses according to the translation
model. Word lattices (Ueffing et al., 2002; Kumar and Byrne, 2003) are a much more space
efficient representation than k-best lists and allow for astronomical numbers of translation
hypotheses to be compactly encoded. Some of the largest lattices reported in the literature
are estimated to encode on the order of 1080 hypotheses (Tromble et al., 2008). This section
describes the representation of machine translation lattices as weighted finite-state acceptors
(Mohri et al., 2008).
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Formally, a machine translation word lattice is a weighted directed acyclic graph (DAG)
(Cormen et al., 2001). The sequence of state transitions on each complete path through the
lattice from the initial state to a final state defines a translation hypothesis and its cost. The
total cost of the hypothesis is obtained by aggregating the costs of the individual transitions
that define the path. In the weighted finite-state acceptor representation of a word lattice,
the cost is obtained as the generalised ⊗-product of individual transition costs.

One advantage of representing word lattices as WFSAs is that general purpose optimi-
sation operations (Mohri et al., 2008) (Chapter 2, Section 2.4.1) exist to determinize and
minimise the lattice for space efficiency. Transition and path weights are also easily manip-
ulated: hypothesis scores can be converted to a normalised probability distribution or the
weights redistributed optimally for efficient second-pass rescoring and search procedures.

Figure 4.3 on page 29 shows the WFSA representation of a lattice encoding multiple
hypotheses generated by an Arabic→English machine translation decoder. The cost of each
path e has been normalised so that the lattice defines the posterior distribution P (e|f), and
the sum over all paths

∑

e
P (e|f) = 1. Costs in the figure are shown as tropical semiring

negative log probabilities. The maximum likelihood translation hypothesis ê corresponds to
the sequence of input labels on the transitions of the path marked in bold.

It may not always be possible to apply complex rescoring procedures to the full space of
hypotheses encoded in a first-pass translation lattice. Likelihood pruning (Mohri, 2002) can
be used to prune the most unlikely hypotheses from the lattice. Pruning is performed with
respect to the shortest path in the lattice (i.e. the most likely translation) using a likelihood
pruning threshold p. If the shortest path has cost c then any paths with cost greater than
c⊗p are pruned from the lattice, where the greater than comparison is evaluated with respect
to the natural semiring order (Allauzen et al., 2007).

4.2.3 Decoding with Weighted Finite-State Transducers
This section describes an alternative decoding architecture for SMT that exploits efficient
general purpose operations and algorithms and avoids the need for a custom decoder imple-
mentation. The Transducer Translation Model (TTM) (Kumar et al., 2006) is a generative
model of translation that applies a series of transformations specified by conditional probabil-
ity distributions and encoded as weighted finite-state transducers (Mohri, 1997; Mohri et al.,
2008). The TTM is based on the generative source-channel model of SMT (Brown et al.,
1990) so in the following discussion the ‘target language sentence’ refers to the input sentence
in the foreign language and the ‘source language sentence’ refers to the goal of decoding, i.e.
the most likely English translation selected by the decoder.

In the TTM, the generation of a target language sentence f = fJ
1 starts with the source

language sentence e = eI
1 generated by the source language model distribution PG(eI

1). Next,
the source sentence is segmented into a series of K phrases according to the phrasal segmen-
tation distribution PW (uK

1 ,K|eI
1). This distribution is the subject of Chapter 6. The phrase

translation and reordering model PΦ(vR
1 |u

K
1 ) generates the reordered sequence of target lan-

guage phrases vR
1 (Kumar and Byrne, 2005). In order to avoid an exponential explosion in

the size of the search space, reordering is usually limited to a window of one or two phrases.
Finally, the reordered target language phrases are transformed to word sequences fJ

1 under
the target segmentation model PΩ(fJ

1 |v
R
1 ).

These component distributions together form a joint distribution over the source and
target language sentences and their possible intermediate phrase sequence representations as
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P (fJ
1 , vR

1 , uK
1 , eI

1). The probability of generating foreign sentence fJ
1 from source sentence eI

1

is found as the product of the probabilities of each component TTM model:

fJ
1 ←− vR

1 ←− uK
1 ←− eI

1

P (fJ
1 |e

I
1) = PΩ(fJ

1 |v
R
1 ) × PΦ(vR

1 |u
K
1 ) × PW (uK

1 |e
I
1) × PG(eI

1)
Ω Φ W G

Translation under the generative model starts with the target sentence fJ
1 in the foreign

language and searches for the best source sentence êI
1. The decision rule is as follows:

êI
i = argmax

eI
1,uK

1 ,vR
1

P (fJ
1 , vR

1 , uK
1 , eI

1) (4.10)

Encoding each conditional distribution as a WFST leads to a model of statistical machine
translation as the series of weighted compositions

L = G ◦W ◦ Φ ◦Ω ◦ F, (4.11)

where F is an acceptor for the target language sentence and L is the word lattice of translations
obtained by decoding. The maximum likelihood translation êI

1 according to the decision rule
of Equation (4.10) is the path in L with least cost; this can be easily and efficiently found
using the shortest distance algorithm in the tropical semiring (Mohri, 2002).

The use of compact word lattices in the TTM allows general purpose WFST decoding
procedures to be applied to a very large space of alternative hypotheses, and for the direct
generation of translation lattices. The large lattice rescoring methods described in Chapters
5, 6, 7, 8 and 9 show the importance and benefits of being able to generate a large space of
high quality translations.

4.3 Hierarchical Phrase-Based Machine Translation
Hierarchical phrase-based machine translation is an induced form of syntax-based translation
first introduced by Chiang (2005). The main goal is to combine the advantages of phrase-
based SMT with the fundamental idea from syntax that natural language has a hierarchical
structure. Just as for phrases in phrase-based SMT, the constituents of hierarchical phrase-
based SMT do not necessarily have a linguistic motivation, although a translation must be
learnable from parallel data. The main advantages of hierarchical models are that they capture
the recursive relationship of natural language constituents and allow linguistic annotation
through the use of categories for non-terminals in the grammar.

4.3.1 Context-Free Grammars and Chart Parsing
Context-free grammars, also known as phrase-structure grammars, define a formal language of
strings and associated hierarchical structure in terms of non-overlapping constituents (Man-
ning and Schutze, 1999; Jurafsky and Martin, 2008). The rules or productions of the grammar
define a relation that specifies how the single (i.e. context-free) non-terminal left-hand side of
a rule can be rewritten as a mixed string of non-terminals and terminals on the right-hand
side. A series of rule applications that expands the start symbol to a sequence containing only
terminal symbols represents a complete derivation or parse. Stochastic context-free grammars
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assign a probability to each rule; these probabilities can be estimated from training data using
the inside-outside algorithm (Lari and Young, 1990). The probability of a complete parse is
the product of the probabilities of rules used in the derivation. Multiple derivations may yield
the same string; the probability of a string is the sum of the probabilities of all derivations
that yield the string.

Context-free grammars can be transformed into a convenient form such that the right-hand
side of each rule consists of either two non-terminal symbols or a single terminal symbol. This
process is known as binarization and the resulting grammar is said to be in Chomsky Normal
Form (CNF). Binarization may require the introduction of additional intermediate rules, but
the grammar still defines the same formal language as the original grammar. CNF grammars
have a binary branching structure that can be parsed efficiently with simple algorithms.

The CYK algorithm (Jurafsky and Martin, 2008) is a bottom-up chart parsing algorithm
for finding all derivations that yield a given input string. The parsing procedure is simple
when applied to the binary branching structure of a Chomsky Normal Form grammar. The
binary tree structure means that each non-terminal has exactly two child nodes and this
can be conveniently represented as a two-dimensional matrix or chart (parsing of non-CNF
grammars requires a higher-dimensional chart). Each chart cell contains the non-terminal
symbols associated with a partial derivation yielding the words that span the positions [x, y]
of the input string. The chart is filled from left-to-right and bottom-to-top so that all child
nodes that might be part of a derivation in a cell have already been parsed before the cell
is visited. Each non-terminal maintains back-pointers to the chart entries from which it was
derived. When all cells have been processed, the parse tree can be generated from the start
node by following back-pointers to recursively retrieve embedded constituents.

4.3.2 Synchronous Context-Free Grammars
Hierarchical phrase-based machine translation is based on the theory of synchronous context-
free grammars, also known as syntax-directed transduction grammars (Lewis and Stearns,
1968). Rules in a synchronous context-free grammar consist of a non-terminal left-hand side
and two sequences of terminals and non-terminals on the right-hand side, one in the source
language and one in the target language. Productions have the form

X → 〈γ, α, ∼〉, (4.12)

where X is a non-terminal and γ, α ∈ ({X}∪T)+ are sequences of non-terminals and terminals
in the source or target language. The relation ∼ defines a bijective mapping, i.e. a one-to-
one alignment of non-terminals in the source and target sides of the rule. The presence of
non-terminals on the right-hand side of the rule gives the grammar its hierarchical structure.
Rules are usually lexicalised so that the sequence of symbols γ and α each contain at least
one terminal; this ensures that rules are only applied when there is supporting evidence in the
form of the source and target lexical contexts. In addition to the regular rules of Equation
(4.12), a synchronous context-free grammar includes ‘simple’ rules consisting only of terminals
(analogous to phrase-pairs in phrase-based SMT), and special ‘glue’ rules S → 〈X,X〉 and
S → 〈S X,S X〉 that allow monotone translation by direct concatenation of constituents.

Weighted synchronous context-free grammars specify a weight function w(X → 〈γ, α〉)
that distributes weight over the rules of the grammar. The weight of a complete derivation
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w(D) is obtained as the product of the weights of all rules used in the derivation:

w(D) =
∏

(X→〈γ,α〉)∈D

w(X → 〈γ, α〉) (4.13)

Hierarchical rules are extracted from word-aligned parallel data using heuristics similar
to those of the phrase extraction procedure in phrase-based SMT. Starting from a set of
initial phrase-pairs, hierarchical rules are found by identifying phrases containing sub-phrases
and replacing the sub-phrases with non-terminal symbols. Since search space complexity and
decoding time depend on the number of hierarchical rules, the rule set is usually filtered
(Chiang, 2005; Iglesias et al., 2009a) by restricting the number of source words covered by
each rule application or constraining the number and positions of production non-terminals.
This also reduces the problem of spurious ambiguity (Chiang, 2007). Maximum likelihood
estimates of rule probabilities can be computed from the counts using relative frequency.

Hierarchical rules capture local context and reordering in a similar way to phrases in
phrase-based SMT. For example, a Chinese→English hierarchical translation rule that allows
reordering of its two non-terminal constituents X1 and X2 might have the following form:

X → 〈X1 de X2, X2 of X1〉 (4.14)

This rule encodes language-specific translation knowledge that the possessor is marked to the
left in Chinese but to the right in English. Since the reordered arguments are specified as
non-terminals, this rule has great generality and can even be used to reorder translations of
constituent pairs not observed in the parallel data. Such generality of rule applications is one
of the great strengths of hierarchical phrase-based machine translation.

4.3.3 Hierarchical Phrase-Based Decoding
Chiang (2005, 2007) implements hierarchical phrase-based translation decoding using k-best
lists. The space of derivations that can be generated from even a modestly sized rule set is
very large so hypotheses must be pruned during search. Chiang (2007) describes an algorithm,
cube pruning, that can be used to efficiently find the k-best hypotheses in each cell of the
CYK grid as a target language model is applied.

This section describes HiFST (Iglesias et al., 2009b; de Gispert et al., 2010), a lattice-based
hierarchical decoder implemented using weighted finite-state transducers (Mohri, 1997; Mohri
et al., 2008). Translation in HiFST is performed in two stages. In the first stage, the source
language sentence is parsed according to a variant of the CYK algorithm (Chappelier and
Rajman, 1998). In the second stage, the parse tree drives the generation of a target language
word lattice containing all possible translations and derivations of the source sentence. The
following description of HiFST is derived from the presentation in Iglesias et al. (2009b) and
de Gispert et al. (2010).

Let L(N,x, y) denote the target language translation lattice associated with the source
language sentence span sx+y−1

x in cell (N,x, y) headed by non-terminal N . The goal of decod-
ing is the lattice L(S, 1, J) at the top of the chart corresponding to complete translations of
the full source sentence sJ

1 . L(S, 1, J) is formed by the concatenation and union of sublattices
in lower-level cells of the CYK grid according to back-pointers established during parsing.

Let R(N,x, y) denote the set of rule indices used in cell (N,x, y). Each rule corresponds
to a partial derivation headed by N and spans words sx+y−1

x of the source sentence. The
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lattice representing the application of rule Rr : N → 〈γr, αr〉/pr is formed by concatenating
lattices for each terminal and non-terminal element in the target language side of the rule
αr = αr

1, . . . , α
r
|αr |. The lattice L(N,x, y, r) is built for each rule r ∈ R(N,x, y) as follows:

L(N,x, y, r) =
⊗

i=1...|αr |

L(N,x, y, r, i) (4.15)

If αr
i is a terminal t ∈ T then L(N,x, y, r, i) is a single-arc acceptor A(t) for target word

t; if αr
i is a non-terminal, then it refers to a lower-level lattice of partial translations in cell

(N ′, x′, y′) identified by a back-pointer:

L(N,x, y, r, i) =

{

A(αi) if αi ∈ T
L(N ′, x′, y′) otherwise

(4.16)

The target language translation lattice for cell (N,x, y) is obtained as the union of lattices
L(N,x, y, r) over all rules r ∈ R(N,x, y) applied in the cell:

L(N,x, y) =
⊕

r∈R(N,x,y)

L(N,x, y, r) (4.17)

The probability of rule Rr is applied as cost cr = − log pr in the exit state of the lattice
L(N,x, y, r). The concatenation and union of Equations (4.15) and (4.17) are applied using
general purpose WFST operations. Non terminals in derivations are represented by special
pointer arcs to lower-level lattices and only expanded to target language words when the
language model is applied. This improves memory efficiency considerably.

The main advantage of hierarchical decoding with HiFST is the use of lattices instead of
k-best lists. Chiang (2005) describes the problem of spurious ambiguity in which multiple
derivations with the same target language translation can result in impoverished k-best lists
with little variation. This lack of variation results from cube pruning with a fixed depth and
can cause problems for minimum error rate training (Section 4.5) and subsequent rescoring
procedures. The use of lattices in HiFST allows a much larger and richer space of partial
translation hypotheses and derivations to be represented in each cell. As a result, less pruning
is required during decoding and search errors are reduced.

Another advantage of HiFST is that the use of general purpose WFST operations re-
sults in a much simpler decoder architecture that supports the direct generation of target
language translation lattices. This allows better integration with large lattice rescoring and
transformation procedures such as the application of higher-order n-gram language models
(Chapter 5), phrasal segmentation models (Chapter 6), lattice minimum Bayes-risk decoding
(Chapter 7), multiple-lattice combination procedures (Chapter 8), and monolingual fluency
constraints (Chapter 9). All of these large lattice rescoring methods benefit from the rich
space of translation hypotheses encoded in HiFST lattices.

4.4 Machine Translation Evaluation Metrics
Machine translation quality is a difficult thing to measure since there are often several alter-
native and equally valid ways of translating a foreign sentence. Although human experts may
be good at judging translation quality, they are expensive to employ, time consuming, and
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can sometimes be inconsistent. For these reasons, a low-cost automatic means of scoring ma-
chine translation output is highly desirable. It can be argued that one of the main reasons for
the rapid progress in statistical machine translation over the last ten years is the widespread
acceptance and adoption of automatic metrics, particularly the BLEU score (Papineni et al.,
2002b). This section describes the most commonly used metrics.

4.4.1 BLEU Score
The BLEU score is the most widely used automatic machine translation quality metric and
is motivated by the view that “the closer a machine translation is to a professional human
translation, the better it is” (Papineni et al., 2002b). How close system output is to a
human translation can be evaluated by comparing it with a known set of good reference
translations. BLEU is popular since it is quick, language-independent, correlates well with
human judgements of quality, and accounts for the variation allowed in translation. The
BLEU score is a measure of precision computed from a weighted average of variable-length,
position-independent n-gram co-occurrences between the system output and one or more
reference translations. Translations that match reference unigrams satisfy adequacy; higher-
order matches account for fluency.

The precision at order n is the proportion of n-grams in the candidate translation that
are matched in the references. The matched count of each n-gram u is first clipped by trun-
cation to the maximum number of times it occurs in any of the individual references. Such
count clipping ensures that precision is not artificially inflated by spurious repetition of high
probability n-grams. For a single sentence S, the precision is computed by summing the
matching clipped counts of each n-gram u ∈ S and dividing by the total number of n-grams
in S. For multi-sentence corpus C, the corpus-level modified n-gram precision pn is obtained
by summing over each sentence:

pn =

∑

S∈C

∑

u∈S countmatched(u)
∑

S∈C

∑

u∈S count(u)
(4.18)

Candidate translations should be similar in length to those of human translators. If the
translation is too long then it will have poor precision. However, high precision could be
obtained simply by producing shorter output. To compensate for this problem, the BLEU
score includes an exponentially harsh multiplicative brevity penalty (BP) to ensure that high
scoring translations cannot be much shorter than the references. The brevity penalty is
computed from the total length of the corpus of candidate translations c, and the effective
reference length r obtained by summing the best match length of each candidate translation:

BP =

{

1 if c > r

e(1−r/c) if c ≤ r
(4.19)

The brevity penalty is multiplied by the weighted geometric mean of modified n-gram preci-
sions pn at each order n = 1, . . . , N to give the following definition of the BLEU score:

BLEU = BP · exp

(

N
∑

n=1

λn log pn

)

(4.20)
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The weight parameters λ are positive and sum to 1. BLEU is normally evaluated using a
maximum order of 4 and uniform weights so the definition in the log domain simplifies as

log BLEU = min(1−
r

c
, 0) +

1

4

4
∑

n=1

log pn (4.21)

BLEU scores range from 0 to 1 but even human translators will not attain perfect precision
at the corpus-level unless they happen to match the references in both word choice and
word order. BLEU score precisions are computed with respect to n-grams in the union of
the references; since the precision increases when there are more references it is difficult to
compare scores computed with respect to a different number of references.

Papineni et al. (2002a,b) show a strong correlation between the BLEU score and human
assessments of translation quality. Doddington (2002) shows BLEU to be sensitive to differ-
ences between systems of similar quality, and that it ranks them consistently regardless of
the selection of documents and references used for scoring. Burch et al. (2006) argue that the
coarse model of variation in translation allowed by BLEU is such that there is no guarantee
that higher scores reflect real improvements in translation quality. In particular, BLEU is
unable to distinguish between content and function words, fails to match synonyms and para-
phrases (unless they happen to be present in the references), and settles for a crude brevity
penalty because of the difficulty of computing recall with respect to multiple references.

4.4.2 NIST Score
BLEU makes no distinction between n-grams of the same order when computing precisions,
even though some words and phrases are obviously more important than others. This is partic-
ularly true when considering translation adequacy. The NIST score (Doddington, 2002) uses
information weights to distinguish between informative and uninformative n-gram matches.
These weights are computed for each n-gram u = w1. . .wn using counts in the reference
translations:

Info(u) = log2
c(w1. . .wn−1)

c(w1. . .wn)
(4.22)

These information weights replace the clipped counts of the BLEU score. Let Nn denote the
set of n-grams in the translation output and Rn the set of n-grams in the references. The
NIST score is defined as

NIST =

N
∑

n=1

{
∑

u∈{Nn ∩Rn}
Info(u)

|Nn|

}

· exp
{

β log2

[

min
(c

r
, 1
)]}

, (4.23)

where N specifies the maximum order (usually 5), c is the candidate translation length, r is
the average reference length, and β controls the harshness of the brevity penalty. Note that
the NIST brevity penalty differs from BLEU by using the average reference length instead of
the closest reference length. Doddington (2002) shows NIST to have greater stability than
BLEU and to correlate better with human assessments of adequacy for a range of different
languages and test sets.
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4.4.3 METEOR
METEOR (Metric for Evaluation of Translation with Explicit Ordering) (Banerjee and Lavie,
2005) compensates for weaknesses in BLEU by combining both precision and recall computed
with respect to an explicit one-to-one word alignment of the system output with each available
reference. One of its main advantages over BLEU is that it is valid at the segment level; BLEU
is unreliable since it assigns segments a score of zero if any of the order-specific precisions are
zero. METEOR has been shown to have higher correlation with human judges than BLEU
and NIST for Arabic→English and Chinese→English translation (Lavie and Agarwal, 2007).

Word matching in METEOR is performed incrementally, starting from exact matches.
Morphological variants using the Snowball stemmer1 and synonyms via WordNet2 are also
allowed as matches. Each word-to-word alignment is scored as the product of the weighted
harmonic mean of unigram precision P and unigram recall R,

Fmean =
P ·R

α · P + (1− α) ·R
, (4.24)

with weight α set to emphasise recall. A tunable penalty ρ based on chunk fragmentation
favours the grouping of adjacent words into longer spanning chunks. The score is then:

METEOR = (1− ρ) · Fmean (4.25)

The score for each sentence is the highest of the scores computed with respect to each indi-
vidual reference. METEOR has recently been extended to include support for the matching
of paraphrases (Lavie and Denkowski, 2009).

4.4.4 TER - Translation Edit Rate
Translation edit rate (TER) (Snover et al., 2006) is the minimum number of edits required to
modify a translation hypothesis such that it exactly matches one of the references. If there are
multiple references, TER is the smallest number of edits to any one of the references, i.e. the
score of the closest reference. A single edit is an insertion, deletion, substitution of a single
word, or a shift of a contiguous word sequence to an alternate position in the hypothesis. The
total number of edits is then normalised by the average length of the references so that for a
single segment

TER =
# of edits

average # of reference words
. (4.26)

Finding the minimum number of edits is NP-complete so dynamic programming with a
greedy search is used to find the minimum number of edits relative to any one of the reference
translations. The higher correlation with human judgements and reduced sensitivity to the
number of references in TER is partly due to the low cost assigned to phrasal shifts. A
shifted phrase in BLEU is much more harshly penalised since it results in a loss of precision
over multiple n-grams and orders. TERP (TER Plus) (Snover et al., 2009) extends TER to
incorporate edits based on morphology, synonymy, and probabilistically weighted paraphrases,
with the cost of each type of edit optimised for maximum correlation with human judgements
of adequacy and fluency.

1http://snowball.tartarus.org
2http://wordnet.princeton.edu
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4.5 Minimum Error Rate Training
Discriminative training has been shown to provide significant improvements in a wide range
of automatic speech recognition and natural language processing tasks. This section describes
one popular application of discriminative training: the optimisation of feature weights in a
log-linear model of statistical machine translation.

Och and Ney (2002) model the posterior probability of translation directly using maximum
entropy (Section 4.1.4). With this model, for feature functions hm(e, f) and feature weights
λm, m = 1, ...,M , the direct translation probability is computed as a weighted log-linear
combination of feature scores and feature weights:

P (e|f) =
exp(

∑M
m=1 λmhm(e, f))

∑

e′
exp(

∑M
m=1 λmhm(e′, f))

(4.27)

Discriminative training can be used to find the feature weights λ̂M
1 that optimise the maximum

class posterior probability criterion over a reference set of translations S = {(es, fs)}:

λ̂M
1 = argmax

λM
1

{ S
∑

s=1

log PλM
1

(es, fs)

}

(4.28)

Since the normalisation in Equation (4.27) is the same for each hypothesised translation
it can be ignored during decoding. For feature weight optimisation, the normalisation is
approximated by a large set of the most likely translations in the form of an k-best list.

The maximisation of Equation (4.28) is equivalent to maximising the likelihood of the
direct translation model. However, since the correlation between maximum likelihood and
real translation performance is not perfect, it is better to directly optimise the evaluation
metric of interest, e.g. the BLEU score (Papineni et al., 2002b) or some other automatic
measure of translation quality. Optimising the decoder feature weights for a specific error
metric is known as minimum error rate training (MERT) (Och, 2003).

Let the number of errors in translation hypothesis e with respect to reference translation
r be defined as E(r, e). The error count over all sentences in an evaluation corpus is

E(rS
1 , eS

1 ) =

S
∑

s=1

E(rs, es) (4.29)

The goal of minimum error rate training is to minimise the number of errors on a development
corpus fS

1 given reference translations êS
1 and K candidate translations Cs = {es,1, ..., es,K}

for each input sentence fs. The optimal feature weights are those satisfying

λ̂M
1 = argmin

λM
1

{ S
∑

s=1

E(rs, ê(fs;λ
M
1 ))

}

(4.30)

= argmin
λM
1

{ S
∑

s=1

K
∑

k=1

E(rs, es,k)δ(ê(fs;λ
M
1 ), es,k)

}

, (4.31)

where ê(fs;λ
M
1 ) is the highest probability translation in Cs according to the log-linear model

of Equation (4.27) given the foreign sentence fs and feature weights λM
1 :

ê(fs;λ
M
1 ) = argmax

e ∈Cs

P (e|fs) (4.32)
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The error function of Equation (4.30) contains an argmax operation and has many local
optima so gradient descent cannot be used. In Och (2003), a smoothed error count amenable
to gradient-based optimisation is defined, but it is shown to perform no better than the
unsmoothed error count.

The standard way of optimising the unsmoothed error criterion is to use Powell’s algorithm
with a grid-based line search (Press et al., 2002). However, it is difficult to balance both
speed and performance since the fine-grained grid and many random restarts required to
find the true optimum with high probability is expensive to evaluate. In Och (2003), an
algorithm for efficient optimisation of the unsmoothed error count that is guaranteed to find
the optimal solution with greater speed and stability is proposed. The algorithm works by
computing an ordered sequence of intervals γf

1 < γf
2 < . . . < γf

Nf
along a line λM

1 + γ · dM
1

in parameter space for each input sentence f in the corpus together with the change in
error count ∆Ef

1,∆Ef
2, . . . ,∆Ef

Nf
relative to the previous interval. The interval boundaries

define the values of γ at which a different candidate becomes the most likely translation,
so the error function only needs to be evaluated once per interval. The sentence-specific
interval boundaries and changes in error for each sentence are merged to obtain sequences
over the whole corpus. The optimal γ can then be efficiently computed by traversing the
relatively small number of boundaries while updating error counts. Since the parameters λM

1

are optimised with respect to a k-best list, they might be biased. To avoid such a bias, the
parameters are iteratively re-estimated until convergence, with merging of k-best lists at each
iteration to ensure the error rate cannot increase.

Och (2003) investigates the effect of minimum error rate training on the TIDES 2002
Chinese→English machine translation task1 using a variety of different error criteria. The
conclusion is that the metric chosen for MERT is usually the best performing metric in
evaluation. The optimised parameters have a clear bias towards the metric used in the error
criterion. In Och et al. (2004), minimum error training under the BLEU score is applied to
the task of re-ranking k-best list with a large number of feature functions. The use of k-best
lists permits a much larger and richer set of features including shallow syntactic functions
and tree-based feature functions.

1http://projects.ldc.upenn.edu/TIDES/index.html



CHAPTER 5
Large Language Model

Lattice Rescoring for
Statistical Machine

Translation

Statistical machine translation makes use of n-gram language models to guide the decoder
search procedure and to select the most fluent target language hypothesis from the large

space of possible translations of the source language sentence. Large monolingual corpora are
available for training the parameters of a statistical language model. The main challenge is
in effectively exploiting all of the available data.

The language model lattice rescoring framework described in this chapter serves as the
baseline for more sophisticated lattice rescoring methods presented in Chapters 6, 7, 8 and
9. Section 5.1 motivates the use of higher-order language models and large monolingual
corpora in second-pass lattice rescoring. Sentence-specific counts extraction and language
model parameter estimation procedures are described in Section 5.2. Section 5.3 defines the
machine translation lattice rescoring decision rule. An empirical study of Arabic→English
and Chinese→English lattice rescoring using 5-gram and 6-gram language models estimated
over approximately ten billion words of data is presented in Section 5.4. French→English and
Spanish→English lattice rescoring experiments are also briefly reported. A summary and
conclusions are presented in Section 5.5.

40
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5.1 Introduction and Motivation
Increasing quantities of language model training data continue to improve SMT performance
(Brants et al., 2007). It is therefore important to use all of the available training data whenever
possible. However, large monolingual corpora and vocabularies create two problems for SMT
language models: parameter estimation and translation decoding.

Smoothing methods such as Kneser-Ney (Kneser and Ney, 1995) require large amounts
of memory during parameter estimation since it is necessary to compute the continuation
counts for each history as well as the regular n-gram counts. Even supposing the model can
be estimated, it may be difficult to apply in decoding since there are too many parameters
to load into memory. Distributed language models (Zhang et al., 2006; Emami et al., 2007;
Brants et al., 2007) (Chapter 3, Section 3.3) are one possible solution to this problem. An
alternative approach is to perform first-pass translation with a lower-order language model
in order to generate large word lattices (Chapter 4, Section 4.2.2) for subsequent rescoring
with more powerful higher-order language models. Lattice rescoring considerably simplifies
the problem of estimating and applying higher-order models. It is not necessary to load the
full LM into memory since sentence-specific language models can be constructed for each
individual lattice. These sentence-specific language models contain only the subset of n-gram
probabilities required to rescore the hypotheses contained in the lattice.

5.2 Large Language Model Estimation
This section describes the counting and estimation procedures for second-pass language model
rescoring. The goal is to be able to efficiently build powerful, higher-order language models
over large corpora that can be used for offline rescoring of first-pass translation lattices. The
techniques described in this chapter are needed to provide strong baselines for the subsequent
investigations into the use of monolingual data.

5.2.1 Counts Extraction
Counts of relevant n-grams are first extracted from the monolingual corpus. This process is
driven by the task-specific language model vocabulary formed from the list of all words in the
target language side of the parallel text. Counts are extracted by dividing the training data
into chunks and extracting substrings consisting only of words in the LM vocabulary with
length less than or equal to the maximum n-gram order. Each chunk is processed in parallel
and then merged to form a single task-specific counts file that can be used to rescore any
set of lattices generated by the first-pass SMT system. Processing the monolingual corpus in
chunks ensures that even higher-order LMs have relatively low memory requirements when
extracting counts. Depending on the quantity of available training data, the counts extraction
process can be slow but it only needs to be performed once per language pair.

5.2.2 Counts Filtering
The task-specific n-gram counts file is filtered to obtain the sentence-specific subset of counts
required to rescore each individual lattice. The n-grams in each first-pass translation lattice
can be extracted using a WFST counting transducer (Allauzen et al., 2003). An example
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0 1 2

w1:ǫw1:ǫ

w2:ǫw2:ǫ

w1:w1w1:w1

w2:w2w2:w2

Figure 5.1: Example counting transducer for extracting bigrams from a lattice with vocabu-
lary Σ = {w1, w2}. The bigrams are extracted by composing the transducer with the lattice.

Filter-Counts(C, S, L1 . . .LS, n)

1 for s← 1 . . . S
2 do Ns ← Extract-Ngrams(Ls, n)
3 for each u ∈ Ns

4 do R[u]← {R[u] ∪ s}
5 for each (u, c) ∈ C : |u| ≤ n
6 do for each s ∈ R[u]
7 do Write-Count(Cs, (u, c))

Figure 5.2: Stream-based counts filtering algorithm for second-pass LM rescoring.

bigram counting transducer for the vocabulary Σ = {w1, w2} is shown in Figure 5.1. Lattice
n-grams are extracted by composing the counting transducer for order n with the lattice,
projecting on the output, removing ǫ-arcs, determinizing and minimising. The resulting
acceptor compactly encodes the lattice n-grams of order n. This process is repeated for each
order; the resulting acceptors are then unioned to obtain the full set of lattice n-grams.

Stupid backoff smoothing (Brants et al., 2007) (Chapter 3, Section 3.3.2) uses context-
independent backoff weights γ(n) that depend only on the n-gram order. This allows the
probabilities required to rescore each lattice to be estimated using only the counts of n-grams
found in the lattice. Lists of lattice n-grams can be used to filter the task-specific counts file
into subsets in order to estimate sentence-specific language models. The filtering process can
be performed with low memory requirements using the efficient streaming algorithm shown
in Figure 5.2. The input parameters are the stream of counts C, testset size S, first-pass
translation lattices L1 . . .LS, and maximum n-gram order n. The algorithm generates for
each sentence s the subset Cs ⊆ C of n-gram counts (orders 1 . . . n) required to rescore the
first-pass lattice Ls. Firstly, the n-grams Ns in each lattice Ls are extracted using counting
transducers (line 2). These n-grams are used to initialise a relevancy list R (lines 3 to 4) that
indicates for each n-gram u the set of lattices R[u] containing the n-gram. As each n-gram
and count pair (u, c) is read from the task-specific counts file (line 5), a single hash lookup
(line 6) identifies the list of lattices R[u] containing the n-gram; the count is then written to
the sentence-specific counts file Cs of each relevant sentence (line 7). This algorithm has very
low memory requirements since only the relevancy list R needs to be stored in memory while
filtering the task-specific counts file.

figures/largelms/counting-transducer.eps


CHAPTER 5. LARGE LANGUAGE MODEL LATTICE RESCORING 43

5.2.3 Parameter Estimation
Stupid backoff language models (Brants et al., 2007) (Chapter 3, Section 3.3.2) use maximum
likelihood probability estimates for observed n-grams and back off recursively to lower-orders
for unobserved n-grams:

S(wi|w
i−1
i−n+1) =







c(wi
i−n+1)

c(wi−1
i−n+1)

if c(wi
i−n+1) > 0

γ(n)S(wi|w
i−1
i−n+2) otherwise

(5.1)

The backoff weight γ(n) depends only on the order n and is independent of the n-gram
context. The recursion in Equation (5.1) ends with the definition for unigrams

S(wi) =
c(wi)

∑

j c(wj)
=

c(wi)

N
, (5.2)

where N is the total number of tokens in the training corpus. This simple form of backoff
allows n-gram probabilities for each lattice to be computed directly from the filtered sentence-
specific counts. The only statistic not available in the filtered counts is the total number of
unigrams N . This has the same value for each sentence-specific LM and only needs to be
computed once per language pair from the task-specific counts file.

The sentence-specific filtered counts are used to estimate the parameters of the second pass
language model in accordance with Equations (5.1) and (5.2). The n-gram probabilities are
encoded in the form of a weighted finite-state acceptor language model (Allauzen et al., 2003)
(Chapter 3, Section 3.4). Each backoff arc has order-specific cost − log γ(n). Hypotheses are
rescored by composing the language model acceptor with the lattice.

5.2.3.1 Out-of-Vocabulary Words

There may be some words in the testset that did not occur in the parallel data and are
therefore not part of the language model vocabulary. These out-of-vocabulary (OOV) words
are normally passed through the first-pass translation system unmodified. If they are not
included in the WFSA representation of the language model, then paths on which they occur
will be deleted when the language model is composed with the lattice in second-pass rescoring.
The out-of-vocabulary words are therefore assigned a small probability. The denominator in
Equation 5.2 is incremented by 1 and the additional probability mass 1

N+1 shared equally
amongst the out-of-vocabulary words.

5.3 Large Language Model Lattice Rescoring
The lattice rescoring experiments in Section 5.4 will show that optimal performance is ob-
tained by rescoring lattices according to a combination of first-pass and second-pass language
model scores. The language model rescoring decision rule is

Ê = argmax
E∈E

{

P (F |E)× PLM1(E)α1 × PLM2(E)α2 × β|E|

}

(5.3)

where P (F |E) is the translation model probability, PLM1(E) is the first-pass language model
probability, PLM2(E) is the second-pass language model probability, and β is a fixed word
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AR→EN Testset Genre Sentences Length OOVs (%)

tune.text.nw
Newswire

2963 101317 0.22
test.text.nw 2242 80679 0.28

tune.text.web
Web

4589 139955 0.41
test.text.web 2697 86358 0.23

Table 5.1: Arabic→English testsets, average tokenised reference length, and average out-of-
vocabulary word rate (%). Each testset sentence has either 1 or 4 reference(s).

ZH→EN Testset Genre Sentences Length OOVs (%)

tune.text.nw
Newswire

3085 105,375 0.38
test.text.nw 3001 102,632 0.41

tune.text.web
Web

4221 119,640 0.25
test.text.web 4285 117,883 0.25

Table 5.2: Chinese→English testsets, average tokenised reference length, and average out-of-
vocabulary word rate (%). Each testset sentence has either 1 or 4 reference(s).

penalty that can be tuned to adjust the length of the output. The search is carried out over
the full space of translation hypotheses encoded in the first-pass lattice E . The exponential
scaling parameters α1 and α2 smooth the first- and second-pass language model distributions;
when α1 = 0, only the second-pass language model score influences the decision rule. The
word penalty β can be used to tune the translation output length. These three parameters are
optimised for BLEU score (Papineni et al., 2002b) on the tuning set. The translation model
P (F |E) is the weighted log-linear sum of first-pass feature scores (see Chapter 4, Section
4.1.4), excluding the contribution of the first-pass LM.

The second-pass lattice rescoring procedures and decision rule of Equation (5.3) are ap-
plied as operations on weighted finite-state acceptors (Mohri et al., 2008), implemented using
OpenFst (Allauzen et al., 2007). In order to ensure that weighted composition applies the
exact LM score to hypotheses in the lattice, failure transitions (Allauzen et al., 2003) are used
to encode backoff arcs in the WFSA representation of the second-pass LM. This is particularly
important for stupid backoff smoothing (Brants et al., 2007).

5.4 Large Language Model Rescoring Experiments
The following experiments investigate the use of higher-order 5-gram and 6-gram language
models estimated over multi-billion token corpora for rescoring large-scale statistical machine
translation lattices. Arabic→English and Chinese→English rescoring experiments are carried
out within the framework of the GALE P4 evaluation. Language model rescoring results are
also reported for French→English and Spanish→English translation lattices, based on the
CUED submission to the WMT 2010 constrained data track translation task.1

The language model vocabulary is defined as the list of all words in the target language
side of the parallel text. The size of the LM vocabulary is 476,346 words for Arabic→English
translation and 417,410 words for Chinese→English translation. A large proportion of the
words in these vocabularies occur only once in the parallel text.

1http://www.statmt.org/wmt10
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Corpus # Lines # Tokens
OOVs (%)

Epoch
AR ZH

Yemen Times 256,787 6,389,176 0.68 1.07 2006/02 – 2009/06
PBS 342,811 8,383,761 0.19 0.25 2003/10 – 2009/07
Ahram 832,855 22,322,749 0.35 0.66 1998 – 2009/04
Chinese FBIS 278,470 9,607,434 0.35 0.23 2003 – 2006
Arabic FBIS 749,434 19,670,578 0.53 0.98 2003 – 2006
Chinese OSC 246,189 8,387,221 0.23 0.09 2006/01 – 2009/03
Arabic OSC 347,529 8,643,053 0.24 0.63 2006/01 – 2009/03
Gulf News 3,091,303 66,788,604 1.77 2.08 2001 – 2009/06
Arab News 3,488,291 77,734,765 1.87 2.22 2001 – 2009/05
CU CNN 3,409,649 71,179,681 0.48 0.42 2006/01 – 2007/04
Taipei Times 4,783,482 112,738,807 0.78 0.75 2000 – 2009/06
CNN 5,659,748 118,739,780 0.49 0.41 2007/08 – 2009/06
People Daily 6,522,560 138,011,229 0.52 0.51 2000 – 2009/06
India Times 9,772,853 222,460,470 1.77 2.10 2001 – 2009/06
BBC 15,910,460 307,273,975 0.71 0.85 1999 – 2008/01
The Hindu 17,587,474 379,443,315 3.27 3.81 2000 – 2009/06
GigaWord v4 CNA 1,241,023 35,917,445 0.66 0.46 1994 – 2008
GigaWord v4 LTW 11,562,054 299,721,395 0.64 0.79 1994 – 2008
GigaWord v4 XIN 14,241,922 358,147,081 0.81 0.90 1994 – 2008
GigaWord v4 AFP 27,241,209 725,927,421 0.68 0.90 1994 – 2008
GigaWord v4 APW 52,580,272 1,292,445,558 1.19 1.35 1994 – 2008
GigaWord v4 NYT 65,996,636 1,653,075,147 0.99 1.14 1994 – 2008
LDC webdata 54,607,175 989,530,139 3.99 4.14 2005/01 – 2008/02
GoogleNews 104,262,520 2,527,448,142 0.70 0.87 2006/02 – 2009/02

Total 405,012,706 9,459,986,926 1.30 1.47 1994 – 2009

Table 5.3: Tokenised English LM training corpora, number of lines, number of tokens, epoch,
and OOV rate (%) for Arabic→English and Chinese→English translation tasks.

The total number of sentences, average tokenised reference length, and average out-
of-vocabulary (OOV) rate (%) for the Arabic→English and Chinese→English testsets are
summarised in Tables 5.1 and 5.2. There are two newswire and two web data testsets for
each language pair, and each foreign sentence has either 1 or 4 reference translations. The
Chinese→English test.text.nw and test.text.web testsets correspond to the GALE P4 system
combination sets SysCombTune.text.nw and SysCombTune.text.web. The large language
model vocabulary sizes ensure that the testset OOV rate is low for both language pairs.

5.4.1 Language Model Training Data
Table 5.3 shows the monolingual training corpora used to estimate the parameters of the
Arabic→English and Chinese→English second-pass 5-gram and 6-gram language models.
There is a total of nearly 9.5 billion words of monolingual data available. The largest single
corpus, containing over 4 billion tokens, is the GigaWord Fourth Edition (Parker et al., 2009).
The English side of the parallel texts (230M tokens for Arabic→English and 260M tokens for
Chinese→English) are added to the monolingual data, resulting in a total of approximately 10
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r 1g 2g 3g 4g 5g 6g

1 11.29 42.74 55.98 64.91 70.87 74.59
2 8.60 15.89 16.42 15.98 15.21 14.50
3 4.10 7.82 7.00 5.95 5.01 4.34
4 3.30 5.03 4.19 3.33 2.65 2.19
5 2.30 3.39 2.63 1.93 1.43 1.11
6 2.01 2.58 1.93 1.38 1.00 0.77
7 1.62 1.97 1.40 0.95 0.65 0.48
8 1.45 1.60 1.11 0.73 0.49 0.35
9 1.29 1.31 0.87 0.56 0.36 0.25

10+ 64.04 17.67 8.46 4.27 2.33 1.42

Table 5.4: Proportion of n-grams (%) at each order n = 1 . . . 6 with the specified count-of-
counts frequency r for the Arabic→English language model vocabulary.

LM 1g 2g 3g 4g 5g 6g Total

AR→EN 0.476 112 859 2,283 3,592 4,352 11,198
ZH→EN 0.417 108 846 2,258 3,558 4,311 11,081

Table 5.5: Effective number of n-gram language model parameters (×106) by order for the
Arabic→English and Chinese→English language model vocabularies.

billion tokens. The table shows for each corpus the OOV rate computed with respect to the
Arabic→English and Chinese→English LM vocabularies. The OOV rate is generally low: less
than 1% for most LM corpora. The ‘LDC webdata’ and ‘The Hindu’ corpora have the highest
OOV rates. The monolingual training data covers a period of almost 15 years; the training
data blackout epochs for non-LDC-released corpora are November and December 2006, June
2007, and June 2008, corresponding to the GALE P2, P3, and P4 evaluation periods.

The proportion of n-grams (%) at each order n = 1 . . . 6 with counts-of-counts frequency
r for counts extracted using the Arabic→English vocabulary is shown in Table 5.4. The
majority of higher-order parameters in a zero-cutoff n-gram language model consist of n-gram
sequences that were observed only once in the training data. Estimates of their probabilities
are unlikely to be reliable. In machine translation, however, just knowing that the sequence
of words occurred in (presumably) fluent target language text is useful information that can
aid the selection of fluent target hypotheses from a translation lattice. The effect of singleton
counts in higher-order second-pass language model rescoring is evaluated in Section 5.4.3.4.

The number of model parameters in a zero-cutoff n-gram language model is equal to the
number of distinct n-gram counts. The estimation procedure described in Section 5.2 con-
structs individual sentence-specific language models containing only the subset of parameters
required to rescore a single lattice; the majority of these parameters are thus never instanti-
ated. The effective number of model parameters (×106) at each order n = 1 . . . 6 is shown in
Table 5.5. A total of over 11 billion n-grams are extracted from the monolingual data.

5.4.2 System Development and Lattice Generation
The Arabic→English and Chinese→English first-pass translation lattices are generated as
follows. Hierarchical rules are extracted from the aligned parallel text using the constraints
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described in Chiang (2007) and the rule count and pattern filters of Iglesias et al. (2009a).
First-pass translation decoding with HiFST (Iglesias et al., 2009b) (Section 4.3.3) produces
word lattices encoding large numbers of alternative translations. For both language pairs,
minimum error rate training (Och, 2003) under the BLEU score (Papineni et al., 2002b)
optimises the feature weights of the decoder with respect to the tuning set of each language
pair. Feature weights are normalised with respect to a fixed LM weight of 1. The first-pass
lattice topologies are optimised (Mohri et al., 2008) prior to 5-gram and 6-gram rescoring.

The English language model used during first-pass decoding is a modified Kneser-Ney
(Kneser and Ney, 1995) smoothed 4-gram estimated over the English side of the parallel text
and the AFP and XIN subsets of the English GigaWord Third Edition (Graff et al., 2007)
(Arabic→English) or Fourth Edition (Parker et al., 2009) (Chinese→English). The first-pass
LM is estimated using SRILM (Stolcke, 2002) with default cutoffs: all unigrams and bigrams
are retained, but higher-order n-grams with a count of one are discarded. These cutoffs are
required in order to allow for efficient estimation of first-pass LM parameters in memory.

Second-pass language model counts are extracted for each of the corpora in Table 5.3
using SRILM, and then merged to form a single large counts file for each language pair. The
compressed counts file requires about 25GB of disk space and includes more than 11 billion
n-gram counts. The stream-based counts extraction and filtering procedures described in
Sections 5.2.1 and 5.2.2 identify the subset of counts relevant to each sentence in the testset.
Sentence-specific, zero-cutoff, stupid-backoff 5-gram and 6-gram language models are then
estimated from these counts in accordance with Equation (5.1).

The exponential scaling factors α1 and α2, and word penalty β in the rescoring decision
rule of Equation (5.3) are optimised with respect to the tune.text.nw and tune.text.web tuning
sets of each language pair. A lattice rescoring decoder implemented using OpenFst (Allauzen
et al., 2007) applies the decision rule and performs a grid-based search over a specified range
of parameter values. The optimised parameters are then applied to rescore the test.text.nw
and test.text.web testset lattices.

5.4.2.1 Lattice Hypothesis Space Size

This section compares the size of the lattice hypothesis space for each language pair and
genre. Since it is difficult to measure the number of hypotheses in very large lattices, the
number of unique n-grams is compared. Figure 5.3 plots the total number of lattice n-grams
(orders n = 1 . . . 6) as a function of expected sentence length for the Arabic→English (top)
and Chinese→English (bottom) newswire and web data tuning sets.

Comparing genres shows that for Arabic→English lattices, the web data testset contains
many longer sentences than the newswire testset; these longer sentences have more n-grams, as
expected. The difference between genres is less pronounced for Chinese→English translation.
Comparing languages shows that Chinese→English lattices have nearly an order of magnitude
more n-grams than Arabic→English lattices (see the vertical axis scales). The difference in
the number of lattice n-grams is a result of the different grammars used during first-pass
translation decoding. Arabic→English translation is performed with a Shallow-1 grammar
(de Gispert et al., 2010) that allows only a single level of non-terminal rule nesting. By
contrast, Chinese→English translation is performed with a fully hierarchical grammar which
results in a far larger and more varied space of translation hypotheses. Unfortunately, as will
be demonstrated by the n-gram coverage experiments in Section 5.4.3.1, a large proportion
of the hypotheses in the Chinese→English lattices are of fairly low quality.
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Figure 5.3: Number of lattice n-grams (orders n = 1 . . . 6) as a function of expected sentence
length for Arabic→English and Chinese→English newswire and web data tuning sets (p = 7).

5.4.3 Language Model Rescoring Results and Analysis
Rescoring results for Arabic→English and Chinese→English translation lattices are shown
in Tables 5.6 and 5.7. The tables show the BLEU score and brevity penalty for first-pass
maximum likelihood (ML) newswire and web data translations, and the scores obtained after
rescoring the first-pass lattices with 5-gram and 6-gram second-pass language models. The
first-pass lattices were generated using a likelihood pruning threshold of p = 7 (Chapter 4,
Section 4.2.2). In these experiments, a single context-independent back off weight γ is used
for all orders. The first-pass LM scale α1 is fixed at 0.5 and the second-pass LM scale α2 and
word penalty β are optimised on the tune.text.nw and tune.text.web testsets. The optimised
5-gram and 6-gram rescoring parameters were α2 = 0.5 and β = 0.0.

Arabic→English lattice rescoring with the 5-gram second-pass LM gives good gains. The
BLEU score is improved by +1.6 on the test.text.nw testset and +1.3 on test.text.web. The
gains on the tuning sets tune.text.nw and tune.text.web are smaller: +1.1 for newswire data
and +0.8 for web data. The gains on the tuning sets are smaller because the first-pass decoder
has been optimised for these sets during minimum error rate training.

figures/largelms/scatter.aren.tune.nw.eps
figures/largelms/scatter.aren.tune.web.eps
figures/largelms/scatter.zhen.tune.nw.eps
figures/largelms/scatter.zhen.tune.web.eps
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AR→EN
Newswire Data Web Data

tune.nw test.nw tune.web test.web
BLEU BP BLEU BP BLEU BP BLEU BP

HiFST 45.9 1.000 45.0 0.995 25.2 0.998 33.1 1.000
+5-gram 47.0 1.000 46.6 0.992 26.0 0.998 34.4 1.000
+6-gram 46.7 0.994 46.5 0.987 25.9 0.986 34.7 1.000

Table 5.6: Arabic→English 5-gram and 6-gram rescoring results using order-independent
backoff weight γ = 0.4, scaling factors α1 = α2 = 0.5, and word penalty β = 0.0.

ZH→EN
Newswire Data Web Data

tune.nw test.nw tune.web test.web
BLEU BP BLEU BP BLEU BP BLEU BP

HiFST 27.7 0.999 28.1 0.999 15.8 0.994 15.2 0.993
+5-gram 28.2 0.993 28.8 0.998 16.2 0.992 15.9 0.989
+6-gram 28.3 0.998 29.0 1.000 16.1 0.992 15.9 0.989

Table 5.7: Chinese→English 5-gram and 6-gram rescoring results using order-independent
backoff weight γ = 0.4, scaling factors α1 = α2 = 0.5, and word penalty β = 0.0.

Configuration newstest2008 newstest2009 newstest2010

FR→EN
HiFST 24.7 28.4 28.5
+5-gram 24.9 28.6 29.0

ES→EN
HiFST 24.6 26.0 29.1
+5-gram 25.2 26.8 30.1

Table 5.8: French→English and Spanish→English 5-gram second-pass language model lattice
rescoring BLEU scores for the WMT 2010 constrained data track evaluation.

Chinese→English rescoring gains are smaller than the gains for Arabic→English: +0.7 for
both test.text.nw and test.text.web. The ML baseline BLEU scores show that the quality of
hypotheses in the Chinese→English lattices is much lower than those in the Arabic→English
lattices. This makes it harder for the LM to separate the good hypotheses from the bad.

Comparing 5-gram and 6-gram rescoring results shows that with these parameter settings
the 6-gram models do not perform as well as the 5-gram models for Arabic→English rescoring,
except for test.text.web where there is a small gain of +0.3 BLEU. The 6-gram models perform
slightly better in Chinese→English rescoring. Section 5.4.3.2 will show that the reason for
this mixed performance is that the backoff weight γ is set inappropriately.

Table 5.8 summarises French→English and Spanish→English 5-gram rescoring results
from the CUED submission to the WMT 2010 constrained data track evaluation. Gains
from French→English 5-gram rescoring are smaller than for rescoring of Arabic→English and
Chinese→English lattices. One reason for this is that the WMT testsets are scored with
respect to only a single reference. The amount of training data used to train the second-pass
LM is also around half as much as was used to train the Arabic→English and Chinese→English
second-pass LMs. Gains are a little larger for Spanish→English lattice rescoring.
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5.4.3.1 Lattice and Reference Coverage Statistics

Stupid backoff language model scores do not define a normalised probability distribution so
it is not possible to compute the language model perplexity. An alternative metric that is
sometimes used as a broad indicator of LM quality and relevance (Brants et al., 2007) is the
coverage of testset n-grams in the training corpus. Intuitively, a language model that has
previously seen many of the higher-order testset n-grams is likely to assign better scores to
hypotheses than a model with low testset coverage.

Reference N -gram Coverage Tables 5.9 and 5.10 show training data coverage of ref-
erence n-grams at orders n = 1 . . . 6 for the Arabic→English and Chinese→English testsets.
Coverage is computed at the testset level; the reference n-grams for each testset consist of
all n-grams in the union of the reference translations. Good coverage of unigrams, bigrams
and trigrams is observed, but higher-order n-gram coverage falls off rapidly. 6-gram coverage
is particularly low, especially for the web data testsets where coverage falls to around 12%
in both language pairs. The low coverage suggests a mismatch between training data and
testset data: the web data testsets consist mainly of newsgroup postings and blogs written
in an informal conversational style, while much of the language model training data is from
the newswire genre. These coverage statistics partly explain the relatively poor performance
of 5-gram and 6-gram rescoring of web data translation lattices in Tables 5.6 and 5.7.

Lattice N -gram Coverage Tables 5.11 and 5.12 show coverage statistics for lattice n-
grams. Lattice n-gram coverage is computed with respect to the set of all n-grams in the
translation lattices of each testset. High levels of coverage are again observed for unigrams
and bigrams. However, higher-order coverage rates are extremely low. More than 98% of
all 6-grams in the web data lattices are not found in the training corpus; the situation is
not much better for newswire lattices. Given that the unigram coverage is so high, the low
levels of higher-order n-gram coverage indicate that many lattice n-grams consist of word
sequences with unusual target language word order. Most of the translation hypotheses in
the lattice, therefore, will have a poor level of fluency since they fail to respect the target
language grammar. These low 6-gram coverage rates explain why the 5-gram and 6-gram
language models have such similar performance: the 6-gram language model must constantly
back off to lower-order 5-gram probabilities when assigning scores to translation hypotheses.

5.4.3.2 Tuning the Backoff Weight

The backoff weight γ(n) smoothes the language model scores of Equation (5.1). Table 5.13
shows the effect on the BLEU score of tuning a single order-independent backoff weight γ(n)
in Arabic→English 5-gram and 6-gram lattice rescoring. The BLEU score is observed to be
fairly insensitive to changes in the backoff weight, with good performance obtained over a wide
range of values. The optimised order-independent backoff weight depends on the language
model order: 0.4 for the 5-gram LM and 0.7 for the 6-gram LM.

The low coverage of higher-order lattice n-grams shown in Tables 5.11 and 5.12 implies
that in the 6-gram rescoring experiments of Section 5.4.3, almost all 6-grams were applied
as backed-off 5-gram probabilities scaled by an associated backoff penalty γ(5). Constant
application of the same fixed penalty may degrade the quality of the language model. If
γ(5) = 1.0, then no penalty is associated with backing off from a 6-gram to a 5-gram. The
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Order
AR→EN reference n-grams coverage (%)

tune.text.nw test.text.nw tune.text.web test.text.web

1g 100.00 100.00 100.00 100.00
2g 97.57 97.90 97.28 97.06
3g 87.87 88.31 85.30 83.97
4g 66.13 66.43 59.16 56.78
5g 40.89 40.39 31.31 28.67
6g 21.76 20.74 13.24 11.50

Table 5.9: Coverage (%) of Arabic→English reference n-grams by order.

Order
ZH→EN reference n-grams coverage (%)

tune.text.nw test.text.nw tune.text.web test.text.web

1g 100.00 100.00 100.00 100.00
2g 97.52 97.53 97.21 97.08
3g 85.48 85.49 84.04 83.06
4g 60.70 60.79 57.20 55.96
5g 35.10 35.30 29.70 28.76
6g 17.84 17.88 12.49 12.00

Table 5.10: Coverage (%) of Chinese→English reference n-grams by order.

Order
AR→EN lattice n-grams coverage (%)

tune.text.nw test.text.nw tune.text.web test.text.web

1g 99.99 100.00 99.57 99.71
2g 91.61 91.86 87.44 88.30
3g 67.42 67.35 58.52 59.41
4g 37.32 36.68 26.86 26.99
5g 15.25 14.57 8.32 8.27
6g 4.76 4.38 1.79 1.74

Table 5.11: Coverage (%) of Arabic→English lattice n-grams by order (p = 7).

Order
ZH→EN lattice n-grams coverage (%)

tune.text.nw test.text.nw tune.text.web test.text.web

1g 99.97 99.97 99.76 99.69
2g 88.02 88.49 87.39 86.38
3g 58.55 58.98 56.13 54.75
4g 27.64 28.00 25.09 23.96
5g 8.95 9.07 7.58 7.02
6g 2.08 2.09 1.58 1.41

Table 5.12: Coverage (%) of Chinese→English lattice n-grams by order (p = 7).
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γ(n)
5-gram 6-gram

tune.text.nw tune.text.web tune.text.nw tune.text.web

0.10 46.8 46.3 46.1 45.5
0.20 46.9 46.5 46.6 46.1
0.30 47.0 46.6 46.7 46.3
0.40 47.0 46.6 46.7 46.5
0.50 47.0 46.6 46.8 46.6
0.60 46.9 46.6 46.8 46.6
0.70 46.9 46.5 46.9 46.6
0.80 46.8 46.6 46.9 46.6
0.90 46.8 46.5 46.8 46.6
1.00 46.7 46.4 46.8 46.6

Table 5.13: Second-pass LM backoff weight tuning for 5-gram (left) and 6-gram (right) rescor-
ing. The tuned parameters were α1 = α2 = 0.5 and the word penalty was β = 0.0.

AR→EN
Newswire Data Web Data

tune.nw test.nw tune.web test.web
BLEU BP BLEU BP BLEU BP BLEU BP

HiFST 45.9 1.000 45.0 0.995 25.2 0.998 33.1 1.000
+5-gram 47.0 1.000 46.6 0.992 26.0 0.998 34.4 1.000
+6-gram 47.0 1.000 46.7 0.995 26.0 0.994 34.4 1.000

Table 5.14: Arabic→English rescoring performance with γ(5) = 1.0. For newswire testsets
α1 = 0.5, α2 = 0.4, β = 0.2. For web data testsets α1 = 0.5, α2 = 0.5, β = 0.1.

ZH→EN
Newswire Data Web Data

tune.nw test.nw tune.web test.web
BLEU BP BLEU BP BLEU BP BLEU BP

HiFST 27.7 0.999 28.1 0.999 15.8 0.994 15.2 0.993
+5-gram 28.2 0.993 28.8 0.998 16.2 0.992 15.9 0.989
+6-gram 28.3 1.000 28.9 1.000 16.3 1.000 16.0 0.997

Table 5.15: Chinese→English rescoring performance with γ(5) = 1.0. For newswire testsets
α1 = 0.5, α2 = 0.5, β = 0.0. For web data testsets α1 = 0.5, α2 = 0.5, β = 0.0.

following experiment evaluates 6-gram rescoring performance when the 5-gram backoff weight
γ(5) = 1.0 and the other backoff weights are fixed at γ(n) = 0.4 for n = 1 . . . 4.

Tables 5.14 and 5.15 show Arabic→English and Chinese→English BLEU scores obtained
after 6-gram lattice rescoring with these backoff weights. The BLEU scores from 6-gram
rescoring are now equal to or better than the BLEU scores obtained from 5-gram rescoring
(Tables 5.6 and 5.7), although the differences are not statistically significant. This experiment
shows that a single order-independent backoff weight may not be appropriate for higher-order
second-pass stupid-backoff smoothed language models. However, it is the very low level of
lattice 6-gram coverage that explains why the 6-gram LM performs no better than the 5-gram
in rescoring. As the quality of translation hypotheses improves, higher-order coverage may
increase to the point at which 6-gram LMs prove to be more effective than 5-gram LMs.
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α1 α2
tune.text.nw test.text.nw
BLEU BP BLEU BP

0.0 0.8 46.4 0.999 45.8 1.000
0.1 0.7 46.6 0.998 46.2 0.994
0.2 0.7 46.8 1.000 46.4 0.993
0.3 0.5 47.0 0.998 46.4 0.991
0.4 0.5 47.0 1.000 46.5 0.993
0.5 0.5 47.0 0.999 46.6 0.992
0.6 0.4 46.9 0.999 46.5 0.992
0.7 0.3 46.8 1.000 46.3 0.993
0.8 0.3 46.8 0.999 46.0 0.993
0.9 0.2 46.6 1.000 45.7 0.993
1.0 0.2 46.2 0.999 45.4 0.993

Table 5.16: Arabic→English tune.text.nw and test.text.nw BLEU scores and brevity penalty
(BP) obtained by tuning the LM exponential scale factors α1 and α2 in 5-gram rescoring.

5.4.3.3 Language Model Scale Factors

Table 5.16 shows Arabic→English tune.text.nw and test.text.nw 5-gram language model
rescoring performance as the exponential scale factors α1 and α2 in the decision rule of
Equation (5.3) are tuned. For each first-pass LM scale factor α1, the second-pass LM scale
factor α2 and word penalty β are tuned to optimise the BLEU score with respect to the
development set tune.text.nw. The table shows the optimised second-pass LM scale factor
α2, BLEU score, and brevity penalty (BP) obtained at each first-pass LM scale factor α1.

The first row of the table shows rescoring performance at α1 = 0 so that only the
second-pass language model influences the decision rule. Compared with the HiFST first-
pass tune.text.nw and test.text.nw scores of 45.9 and 45.0 (Table 5.6), rescoring with α1 = 0
gives gains of +0.5 and +0.8 BLEU for tune.text.nw and test.text.nw, respectively. Improved
performance is obtained when both language models are allowed to influence the decision
rule. Performance is maximised when α1 = α2 = 0.5, resulting in absolute gains over the
HiFST first-pass lattices of +1.1 BLEU for tune.text.nw and +1.6 BLEU for test.text.nw.

These results are interesting because the second-pass 5-gram LM training data is a superset
of the training data used to estimate the parameters of the first-pass LM. Although the
second-pass 5-gram has significantly wider coverage than the first-pass 4-gram, 5-gram scores
are non-normalised probabilities. Furthermore, the problem of data sparsity means that many
of the second-pass 5-gram probabilities may be unreliable.

The best way of incorporating higher-order language models in SMT is to integrate them
directly in the decoder and optimise their feature weights using minimum error rate training
(Och, 2003) (Chapter 4, Section 4.5). Incorporating multiple LM features is shown to signif-
icantly improve the quality of SMT in Brants et al. (2007). However, the large number of
parameters in higher-order n-gram language models makes direct decoder integration imprac-
tical without some form of distributed client-server architecture. This is beyond the scope of
the present study.
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AR→EN 5-gram Newswire Data Web Data

Cutoffs tune.nw test.nw tune.web test.web
c1 c2 c3 c4 c5 BLEU BP BLEU BP BLEU BP BLEU BP

0 0 1 1 1 46.8 0.998 46.4 0.992 25.8 0.995 34.3 1.000
0 0 0 1 1 46.8 0.998 46.3 0.992 25.8 0.994 34.4 1.000
0 0 0 0 1 46.9 0.998 46.5 0.991 25.9 0.994 34.3 1.000
0 0 0 0 0 47.0 1.000 46.6 0.992 26.0 0.998 34.4 1.000

Table 5.17: BLEU scores and brevity penalties (BP) for Arabic→English lattice rescoring
with zero-cutoff and default cutoff 5-gram language models.

ZH→EN 5-gram Newswire Data Web Data

Cutoffs tune.nw test.nw tune.web test.web
c1 c2 c3 c4 c5 BLEU BP BLEU BP BLEU BP BLEU BP

0 0 1 1 1 28.0 0.991 28.6 0.995 16.1 1.000 15.8 1.000
0 0 0 1 1 28.1 0.991 28.7 0.995 16.2 1.000 15.8 1.000
0 0 0 0 1 28.1 0.989 28.7 0.993 16.2 1.000 15.9 1.000
0 0 0 0 0 28.2 0.993 28.8 0.998 16.2 0.992 15.9 0.989

Table 5.18: BLEU scores and brevity penalties (BP) for Chinese→English lattice rescoring
with zero-cutoff and default cutoff 5-gram language models.

5.4.3.4 Count Frequency Cutoffs

The following experiment investigates whether or not higher-order singleton counts are useful
in second-pass LM rescoring. The count-of-counts statistics in Table 5.4 showed that a large
proportion of higher-order n-grams occur only once, even in a large collection of over 10 billion
words of training text. Since n-gram probability estimates of singletons might be unreliable,
count cutoffs (Stolcke, 2002) are often used when building language models.

Let cn denote the count frequency cutoff for n-grams of order n. The second-pass language
model is modified to include n-grams of order n and frequency r only if r > cn. A zero-cutoff
language model has cutoffs cn = 0 for all orders. Tables 5.17 and 5.18 show the effect on the
BLEU score of Arabic→English and Chinese→English second-pass 5-gram language model
rescoring using various higher-order n-gram count frequency cutoffs (first three rows), and a
zero-cutoff language model where c1,2,3,4,5 = 0 (last row).

The zero-cutoff language model has equivalent or better BLEU score than language models
with cutoffs for all testsets and language pairs. However, the relative differences in perfor-
mance are quite small. Using cutoffs c1,2 = 0 and c3,4,5 = 1 degrades performance by around
-0.2 BLEU with respect to the zero-cutoff model. The model with cutoffs c1,2,3,4 = 0 and
c5 = 1 performs nearly as well as the zero-cutoff language model.

Excluding 5-gram singleton counts removes approximately 2.7 billion parameters (37%)
from the 5-gram language model. That is a lot of additional parameters to include for a gain
of only +0.1 BLEU on some testsets. These results show that although higher-order singleton
counts do not harm LM performance, they are of only limited utility in second-pass lattice
rescoring.
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5.5 Summary and Conclusions
This chapter presented a detailed empirical study of the use of higher-order n-gram lan-
guage models for rescoring statistical machine translation lattices. Arabic→English and
Chinese→English lattices were rescored using zero-cutoff language models estimated over
approximately ten billion tokens of monolingual training data. The simple dependency struc-
ture of stupid backoff smoothing allows an efficient low-memory streaming algorithm to be
used to filter n-gram counts for relevancy. Probabilities estimated from the filtered counts are
encoded in finite-state, sentence-specific language model acceptors containing only the subset
of parameters required to rescore each lattice. This allows large language models to be applied
in offline second-pass rescoring without a distributed client-server architecture. Large gains
were achieved by rescoring Arabic→English and Chinese→English lattices; smaller gains were
observed for French→English and Spanish→English lattices.

Optimal performance was obtained by rescoring hypotheses according to a combination
of first-pass and second-pass language model scores. Data sparsity and poor coverage of
higher-order n-grams in the first-pass lattices mean that 6-gram rescoring performance is
currently no better than 5-gram rescoring performance. 6-gram language models may begin
to outperform 5-gram language models when much larger corpora are available, or when the
quality of hypotheses in the first-pass translation lattices improves.

The language model rescoring framework described in this chapter is a simple but effec-
tive way of exploiting multi-billion token monolingual corpora. Second-pass rescoring has
consistently delivered gains in submissions to the NIST, WMT and GALE evaluations of sta-
tistical machine translation quality. The 1-best translation hypotheses in the 5-gram rescored
lattices serves as the baseline for more sophisticated lattice rescoring methods in the fol-
lowing chapters. 5-gram rescored lattices are taken as the input for rescoring with phrasal
segmentation models in Chapter 6, efficient lattice minimum Bayes-risk decoding in Chapter
7, multiple lattice combination in Chapter 8, and for lattice segmentation and rescoring with
fluency-motivated hypothesis space constraints in Chapter 9.



CHAPTER 6
Phrasal Segmentation
Models for Statistical
Machine Translation

Phrasal segmentation models (Blackwood et al., 2008b) define a mapping from the words
of a sentence to sequences of translatable phrases, where the space of possible segmenta-

tions is determined by the phrases extracted from the word-aligned parallel data. This chapter
proposes the estimation of phrasal segmentation models from large quantities of monolingual
training text, and describes their realisation as weighted finite state transducers for incorpo-
ration into phrase-based statistical machine translation systems.

One of the main advantages of phrasal segmentation models is that they offer another way
in which abundantly available monolingual training data, data that is normally used only for
building word language models, can be exploited to improve the quality of phrase-based
statistical machine translation. In this chapter, phrasal segmentation models are applied
to the task of rescoring large Arabic→English word lattices produced by a phrase-based
SMT decoder; significant complementary gains in BLEU score with respect to 5-gram and
6-gram word language models are demonstrated. The use of phrasal segmentation models for
rescoring Arabic→English and Chinese→English lattices produced by a hierarchical phrase-
based statistical machine translation decoder is also investigated.

56
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6.1 Introduction and Motivation
In phrase-based statistical machine translation, phrases extracted from word-aligned parallel
data are the fundamental unit of translation (Koehn et al., 2003; Koehn, 2010) (Chapter 4,
Section 4.1.3). Each phrase is a sequence of contiguous translatable words and there is no
explicit model of syntax or structure.

The first step in translating a foreign sentence is to segment the foreign sentence into
a sequence of translatable phrases. Segmentations ideally capture two aspects of natural
language. Firstly, segmentations should reflect the underlying grammatical sentence struc-
ture. Secondly, common word sequences should be grouped together as phrases in order to
preserve context and respect collocations. Although these aspects of translation are not nor-
mally explicitly evaluated, phrases have been found very useful in translation. They have the
advantage that, within extracted phrases, words appear as they were found in fluent text.

One potential disadvantage with using phrases as translation units is that reordering
in current phrase-based translation models can be a major source of disfluencies. Phrasal
segmentation models address such disfluencies by defining a probability distribution over the
space of possible source language segmentations.1 A strength of this approach is that it
exploits abundantly available monolingual training corpora that are usually only used for
building word n-gram language models.

Most prior work on phrase-based statistical language models concerns the problem of
identifying useful phrasal units. In Ries et al. (1996) an iterative algorithm selectively merges
pairs of words as phrases with the goal of minimising perplexity. Several criteria including
word pair frequencies, unigram and bigram log likelihoods, and a correlation coefficient related
to mutual information are compared in Kuo and Reichl (1999). The main difference between
those approaches and the approach described in this chapter is that for phrasal segmentation
models there is already a definition of the phrases of interest (that is, the phrases extracted
from the word-aligned parallel text). Here, the focus is on estimating a distribution over the
space of possible alternative segmentations of the sentence.

6.2 Phrasal Segmentation Models
Under the extension of the generative model of statistical machine translation (Brown et al.,
1990) to phrase-based statistical machine translation (Och, 2002; Kumar and Byrne, 2003;
Kumar et al., 2006), a source language sentence sI

1 = s1, . . . , sI generates sequences uK
1 =

u1, . . . , uK of source language phrases that are to be considered in translation. Sentences can-
not be segmented into phrases arbitrarily: the space of possible segmentations is constrained
by the source language side of the phrase inventory. These are the translatable phrases found
in the aligned parallel text using the phrase extraction procedures described in Chapter 4,
Section 4.1.3. The distribution over phrasal segmentations is assumed to have the form

P (uK
1 ,K|sI

1) = P (uK
1 |K, sI

1)P (K|I), (6.1)

where the number of phrases K depends only on the number of source words I, and the phrase
sequence uK

1 is conditioned on the number of phrases K and words of the source sentence sI
1.

1In this chapter, following the source-channel model of SMT, the ‘source language’ refers to the output of
the translation process and phrasal segmentation models are applied in lattice rescoring.
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6.2.1 Uniform Phrasal Segmentation Model
The simplest phrasal segmentation model uses a uniform segmentation distribution. The
distribution over the number of phrases K is chosen to be uniform so that P (K|I) = 1/I for
K ∈ {1, 2, . . . , I} and all segmentations are considered equally likely. Let {UK} denote the
space of all possible length K segmentations of the source sentence sI

1. The probability of a
particular segmentation is then

P (uK
1 |K, sI

1) =

{ 1
C(K,sI

1)
if uK

1 = sI
1

0 otherwise
, (6.2)

where C(K, sI
1) = |{UK}| ensures the distribution is correctly normalised and each phrase in

the sequence u1, . . . , uK is found in the phrase inventory. This simple model of segmentation
has been found useful in practice (Kumar and Byrne, 2005; Kumar et al., 2006).

6.2.2 Context-Dependent Phrasal Segmentation Model
The uniform phrasal segmentation model of Equation (6.2) can be improved by estimating
phrase probabilities from naturally occurring sequences of phrases in a large monolingual
training corpus (Blackwood et al., 2008b). An order-n phrasal segmentation model assigns a
probability to a phrase sequence uK

1 according to

P (uK
1 |K, sI

1) =
1

Z(K, sI
1)

K
∏

k=1

P (uk|u
k−1
1 ,K, sI

1)

≈

{ 1
Z(K,sI

1)

∏K
k=1 P (uk|u

k−1
k−n+1) if uK

1 = sI
1

0 otherwise
(6.3)

where the approximation is due to the Markov assumption that only the n − 1 most recent
phrases are relevant when predicting the next phrase. Again, each uk must be a phrase with a
known translation. For a fixed sentence sI

1, the normalisation term Z(K, sI
1) can be calculated

by summing over all possible length K segmentations as follows:

Z(K, sI
1) =

∑

uK
1 ∈{UK}

K
∏

k=1

P (uk|u
k−1
k−n+1) (6.4)

In translation decoding, however, calculating this quantity becomes harder since the words
of the source sentence sI

1 are not fixed. The normalisation term is therefore ignored and the
unnormalised likelihoods used as scores.

6.2.3 First-Order Segmentation Model Parameter Estimatio n
This section describes an effective parameter estimation process for first-order phrasal seg-
mentation models. Let c(uk−1, uk) denote the count of occurrence of a contiguous string of
words wj

i in a very large training corpus that can be split at position x such that i < x ≤ j

and the substrings wx−1
i and wj

x match precisely the words of two phrases uk−1 and uk in the
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phrase inventory. The first-order phrasal segmentation model parameters are computed from
the relative frequency of phrase occurrences such that

P (uk|uk−1) =

{

δ(uk−1, uk)
c(uk−1,uk)

P

ui
c(uk−1,ui)

if c(uk−1, uk) > 0

γ(uk−1)P (uk) otherwise
(6.5)

P (uk) =

{ c(uk)
P

ui
c(ui)

if c(uk) > 0

p0 otherwise
(6.6)

where δ(uk−1, uk) is a discount coefficient that reserves probability mass for unseen phrase
bigrams and the context-specific backoff weights γ(uk−1) ensure the distribution is correctly
normalised (Katz, 1987) (Chapter 3, Section 3.2.2). Unigram phrases that were not observed
in the training data are assigned a small default probability p0. This ensures that segmenta-
tions containing single-word out-of-vocabulary phrases are assigned non-zero probabilities.

6.2.4 Phrasal Segmentation Transducers
Phrase-based TTM translation (Kumar et al., 2006) (Chapter 4, Section 4.2.3) under the
uniform segmentation distribution of Equation (6.2) considers all phrasal segmentations of
the source language sentence as equally likely. The uniform segmentation model can be
implemented by an unweighted transducer W that maps word sequences to phrase sequences
in accordance with the phrases of the phrase inventory. For example, if an acceptor for
the source language sentence “exhibition of students returning from abroad” (Figure 6.1) is
composed with the unweighted segmentation transducer W shown in Figure 6.2, the result
(after optimisation) is the phrase lattice shown in Figure 6.3. This phrase lattice encodes
twelve possible segmentations of the source language sentence. The shortest segmentation is
the three phrase sequence “(exhibition of) (students) (returning from abroad)”.

TTM first-pass translation using the WFST composition chain of Equation (4.11) gen-
erates word lattices L under the uniform segmentation distribution. In the following exper-
iments, first-order phrasal segmentation models are applied via lattice rescoring. The word
lattice L is first composed with the unweighted segmentation transducer W to obtain a lat-
tice of source language phrases L ◦ W. After ǫ-removal, determinization and minimisation
operations, this lattice contains phrase sequences and translation scores consistent with the
initial translation. The vocabulary of phrases relevant to each translation is also extracted.

The first-order phrasal segmentation distribution of Equation (6.3) is applied to the phrase
lattice L ◦ W. The conditional probabilities and backoff structure defined in Equations (6.5)
and (6.6) are encoded as a weighted finite state acceptor (Allauzen et al., 2003). In this
acceptor, P, states encode histories and arcs specify the bigram and backed-off unigram phrase
probabilities, as described in Chapter 3, Section 3.3.2. The raw phrase n-gram counts required
by Equations (6.5) and (6.6) are collected prior to translation and first-order probabilities
computed only for phrases found in the lattice. The phrasal segmentation model is composed
with the phrase lattice and projected on the input to obtain the rescored word lattice:

L′ = Π1( (L ◦ W) ◦ P ) (6.7)

The most likely translation after applying the phrasal segmentation model P is found as the
path in L′ with least cost using the tropical semiring shortest distance algorithm (Mohri,
2002). Apart from likelihood pruning when generating the first-pass translation word lattice
L, the model scores are included correctly in decoder search.
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0 1 2 3 4 5 6
exhibition of students returning from abroad

Figure 6.1: Source language sentence acceptor for the word sequence “exhibition of students
returning from abroad”. Sentence start and end tokens are omitted for clarity.
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Figure 6.2: Phrasal segmentation transducer W for the source language string “exhibition of
students returning from abroad” using only the phrases of the phrase inventory.
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Figure 6.3: Phrase lattice encoding all possible segmentations of the source language string
“exhibition of students returning from abroad” consistent with the phrase inventory.
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0
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x1 : x1/1 − β1

x2 : x2/1 − β1

x1 : x2/β1

x2 : x1/1

x2 : x1/β1

x1 : x2/1

Figure 6.4: MJ1-Flat reordering transducer for any sequence of phrases {x1, x2}
∗ where the

probability of reordering two phrases is determined by a fixed jump probability of β1.

6.2.5 Phrase Reordering Transducers
Phrasal segmentation models assign probability to phrase sequences using parameters esti-
mated from monolingual data. Phrase sequence probabilities can also be estimated from
parallel data and encoded directly in the phrase-based SMT reordering model. In the experi-
ments reported in Section 6.3.2, the performance of phrasal segmentation model rescoring of
lattices generated with first-pass phrase reordering probabilities is investigated.

In the TTM (Chapter 4, Section 4.2.3), reordering is implemented by means of a phrase
jump transducer, typically combined through composition with a single-state phrase trans-
lation WFST. In qualitative terms, this simple reordering model defines a jump sequence
associated with each admissible permutation of the phrases (Kumar and Byrne, 2005). In
practice, it takes input source phrase sequences and outputs their translations in both mono-
tonic and non-monotonic order.

In the simplest reordering model, known as MJ1-Flat, two adjacent phrases are allowed
to swap positions with a fixed jump probability β1 that is determined empirically. Figure 6.4
shows the MJ1-Flat WFST reordering transducer for any sequence of phrases from {x1, x2}

∗.
The form of this transducer is such that reordered phrases are always immediately followed
by the phrase that was ‘jumped’ by the reordering phrase swap.

The MJ1-Flat reordering model is effective since it significantly broadens the search space
and, as source phrases can be arbitrarily long, individual words may move quite far in trans-
lation. However, it makes no distinction as to which phrases are more likely to be reordered in
translation. This problem can be addressed by defining a separate jump probability β1(vk, uk)
for each phrase pair consisting of target phrase vk and source phrase uk (Kumar and Byrne,
2005). These probabilities can be estimated from the word alignments by examining adjacent
phrase pairs and their orientation with respect to (vk, uk) and computing relative frequency
estimates, in a similar fashion to Tillmann (2004). The β1 probabilities then define a distri-
bution over phrase pair sequences based on parameters estimated from the parallel data. The
actual WFST implementation is analogous to MJ1-Flat, but a new state is required for each
phrase bigram, since the jump probability differs in each case.

figures/psm/reordering-transducer.eps
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Phrase Phrase Frequency
Length mt0205tune mt0205test

1 14,570 14,347
2 85,511 84,014
3 113,541 112,601
4 77,730 78,419
5 38,516 40,014
6 16,104 17,087
7 6,193 6,561
8 2,316 2,376
9 800 841

10+ 468 487

Total 355,749 356,747

w/p 3.37 3.40

Table 6.1: Source language phrase inventory statistics for Arabic→English TTM translation.

6.3 Phrase-Based Statistical Machine Translation
Lattice Rescoring Experiments

In this section, phrasal segmentation models are used to rescore lattices generated by a phrase-
based statistical machine translation decoder. Section 6.4 applies phrasal segmentation mod-
els to the task of rescoring lattices generated by a hierarchical phrase-based decoder.

6.3.1 TTM System Development and Lattice Generation
Phrasal segmentation model lattice rescoring is evaluated in the context of the constrained
data NIST Arabic→English machine translation task. The development set mt0205tune is
formed from the odd numbered sentences of the NIST MT02–MT05 testsets; the even num-
bered sentences form the validation set mt0205test. Test performance is reported for the NIST
MT06 and MT08 testsets: mt06nw and mt08nw for newswire data; mt06ng and mt08ng for
newsgroup data. NIST BLEU scores are reported for lower-case translations.

The uniformly segmented TTM baseline system is trained using all of the available
Arabic↔English parallel data for the NIST MT08 evaluation.1 Table 6.1 shows the total
number of phrases, average phrase length (w/p), and lengths distribution for the phrases that
could be used in translating the mt0205tune and mt0205test testsets. The average length is
3.4 words; the longest phrase is 27 words for mt0205tune and 33 words for mt0205test.

First-pass translation decoding is performed with an interpolated Kneser-Ney smoothed
4-gram language model (Kneser and Ney, 1995) estimated over the parallel text and a 965
million word subset of monolingual data from the English GigaWord Third Edition (Graff
et al., 2007). Minimum error rate training (Och, 2003) under BLEU optimises the decoder
feature weights with respect to the development set mt0205tune. Two first-pass translation
decoders are trained: the first uses the simple MJ1-Flat reordering model; the second includes
the β1(vk, uk) phrase reordering probabilities trained from the parallel data (Section 6.2.5) and
the binary phrase-pair count features of Bender et al. (2007), indicating for each phrase pair

1http://www.nist.gov/speech/tests/mt/2008/



CHAPTER 6. PHRASAL SEGMENTATION MODELS 63

Corpus # Lines # Tokens

ptext.aren 1,442,619 46,189,306
ptext.zhen 4,904,003 122,011,558
fbis 1,027,905 29,278,009
news 12,148,324 267,821,482
giga.xin 12,071,879 299,926,282
giga.afp 21,389,287 564,645,033

Total 52,984,017 1,329,871,670

Table 6.2: Tokenised English language training corpora used to estimate parameters for
phrasal segmentation model rescoring of NIST MT08 Arabic→English TTM lattices.

whether it occurred once, twice, or more than twice in the parallel data. This second decoder
constitutes a much stronger baseline and is equivalent to the official CUED submission to the
NIST MT08 evaluation, where it was ranked among the top systems.

In second-pass translation, 5-gram and 6-gram zero-cutoff stupid-backoff language models
(Brants et al., 2007) estimated over 4.7 billion words of English newswire text are used to
rescore lattices prior to applying the phrasal segmentation model. The phrasal segmentation
model parameters are estimated from a 1.3 billion word subset of the same monolingual
training data used to build the second-pass word language model; the phrasal segmentation
model training data is summarised in Table 6.2. A phrasal segmentation model scale factor
α and phrase penalty ϕ are tuned by grid-based search to optimise the BLEU score of the
development set mt0205tune.

6.3.2 TTM Lattice Rescoring Results and Analysis
The following experiment demonstrates that phrasal segmentation models improve the qual-
ity of phrase-based SMT, even when applied to lattices that have already been rescored with
powerful, high-order word language models. Table 6.3 shows phrasal segmentation model
rescoring of the NIST Arabic→English mt0205tune and mt0205test testset lattices (Black-
wood et al., 2008b). The optimised PSM rescoring parameters were model weight α = 0.20
and phrase penalty ϕ = −0.6 for 5-gram lattice rescoring. For 6-gram lattice rescoring, the
parameters were α = 0.20 and ϕ = −0.7. The first row TTM+MERT shows that translations
generated under the uniform segmentation model baseline obtain BLEU scores of 48.9 for
mt0205tune and 48.6 for mt0205test. Large gains of +2.6 BLEU for mt0205tune and +2.9
BLUE for mt0205test are obtained though 5-gram lattice rescoring. Applying phrasal seg-
mentation models to the 5-gram rescored lattices improves the BLEU score by an additional
+1.1 BLEU for both mt0205tune and mt0205test.

For a limited quantity of monolingual training data it is not always possible to improve the
quality of translation simply by increasing the order of the language model. Comparing the
performance of PSMs applied to 5-gram and 6-gram rescored lattices in Table 6.3 shows that
the gains in moving from a 5-gram to a 6-gram LM are very small; these results agree with
the empirical study of 5-gram and 6-gram second-pass LM rescoring presented in Chapter 5.
Even setting aside the practical difficulty of estimating and applying such higher-order word
language models, it is doubtful that further gains could be achieved simply by increasing the
order beyond n = 6. That phrasal segmentation model rescoring improves over the 6-gram
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mt0205tune mt0205test
BLEU BP BLEU BP

TTM+MERT 48.9 1.000 48.6 1.000
+5g 51.5 1.000 51.5 1.000
+PSM 52.6 1.000 52.6 1.000

TTM+MERT 48.9 1.000 48.6 1.000
+6g 51.7 1.000 51.6 0.999
+PSM 52.7 0.999 52.8 1.000

Table 6.3: NIST BLEU score and brevity penalty (BP) for phrasal segmentation model
rescoring of Arabic→English NIST mt0205tune and mt0205test development set lattices.

mt0205tune mt0205test
BLEU BP BLEU BP

TTM+MERT 50.9 1.000 50.3 1.000
+5g 53.5 1.000 52.4 0.987
+PSM 53.9 1.000 53.3 0.994

Table 6.4: NIST BLEU score and brevity penalty (BP) for phrasal segmentation model rescor-
ing of Arabic→English NIST mt0205tune and mt0205test development set lattices. These
experiments include the β1 reordering probabilities and phrase pair count features in MERT.

Newswire Data Web Data
mt06nw mt08nw mt06ng mt08ng

BLEU BP BLEU BP BLEU BP BLEU BP

TTM+MERT 48.1 1.000 48.4 1.000 37.5 0.943 33.7 0.940
+5g 50.2 1.000 50.0 0.995 39.2 0.994 36.1 0.989
+PSM 51.0 1.000 50.7 0.992 39.2 0.994 36.5 0.981

Table 6.5: NIST BLEU score and brevity penalty (BP) for phrasal segmentation model
rescoring of Arabic→English NIST tuning and evaluation set lattices. These experiments
include the β1 reordering probabilities and phrase pair count features in MERT.

rescored lattices suggests they capture more than just a longer n-gram context, and that gains
in translation quality are complementary to the gains from second-pass word LM rescoring.

6.3.2.1 Reordering Probabilities and Phrase-Pair Count Fe atures

The following experiment investigates phrasal segmentation model rescoring performance
when the baseline first-pass translation system includes the β1(vk, uk) reordering probabil-
ities (Kumar and Byrne, 2005) (Section 6.2.5), and the binary phrase pair count (PPC)
features of Bender et al. (2007) in MERT. This system is the same as the Cambridge Uni-
versity Engineering Department submission to the NIST MT08 constrained data translation
task (Blackwood et al., 2008a) and represents a much more challenging experimental baseline
than was studied in the previous section.

Table 6.4 shows Arabic→English phrasal segmentation model rescoring results for the
development sets mt0205tune and mt0205test (α = 0.2, ϕ = −0.7). Table 6.5 shows rescoring
results for the tuning sets mt06nw and mt06ng, and for the NIST MT08 evaluation sets
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mt08nw and mt08ng. The PSM scale factor and phrase penalty parameters are optimised
using mt06nw and mt06ng: for the newswire data testsets mt06nw and mt08nw, α = 0.20
and ϕ = −0.8; for the web data testsets mt06ng and mt08ng, α = 0.10 and ϕ = −0.3.

Comparing BLEU scores for mt0205tune and mt0205test in Tables 6.3 and 6.4 shows that
the addition of phrase reordering probabilities and phrase pair count features improves the
quality of the first-pass translation baseline and 5-gram rescored lattices significantly. Even
with this much stronger baseline, phrasal segmentation model rescoring leads to good gains
on the newswire testsets. On mt06nw and mt08nw the gains are +0.8 BLEU and +0.7 BLEU,
respectively. Performance on the newsgroup data is quite a lot worse: there is no gain on
mt06ng and only +0.4 BLEU on the mt08ng testset.

The overall gains from PSM rescoring are smaller than the gains observed when rescor-
ing lattices generated without reordering probabilities and phrase pair count features. These
results suggest that there is an overlap between the aspects of phrase sequence order cap-
tured by the β1 probabilities and PPC features, and the information captured by phrasal
segmentation models. However, while the β1 probabilities and PPC features are estimated
from parallel data, the phrasal segmentation model parameters are estimated from monolin-
gual data. Since there is so much more monolingual data, it may be easier to improve PSM
performance than to improve the contribution to translation quality from the β1 probabilities
and phrase pair count features.

Comparing the in-domain newswire (mt08nw and mt06nw) and out-of-domain newsgroup
(mt06ng and mt08ng) testset performance shows the importance of choosing appropriate data
for estimating the parameters of the phrasal segmentation model. When in-domain data is of
limited availability, count mixing (Bacchiani et al., 2004) or other language model adaptation
strategies (Bellegarda, 2004) may lead to improved performance.

6.3.2.2 Phrase Penalty Tuning

The role of the phrase penalty ϕ is to encourage longer phrases in translation. Table 6.6
shows the effect of tuning this parameter. The upper part of the table shows the NIST BLEU
score, brevity penalty and individual n-gram precisions. The lower part of the table shows
the total number of words in the output, the number of words translated as a phrase of the
specified length, and the average number of words per phrase.

When the phrase penalty is too low, single word phrases dominate the output and the
benefits of longer context and phrase-internal fluency are lost. As the phrase penalty increases,
there are large gains in precision at each order and many longer phrases appear in the output.
At the optimal phrase penalty, the average phrase length is 1.58 words and over 60% of the
translation output is generated from multi-word phrases.

6.4 Hierarchical Phrase-Based Translation Lattice
Rescoring

Phrasal segmentation models were originally developed to model the segmentation process in
phrase-based statistical machine translation. Hierarchical phrase-based translation (Chiang,
2007; Iglesias et al., 2009b) (Chapter 4, Section 4.3) is driven by synchronous context-free
grammar rules extracted from word-aligned parallel data. Although there is no explicit model
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Phrase penalty ϕ
-4.0 -2.0 0.0 2.0 4.0

BLEU 48.6 50.1 51.1 49.9 48.7

BP 0.000 0.000 0.000 -0.034 -0.072

1g 82.0 83.7 84.9 85.7 86.2
2g 57.3 58.9 59.9 60.5 61.1
3g 40.8 42.2 43.1 43.6 44.2
4g 29.1 30.3 31.1 31.5 32.0

words 70550 66964 63505 60847 58676

1 58840 46936 25040 15439 11744
2 7606 12388 18890 19978 18886
3 2691 4890 11532 13920 14295
4 860 1820 5016 6940 8008
5 240 450 1820 2860 3500

6+ 313 480 1207 1710 2243

w/p 1.10 1.21 1.58 1.86 2.02

Table 6.6: Effect of phrase penalty ϕ on NIST BLEU score, brevity penalty (BP), individual
n-gram precisions at each order, phrase lengths distribution, and average number of words
per phrase (w/p) for the Arabic→English mt0205tune testset.

of the segmentation process, phrasal segmentation models can still be applied to rescore lat-
tices generated by a hierarchical phrase-based decoder if an appropriate collection of phrases
can be identified. Rules in the grammar have the form

X → 〈γ, α, ∼〉, (6.8)

where X is a non-terminal, γ is a sequence of non-terminals and terminals in the source
language, and α is a sequence of non-terminals and terminals in the target language.1 The
relation ∼ defines the one-to-one alignment of source and target non-terminals.

Target language phrases can be extracted from the rules of the grammar by identifying
contiguous sequences of terminals in α. These sequences are added to the phrase inventory
that determines the space of possible segmentations. Figure 6.5 shows one possible source
language derivation obtained in translating an GALE P4 Chinese→English reference sentence.
The source and target language phrases associated with this tree are shown by the boxes at the
bottom of the figure. For this example, seven distinct target language phrases are extracted
with lengths varying from one to four words.

Phrase unigram and bigram counts are collected for each of the phrases extracted from
the testset rules; phrasal segmentation model parameters are then estimated using Equations
6.5 and 6.6. The lattice rescoring procedure is the same as for phrase-based lattices.

6.4.1 HiFST System Development and Lattice Generation
This section describes phrasal segmentation model rescoring of large Arabic→English and
Chinese→English lattices generated by a state-of-the-art hierarchical phrase-based transla-

1In this section, following the use of the log-linear direct translation model, ‘source language’ denotes the
input language and ‘target language’ denotes the output language; the goal, then, is to rescore translated
lattices using a ‘target language’ segmentation model.
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Figure 6.5: Derivation example for an GALE P4 Chinese→English reference sentence showing
how a list of target language phrases can be extracted from the rules of grammar.

Corpus # Lines # Tokens

ptext.aren 9,359,668 231,963,900
ptext.zhen 11,019,719 263,633,514
giga.xin 14,242,285 358,147,081
giga.afp 27,241,407 725,927,421

Total 61,863,079 1,579,671,916

Table 6.7: Tokenised English language training corpora used for phrasal segmentation model
rescoring of GALE P4 Arabic→English and Chinese→English HiFST lattices.

tion system. The testsets, first-pass translation decoder, and lattice generation procedures
constitute the same GALE P4 evaluation framework used for the empirical study of language
model rescoring in Chapter 5, Section 5.4. Those 5-gram rescored lattices serve as the baseline
in the following phrasal segmentation model rescoring experiments.

The target language training corpora used to estimate the phrasal segmentation model
parameters of Equations 6.5 and 6.6 are summarised in Table 6.7. These corpora constitute a
total of around 1.6 billion words and include the target language side of the Arabic→English
and Chinese→English parallel texts, and the monolingual Xinhua and AFP subsets of the
English GigaWord Fourth Edition (Parker et al., 2009).

The total number of phrases, average phrase length in words (w/p), and phrase lengths
distribution for the phrases extracted from the grammar rules of each GALE P4 testset are
summarised in Table 6.8. Comparing these phrase inventories with the phrase inventories
used to rescore phrase-based SMT lattices (Table 6.1) shows that considerably more phrases
are extracted. For Chinese→English translation, more than one million phrases are extracted
from the rules of the grammar. Apart from the larger testset size, one reason for the very large
number of phrases is the increased size of the parallel data used in the GALE P4 experiments:

figures/psm/derivation-example.eps
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Phrase Arabic→English Chinese→English
Length tune.text.nw tune.text.web tune.text.nw tune.text.web

1 22,785 26,726 23,061 23,351
2 179,387 182,054 245,453 246,175
3 259,342 238,512 358,978 357,962
4 185,538 148,391 246,338 240,048
5 99,131 66,844 129,754 121,881
6 45,087 25,410 57,792 52,053
7 18,764 9,323 24,208 20,613
8 7,322 3,460 10,172 8,131
9 2,814 1,393 4,612 3,435

10+ 2,116 1,100 4,929 3,009

Total 822,286 703,213 1,105,297 1,076,658

w/p 3.54 3.28 3.55 3.48

Table 6.8: Source language phrase inventory statistics for GALE P4 Arabic→English and
Chinese→English hierarchical phrase-based translation using HiFST.

∼230M words vs. ∼46M words for the Arabic→English NIST MT08 experiments. A second
reason is that extracting contiguous strings of terminals from rules results in many more
phrases than are obtained from the word alignments using the conservative phrase-extraction
algorithm described in Chapter 4, Section 4.1.3.

6.4.2 HiFST Lattice Rescoring Results and Analysis
Tables 6.9 and 6.10 show BLEU scores and brevity penalties (BP) for PSM rescoring of
GALE P4 Arabic→English and Chinese→English 5-gram rescored lattices generated using the
hierarchical phrase-based decoder HiFST. The first-pass lattices were generated at a likelihood
pruning threshold of p = 9. Rescoring with the second-pass 5-gram LM results in large gains
of +1.6 BLEU on test.text.nw and +1.3 BLEU on test.text.web over the Arabic→English
MERT optimised baseline lattices; for Chinese→English, the gains are a little smaller.

Phrasal segmentation model rescoring of both Arabic→English and Chinese→English lat-
tices is observed to provide only relatively small gains with respect to the 5-gram rescored
lattices. The gains on the testsets are +0.2 BLEU for newswire data and +0.1 BLEU for
web data. Compared to the large gains obtained through phrasal segmentation model rescor-
ing of lattices produced by the TTM phrase-based SMT decoder (Tables 6.4 and 6.5), these
gains are somewhat disappointing. The optimised model weight and phrase penalty for each
language pair and genre are summarised in Table 6.11.

The translation baseline in these GALE P4 experiments represents the strongest system
yet developed at CUED, incorporating word alignments over a very large parallel text and
a powerful hierarchical decoder supporting direct generation of target language lattices. As
described in Chapter 5, the first-pass lattices are rescored with zero-cutoff stupid-backoff
n-gram language models estimated over approximately 10 billion words of monolingual data
prior to phrasal segmentation model rescoring. This is a very difficult baseline to improve. An
alternative method of parameter estimation and efficient training algorithm that enables the
use of much larger corpora may be required in order to effectively apply phrasal segmentation
models to hierarchical phrase-based statistical machine translation lattices.
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AR→EN
Newswire Data Web Data

tune.text.nw test.text.nw tune.text.web test.text.web
BLEU BP BLEU BP BLEU BP BLEU BP

HiFST 45.9 1.000 45.0 0.995 25.2 0.998 33.1 1.000
+5g 47.0 1.000 46.6 0.992 26.0 0.998 34.4 1.000
+PSM 47.1 1.000 46.8 0.995 26.2 0.994 34.6 1.000

Table 6.9: IBM BLEU score and brevity penalty (BP) for PSM rescoring of GALE P4
Arabic→English 5-gram rescored tuning and evaluation set lattices.

ZH→EN
Newswire Data Web Data

tune.text.nw test.text.nw tune.text.web test.text.web
BLEU BP BLEU BP BLEU BP BLEU BP

HiFST 27.7 0.999 28.1 0.999 15.8 0.994 15.2 0.993
+5g 28.2 0.993 28.8 0.998 16.2 0.992 15.9 0.989
+PSM 28.3 0.996 28.9 0.998 16.2 0.999 16.0 0.997

Table 6.10: IBM BLEU score and brevity penalty (BP) for PSM rescoring of GALE P4
Chinese→English 5-gram rescored tuning and evaluation set lattices.

AR→EN ZH→EN

Newswire
α 0.075 0.100
ϕ -0.2 -0.3

Web
α 0.200 0.050
ϕ -0.2 -0.2

Table 6.11: Phrasal segmentation model rescoring model weight (α) and phrase penalty (ϕ)
for GALE P4 Arabic→English and Chinese→English newswire and web data testsets.

6.5 Summary and Conclusions
This chapter defined a simple but effective stochastic model of the phrasal segmentation
process appropriate for phrase-based SMT (Blackwood et al., 2008b). The model parameters
are estimated from naturally occurring phrase sequence examples in a large monolingual
corpus. First-order phrasal segmentation models applied to the NIST Arabic→English MT08
task demonstrated complementary improved translation quality with respect to large, zero-
cutoff 5-gram and 6-gram word language models (Blackwood et al., 2009).

Phrasal segmentation models represent a novel way of exploiting the same abundantly
available monolingual data normally used only for building word language models. Chapter 9
proposes another way in which the same monolingual data can be used to improve the quality
of statistical machine translation: monolingual coverage constraints.

One possible extension of the phrasal segmentation model described in this chapter is to
use the n-multigram model of Deligne and Bimbot (1995). The n-multigram model defines
a joint distribution over word sequences and their segmentation as a sequence of multi-word
units; these multi-word units are phrases in phrase-based SMT. Starting from an initial esti-
mate of the parameters, the expectation-maximisation algorithm (Dempster et al., 1977) can
be used to iteratively re-estimate the parameters from segmentations of the training data.
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Source # Lines # Words W / L Segmentable

ptext.aren 1,163,405 35,953,362 30.9 77.8%
ptext.zhen 3,924,866 93,050,876 23.7 76.3%
giga.xin 8,643,103 193,856,353 22.4 64.6%
giga.afp 13,829,942 334,064,863 24.2 59.2%

Total 27,561,316 656,925,454 23.8 63.6%

Table 6.12: Corpus segmentability using the phrases of the NIST MT08 phrase inventory.

Conditional expected counts of phrase n-grams under the current parameterisation deter-
mine the parameters of the next iteration. This approach differs from the phrasal segmen-
tation model described in this chapter since it requires segmenting the monolingual training
data instead of just the sentences of the testset. Segmenting the monolingual data requires
a rich inventory of phrases. Table 6.12 shows that over 75% of the Arabic→English and
Chinese→English parallel text and around 60% of the monolingual training data can be seg-
mented using the phrases of the NIST MT08 translation task, a total of over 650M words.
The average length of segmentable sentences is close to the average length of 26 words per
sentence in the full training data. This implies that the segmentable subset is representative
of the full corpus. The segmentable subset may also be more relevant since it is the subset
of sentences that can be segmented using only phrases extracted from the alignments. Given
the large quantities of data involved, the multigram phrasal segmentation model will require
an efficient training algorithm of the form described in Deligne and Bimbot (1995).

Phrasal segmentation models were originally developed to address disfluencies introduced
by the reordering process in phrase-based SMT. Extracting phrase n-gram statistics from
large monolingual corpora allows a probability distribution to be defined over the space of
possible segmentations; hypotheses can then be ranked according to the likelihood of their
segmentation. Hierarchical phrase-based translation supports much more flexible reordering
and longer distance movement of words and phrases. Although the segmentation process is
not explicitly modelled, this chapter showed how an inventory of phrases can be extracted
from the rules of the target language grammar so that phrasal segmentation models can be
applied in lattice rescoring. However, this approach resulted in only small gains when applied
to GALE P4 Arabic→English and Chinese→English lattices.

For hierarchical phrase-based translation, a different set of statistics may be more appro-
priate. Instead of computing regular phrase n-gram counts as described in Section 6.2.3, it
might be useful to compute counts that incorporate the hierarchical relationships between
the rules of the grammar. For example, counts of phrase bigrams could be collected by sum-
ming over all target language non-terminal phrasal substitutions; the aim of this form of
parameter estimation would be to more closely match the reordering patterns actually used
in hierarchical phrase-based translation.



CHAPTER 7
Lattice Minimum

Bayes-Risk Decoding
with Weighted

Finite-State Transducers

Minimum Bayes-risk (MBR) decoding has been found useful in many areas of natural
language processing (Duda et al., 2000; Goel and Byrne, 2000; Goel et al., 2004; Kumar

and Byrne, 2004). This chapter describes the use of MBR decoding to improve the quality
of large-scale statistical machine translation systems. The general form of the MBR decoder
is first defined and described. A linear approximation to the loss function based on n-gram
posterior probabilities (Tromble et al., 2008) allows MBR decoding to be applied to the full
space of hypotheses encoded in large translation lattices.

This chapter starts by reviewing the Tromble et al. (2008) linearised form of lattice MBR
decoder. Then, an original and improved exact formulation of linearised lattice MBR based on
efficient path counting transducers is introduced (Blackwood and Byrne, 2010). Comprehen-
sive experiments with multiple language pairs provide a contrastive study of the performance
and efficiency of k-best MBR and lattice MBR. The following chapter applies lattice MBR
techniques to multi-input and multi-source translation in a system combination framework.

71



CHAPTER 7. LATTICE MINIMUM BAYES-RISK DECODING WITH WFSTS 7 2

7.1 Minimum Bayes-Risk Decoding for Machine
Translation

This section describes minimum Bayes-risk (MBR) decoding for statistical machine trans-
lation. An implementation based on weighted finite-state acceptors allows MBR decoding
to be applied to the full space of hypotheses in large machine translation lattices. Faster
lattice MBR decoding based on efficient path counting transducers is introduced in Section
7.2, followed by an empirical study of lattice MBR applied to large-scale Arabic→English and
Chinese→English translation tasks in Section 7.3.

7.1.1 Background and Related Work
Decoding under the standard Maximum A Posteriori (MAP) decision rule chooses the output
with the highest posterior probability (Duda et al., 2000). Minimum Bayes-risk decoding
differs from MAP decoding by choosing the output that minimises the expected loss due to
errors, according to a loss function that measures task performance. The decoding decision
rule is thus optimised directly for specific loss functions based on metrics of interest.

The MAP decision rule can be derived as a special case of the MBR decision rule by using
a zero–one loss function in which all misclassifications are considered equally poor. The loss
function of a MAP decoder is thus too harsh – it applies the same fixed penalty to outputs
regardless of their quality and fails to distinguish between different types of error.

The exact choice of loss function depends on the application and metric of interest. Typ-
ically, in machine translation, lexical loss functions such as the BLEU score (Papineni et al.,
2002b), translation edit rate (TER) (Snover et al., 2006), or position-independent word er-
ror rate (PER) are used. Since these functions depend only on the string of words in the
candidate hypothesis, the loss can be computed relatively efficiently. More complex loss func-
tions incorporating richer sources of linguistic information such as word-to-word alignments
or syntactic parse trees have also been shown to be useful for SMT (Kumar and Byrne, 2004).

MBR decoding under the sentence-level BLEU score has been successfully applied to the
task of re-ranking machine translation hypotheses in a k-best list (Kumar and Byrne, 2004).
For efficiency reasons, these lists typically range in depth from 100 to 10,000 hypotheses. MBR
decoding can also be applied to translation lattices, directed acyclic graphs that efficiently
encode very large numbers of alternative translations (Ueffing et al., 2002). The large number
of additional translations available to lattice MBR has been shown to significantly improve
translation quality over k-best MBR (Tromble et al., 2008).

7.1.2 Minimum Bayes-Risk Decoding for Machine Translation
Minimum Bayes-risk decoding for statistical machine translation (Kumar and Byrne, 2004;
Ehling et al., 2007) selects the translation hypothesis with the lowest expected risk given
the underlying probabilistic model. The result is a sentence-level consensus choice of the
best hypothesis. For arbitrary loss function L(E,E′) between translation hypothesis E′ and
reference translation E, and given the underlying probabilistic model P (E|F ), MBR decoding
has the general form

Ê = argmin
E′∈E

R(E′) = argmin
E′∈E

∑

E∈E

L(E,E′)P (E|F ), (7.1)
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where R(E′) is the Bayes-risk of hypothesis E′ (i.e. the conditional expected loss under loss
function L) and E represents the space of available translations, e.g. a k-best list or lattice
produced by a machine translation decoder. If Lmax bounds the maximum loss between any
two hypotheses, then the decoder can be rewritten in terms of a gain function G(E,E′) =
Lmax − L(E,E′). The MBR decision rule is then

Ê = argmax
E′∈E

∑

E∈E

G(E,E′)P (E|F ). (7.2)

For MBR decoding of translation lattices, an appropriate gain function is the sentence-
level BLEU score (Papineni et al., 2002b) (Section 4.4.1). Sentence-level BLEU is simply the
geometric mean of n-gram precisions and ignores the brevity penalty required for corpus-level
BLEU. It varies between 0 and 1 with higher values indicating a greater degree of similarity
between hypothesis and reference. MBR decoding is able to use different spaces for hypothesis
search and risk computation. The general form of the decoder is therefore

Ê = argmax
E′∈Eh

∑

E∈Ee

G(E,E′)P (E|F ), (7.3)

where Eh is the hypothesis space from which the minimum risk hypothesis is selected and Ee
is the evidence space used to compute the Bayes-risk. The relative importance of these two
spaces is analysed in Tromble et al. (2008), where it is shown that accurate computation of
the expected risk in a large evidence space is more important than a large hypothesis space
of translations to search amongst during decoding.

MBR decoding on k-best lists has computational complexity O(n2). Ehling et al. (2007)
show that the summation over E ∈ E in Equation (7.1) can be terminated as soon as the
accumulation of expected risk exceeds the current lowest-risk hypothesis. Even with this
optimisation, however, the computational complexity still limits k-best MBR to a relatively
short list of hypotheses.

7.1.3 Lattice Minimum Bayes-Risk Decoding
Machine translation lattices are a compact representation of large numbers of translation
alternatives with scores (see Section 4.2.2 in Chapter 4). Each arc corresponds to a single
word and the weight obtained by aggregating arc costs along a complete path through the
lattice gives the likelihood of the hypothesised word sequence. The posterior probability of
translation hypothesis E given foreign source sentence F is

P (E|F ) =
exp(αH(E,F ))

∑

E′∈E exp(αH(E′, F ))
, (7.4)

where H(E,F ) gives the score of candidate translation E according to the model, e.g. the
product of feature and weight vectors in a log-linear model. The exponential scale factor α
smoothes the posterior distribution, flattening when α < 1 and sharpening when α > 1.

Since the number of hypotheses encoded in a lattice can be exponential in the number of
states, it is not always possible to explicitly compute the gain for each individual hypothesis.
This is the reason why k-best MBR is typically applied to relatively shallow lists. However,
by decomposing the gain function G(E,E′) of the MBR decision rule in Equation (7.2) as
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a sum of independent local gain functions gu the decoder can be reformulated in terms of
n-gram matches between E and E′ and computed efficiently (Tromble et al., 2008).

Let N = {u1, . . . , u|N |} denote the set of all n-grams in lattice E and define the n-gram
local gain function between two hypotheses gu : E × E → R for each u : ∈ N as

gu(E,E′) = θu#u(E′)δu(E), (7.5)

where θu is an n-gram specific constant, #u(E′) is the number of times u occurs in E′, and
δu(E) is 1 if u occurs in E and zero otherwise. The gain gu is thus θu times the number
of occurrences of u in E′, or zero if u does not occur in E. Using a first order Taylor-series
approximation to the gain in log corpus BLEU (Tromble et al., 2008), the overall gain function
G(E,E′) can be approximated as a linear sum of these local gain functions and a constant θ0

times the length of the hypothesis E′:

G(E,E′) = θ0|E
′|+

∑

u∈N

gu(E,E′) (7.6)

Substituting this linear decomposition of the gain function into Equation (7.2) results in an
MBR decoder with the form

Ê = argmax
E′∈E

{

θ0|E
′|+

∑

u∈N

θu#u(E′)p(u|E)

}

, (7.7)

where p(u|E) is the path posterior probability of n-gram u which can be computed from the
lattice. The important point is that the linear decomposition of the gain function replaces
the sum over an exponentially large set of hypotheses in the lattice E ∈ E with a sum over n-
grams u∈N which can be computed exactly even for large lattices. The n-gram path posterior
probability is the sum of the posterior probabilities of all paths containing the n-gram:

p(u|E) =
∑

E ∈ Eu

P (E|F ), (7.8)

where Eu = {E ∈ E : #u(E) > 0} is the subset of lattice paths containing the n-gram u at
least once. The next section describes how these path posterior probabilities can be computed
efficiently using general purpose WFST operations.

7.1.4 Decoding with Weighted Finite-State Acceptors
This section describes an implementation of lattice minimum Bayes-risk decoding based on
weighted finite-state acceptors (Mohri, 1997) and the OpenFst toolkit (Allauzen et al., 2007).
Each lattice E is a weighted directed acyclic graph (DAG) (Cormen et al., 2001) encoding
a large space of hypothesised translations output by the baseline system. Denote by Eh
the hypothesis space (e.g. the top 1000-best hypotheses in an k-best list generated from the
lattice) and by Ee the evidence space.

The lattice MBR decoder of Equation (7.7) is implemented by the algorithm shown in
Figure 7.1. The input parameters are the posterior distribution smoothing factor α, evidence
space Ee, hypothesis space Eh, and n-gram factors θn for n = 0, . . ., 4. The return value
is the translation hypothesis that maximises the conditional expected gain. The algorithm
corresponds to the following sequence of operations:
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Lmbr-Decode(α, Ee, Eh, θ0...4)

1 Ee ← Fst-Normalize(α× Ee)
2 N ← Extract-Ngrams(Eh)
3 for each u ∈ N
4 do Ψu ←Make-Count-Fsa(u)
5 Eu ← Ee ◦ Ψu

6 p(u|Ee)←
∑

E∈Eu
P (E|F )

7 Eh ← Apply-Word-Factor(Eh, θ0)
8 for each u ∈ N
9 do Ωu ←Make-Gain-Fsa(u, θ|u|×p(u|Ee))

10 Eh ← Eh ◦ Ωu

11 return Find-Best-Path(Eh)

Figure 7.1: Lattice minimum Bayes-risk decoding algorithm.

(i) After applying the exponential scale factor α of Equation (7.4), the hypothesis likeli-
hoods are converted to normalised posterior translation probabilities P (E|F ) by map-
ping to the log semiring, pushing weights to the final state, and removing the final state
costs (line 1) (these operations are described in Chapter 2, Sections 2.4.1 and 2.4.3).
After this operation,

∑

E P (E|F ) = 1. The n-gram path posterior probabilities are
simply the log semiring ⊕-sum of the weights of paths containing the n-gram.

(ii) The set of n-grams N = {u1, u2, . . . , u|N |} is extracted from the hypothesis space Eh
(line 2). Tromble et al. (2008) describes an arc traversal algorithm for generating n-gram
sequences from a topologically sorted acyclic lattice. For large lattices with high average
branching factor, this algorithm is slow. The n-grams can be more efficiently extracted
by composing Eh with an n-gram counting transducer (Allauzen et al., 2003).

(iii) The sum over N in the MBR decoder of Equation (7.7) requires the path posterior
probability p(u|E) of each n-gram in the hypothesis space. These probabilities are
computed from the evidence space Ee by creating an unweighted acceptor Ψu = Σ∗ uΣ∗

that is composed with Ee to form the subspace Eu = Ee ◦Ψu of paths with at least one
occurrence of the n-gram u. The composition Ee ◦ Ψu counts paths in Ee containing
u, where each count is weighted by the posterior probability of the path on which it
occurs. The n-gram path posterior probability p(u|E) is the sum of the probabilities of
all paths in Eu, and is computed by pushing weights in the log semiring. This process
is repeated for each n-gram in the hypothesis space (lines 3–6).

(iv) The contribution to the gain function gu(E,E′) for each n-gram u in Equation (7.6) is
applied by creating an automaton Ωu that accepts u with weight θ|u|× p(u|E) (line 9).
The composition Ωu ◦ Eh applies n-gram factor θ|u| and posterior probability p(u|E)
once for each occurrence of u, thus incorporating the count #u(E′) in G(E,E′).

(v) Decoding starts from an initially unweighted copy of the hypothesis space Eh and com-
poses in sequence the partial gain applicator Ωu for each u∈N to accrue the conditional
expected gain (lines 8–10). The word factor is applied by setting all costs of all arcs
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Figure 7.2: Unweighted finite-state acceptor Ψu for counting paths in the lattice subset Eu
containing at least one occurrence of the n-gram u = w1w2w3w4.
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w4 / θ|u|× p(u|E)

Figure 7.3: Weighted finite-state acceptor Ωu to apply gain θ|u| × p(u|E) to each occurrence
of the n-gram u = w1w2w3w4 in a translation lattice.

in Eh to θ0. After the gain for all n-grams has been applied, a path corresponding to
word sequence E′ has weight θ0|E

′| +
∑

u∈N θ|u|#u(E′)p(u|E). The hypothesis Ê that
maximises the expected gain is the best path in the (max,+) semiring (line 11).

Figure 7.2 shows the path counting acceptor Ψu for the n-gram u = w1w2w3w4. This
acceptor can be used to count paths in the lattice with at least one occurrence of the word
sequence w1w2w3w4. Composing Ψu with the lattice discards all paths that do not contain
u since the final state is only reached by reading the complete n-gram u. The use of φ-
transitions (see Chapter 2, Section 2.4.2) avoids duplication of paths during composition. If
instead regular ǫ-transitions are used, then duplicate paths must be discarded by tropical
(min,+) semiring determinization before summing path probabilities. Figure 7.3 shows the
gain applicator Ωu for the same n-gram u = w1w2w3w4. Composing Ωu with the hypothesis
space accrues the partial gain associated with n-gram u. Again, the use of non-consuming
φ-transitions ensures that duplicate paths are not introduced during decoding.

The implementation of lattice MBR using the algorithm of Figure 7.1 follows Tromble et al.
(2008), with local refinements for efficient extraction of n-grams from the lattice, and faster
matching through the use of special labels when computing path posterior probabilities and
decoding. The next section presents a faster novel implementation of lattice MBR decoding
based on the use of efficient path counting transducers.

figures/lmbr/filter.4g.eps
figures/lmbr/gain-applicator.eps
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7.2 Efficient Path Counting Transducers for Lattice
Minimum Bayes-Risk Decoding

This section presents a novel implementation of the Tromble et al. (2008) linearised form of
lattice minimum Bayes-risk decoding based on general purpose weighted finite-state trans-
ducer operations (Blackwood and Byrne, 2010). The use of transducers instead of acceptors
allows the posterior probabilities of all n-grams of a given order to be computed simultane-
ously with a single composition. This yields an implementation that is fast and exact even
for very large lattices.

7.2.1 Path Posterior Probabilities and Expected Counts
The quantity p(u|E) in the lattice MBR decoder of Equation (7.7) is the path posterior
probability of n-gram u given the lattice E . This particular posterior is defined as

p(u|E) =
∑

E∈Eu

P (E|F ), (7.9)

where Eu = {E ∈ E : #u(E) > 0} is the subset of paths in the lattice containing u at least once,
and P (E|F ) is the posterior probability of translation hypothesis E given the source language
input sentence F . Even though a lattice may contain many n-grams, it is possible to extract
and enumerate them exactly whereas this is often impossible for individual paths. Therefore,
while the Tromble et al. (2008) linearisation of the gain function is an approximation, the
decision rule of Equation (7.7) can be computed exactly even over very large lattices. The
challenge is to do so as efficiently as possible.

If the quantity p(u|E) had the form of a conditional expected count, then it could be
computed efficiently using the regular form of WFST counting transducer (Allauzen et al.,
2003). The conditional expected count c(u|E) of n-gram u is computed as

c(u|E) =
∑

E∈E

#u(E)P (E|F ), (7.10)

so that the statistic c(u|E) counts the number of times an n-gram occurs on each path, accu-
mulating the weighted count over all paths. By contrast, what is needed by the approximation
in Equation (7.7) is to identify all paths containing an n-gram and accumulate their proba-
bilities. The accumulation of probabilities at the path level, rather than the n-gram level, is
what makes the exact computation of p(u|E) difficult.

The implementation of lattice MBR in Tromble et al. (2008) (Section 7.1.4) computes
each n-gram path posterior probability by composing the lattice with a finite-state acceptor
for a single n-gram. Their approach is referred to here as the sequential method, since p(u|E)
is calculated separately for each u in sequence. Computing the posterior probabilities for the
full set of lattice n-grams requires |N | separate compositions and log semiring weight pushing
operations. This can be slow when the lattice contains a large number of n-grams.

Allauzen et al. (2010) introduce a transducer for simultaneous calculation of p(u|E) for
all unigrams u ∈ N1 in a lattice. This transducer is effective for finding path posterior
probabilities of unigrams because there are relatively few unique unigrams in the lattice. As
will be shown, however, it is less efficient for higher-order n-grams.



CHAPTER 7. LATTICE MINIMUM BAYES-RISK DECODING WITH WFSTS 7 8

The lattice MBR decoder of Allauzen et al. (2010) uses the exact n-gram path posterior
probabilities of Equation (7.9) to compute the unigram contribution to the expected gain,
but uses the conditional expected counts of Equation (7.10) for higher-order n-grams:

Ê = argmax
E′∈E

{

θ0|E
′|+

∑

u∈N1

θu#u(E′)p(u|E) +

4
∑

k=2

∑

u∈Nk

θu#u(E′)c(u|E)

}

(7.11)

Equation (7.11) is thus an approximation to the approximation. In many cases it will be
perfectly fine, depending on how closely p(u|E) and c(u|E) agree for higher-order n-grams.
Experimentally, Allauzen et al. (2010) show this approximation to work well in lattice min-
imum Bayes-risk decoding of statistical machine translation lattices. However, there may
be scenarios in which p(u|E) and c(u|E) differ so that Equation (7.11) is no longer useful in
place of the original Tromble et al. (2008) approximation. Section 7.3.2.3 will show that the
exact n-gram path posterior probabilities must be used for orders n = 1 and n = 2 to obtain
optimal Arabic→English lattice MBR decoding performance.

The following sections describe a path counting transducer that enables efficient simulta-
neous computation of p(u|E) for all n-grams of a fixed order, and an acceptor for fast decoding
with a similar form to the WFST implementation of an n-gram language model (Allauzen
et al., 2003). Fast MBR decoding is applied to large statistical machine translation lattices
in Section 7.3.3, where it is shown to offer significant improvements in efficiency over the
sequential method of Tromble et al. (2008).

7.2.2 N-gram Mapping Transducer
A useful transformation can be applied to the evidence space in order to simplify the count-
ing of paths containing higher-order n-grams. Transducer Φn is constructed to map word
sequences to n-gram sequences of order n. Φn has a similar form to the WFST implemen-
tation of a backoff n-gram language model (Allauzen et al., 2003). In addition to arcs from
the start state mapping the words of each distinct n-gram history to ǫ, Φn includes for each
n-gram u = wn

1 of order n arcs of the form shown in Figure 7.4.

wn-1
1 wn

2

wn:u

Figure 7.4: Mapping transducer arc example for the n-gram u = wn
1 .

The n-gram lattice of order n is called En and is found by composing E ◦ Φn, projecting
on the output, removing ǫ-arcs, determinizing, and minimising. The construction of En is fast
even for large lattices and is memory efficient. En itself may have more states than E due
to the association of distinct n-gram histories with states. However, the counting transducer
for unigrams is much simpler than the corresponding counting transducer for higher-order
n-grams. As a result, counting unigrams in En is easier than counting n-grams in E .

Figure 7.5 shows a bigram mapping transducer example Φ2. This transducer can be used
to transform a word lattice E to a lattice of bigrams E2. In composition, word sequences
{w1,2}

∗ in E are transformed to bigram sequences {u1,2,3,4}
∗ in E2, according to the table of

bigrams on the right of the figure.

figures/lmbr/fastcount-mapping-arc.eps
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w1

w2∅

w1:ǫ

w2:ǫ

w1:u1

w2:u2

w2:u3

w1:u4

N -gram Words

u1 w1w1

u2 w2w2

u3 w1w2

u4 w2w1

Figure 7.5: Mapping transducer Φ2 for all possible bigrams Σ2 = {u1, u2, u3, u4} formed from
lattice alphabet Σ1 = {w1, w2}. States and arcs need only be added for bigrams u ∈N2.

0

1

2

3

u1:u1

u2:u2ǫ:ǫ

ǫ:ǫ

ρ:ǫ

ρ:ǫ

σ:ǫ

0

1

3

2

4

u1:u1

u2:u2

u1:ǫ

u2:ǫ

σ:ǫ

ρ:ǫ

ρ:ǫ

Figure 7.6: Path counting transducers ΨL
n (left) and ΨR

n (right) to match each u ∈ Nn.

7.2.3 Efficient Path Counting
Associated with each En is a transducer Ψn that can be used to calculate the path posterior
probabilities p(u|E) for all u ∈ Nn. Figure 7.6 shows two possible forms of Ψn that can be
used to compute path posterior probabilities over n-grams u1,2 ∈ Nn for some n. Examples
showing the sequence of operations required to count paths in En using ΨL

n and ΨR
n are given

in Section 7.2.3.2. The special symbols ρ and σ are described in Chapter 2, Section 2.4.2.
Transducer ΨL

n is used by Allauzen et al. (2010) to compute the exact unigram contribution
to the gain in Equation (7.11). For example, in counting paths that contain u1, ΨL

n retains
the first occurrence of u1 and maps every other symbol to ǫ. This ensures that in any path
containing a given u, only the first u is counted, avoiding multiple counting of paths.

A more efficient path counting transducer ΨR
n is now introduced. Transducer ΨR

n effec-
tively deletes all symbols except the last occurrence of u on any path by ensuring that any
paths in composition which match earlier instances do not end in a final state. Multiple
counting is avoided by counting only the last occurrence of each symbol u on a path.

The reason why ΨL
n is inefficient for large Nn is that the initial ǫ:ǫ arcs in ΨL

n effectively
create |Nn| copies of En in composition while searching for the first occurrence of each u.
Composing with ΨR

n creates only a single copy of En while searching for the last occurrence
of u; this is found to be much more efficient for large Nn.

Path posterior probabilities are calculated over each En by composing with Ψn in the log
semiring, projecting on the output, removing ǫ-arcs, determinizing, minimising, and pushing
weights to the initial state (Allauzen et al., 2010). Using either ΨL

n or ΨR
n , the resulting counts

figures/lmbr/fastcount-bigram-mapper.eps
figures/lmbr/fastcount-psi-L.eps
figures/lmbr/fastcount-psi-R.eps
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acceptor is Xn. It has a compact form with arcs from the start state for each ui ∈ Nn. Each
arc has the form shown in Figure 7.7 with weight − log p(ui|E).

0
ui/- log p(ui|E) i

Figure 7.7: Optimised counts acceptor arc example for the n-gram u.

7.2.3.1 Efficient Path Posterior Computation

Although Xn has a convenient and elegant form, it can be difficult to build for large Nn

because the composition En ◦ Ψn results in millions of states and arcs. The log semiring
ǫ-removal and determinization required to sum the probabilities of paths labelled with each
u can be slow. This section describes an optimisation based on the forward procedure that
enables more efficient calculation of n-gram path posterior probabilities.

If the transducer ΨR
n is used instead of ΨL

n , then each path in En ◦ΨR
n has only one non-ǫ

output label u and all paths leading to a given final state share the same u. A modified forward
procedure can be used to calculate p(u|E) without costly ǫ-removal and determinization.

The modification to the forward procedure simply requires keeping track of which symbol
u is encountered along each path to a final state. Let the forward variable α[q] denote the
negative log of the sum of the probabilities of all partial paths to state q, and let u[q] denote
the output label shared by all paths passing through state q. The forward procedure using
these variables is shown in Figure 7.8. For each q ∈ Q, the variables α[q] and u[q] are
initialised to 0̄ and ǫ, apart from the start state which is initialised to 1̄ (lines 1–3). Then,
the forward variable α[n[e]] at the target state of each edge is incremented by the ⊗-product
of the value of the forward variable at the source state α[q] and the arc weight w[e] (line 6).
The symbol at the target state is the output label o[e] if o[e] 6= ǫ, or propagated from the
source state otherwise (line 7). When the forward procedure is completed, the n-gram path
posterior probabilities are computed from the values of the forward variable α[q] and final
state weight ρ[q] at each final state q ∈ F . More than one final state may gather probabilities
for the same u; to compute p(u|E) these probabilities are added:

− log p(ui|E) =
⊕

q∈F :u[q]=i

{

α[q]⊗ ρ[q]
}

(7.12)

The forward procedure requires that the counts transducer Cn = En ◦ΨR
n be topologically

sorted; although sorting can be slow, the forward procedure is O(V + E) which is normally
more efficient than ǫ-removal and determinization of a large composition result.

Unlike the composition En◦Ψ
R
n , the composition En◦Ψ

L
n does not segregate paths by u such

that there is a direct association between final states and symbols. The forward procedure
cannot be applied, but an arc weight vector indexed by symbols could be used to correctly
aggregate probabilities (Riley et al., 2009). For large Nn this would be memory intensive.
The association between final states and symbols could also be found by label pushing (Mohri
et al., 2008), but this can be very slow for large En ◦Ψn.

figures/lmbr/fastcount-counts-arc.eps
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Forward-Procedure(Cn)

1 for each state q ∈ Q[Cn]
2 do α[q]← 0̄; u[q]← ǫ
3 α[0]← 1̄
4 for each state q ∈ Q[Cn]
5 do for each arc e ∈ E[q]
6 do α[n[e]]← α[n[e]] ⊕ (α[q] ⊗ w[e])
7 if o[e] 6= ǫ then u[n[e]]← o[e] else u[n[e]]← u[q]

Figure 7.8: Modified forward procedure for computing path posterior probabilities.

0

1u1/1.0
u1/0.3

u2/0.2

u2/0.5
2/1.0

Figure 7.9: Toy lattice En encoding three distinct n-gram hypothesis sequences.

7.2.3.2 Path Counting Transducer Examples

This section shows how the path counting transducers ΨL
n and ΨR

n can be used to count
weighted paths. Consider the lattice En shown in Figure 7.9. All arc weights in this section
are shown in the real (+,×) semiring for clarity. This lattice encodes three distinct n-gram
sequences with the following posterior probabilities:

Sequence p(E|F )

E1 = u1u2 0.5
E2 = u1u1 0.3
E3 = u2 0.2

The n-gram path posterior probabilities p(u|E) of Equation (7.9) and expected counts
c(u|E) of Equation (7.10) computed from the lattice are shown below:

p(u|E) c(u|E)
u1 0.8 1.1
u2 0.7 0.7

The values of p(u2|E) and c(u2|E) agree because there are no paths in En with multiple
occurrences of u2. The conditional expected count of u1 is c(u1|E) = 1× 0.5 + 2× 0.3 = 1.1
which differs from the n-gram path posterior probability p(u|E) = 0.5 + 0.3 = 0.8 because u1

occurs twice on the path E2 = u1u1.
The sequence of operations used to compute expected counts and n-gram path posterior

probabilities is shown in Figure 7.10 on page 82. Let ΨN
n denote the regular n-gram counting

transducer for computing expected counts (Allauzen et al., 2003). The top row shows – from

figures/lmbr/counting.example.lat.eps
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Figure 7.10: Weighted counting operations for n-gram counting transducer ΨN
n , and left-

most ΨL
n and right-most ΨR

n path-counting transducers. Weights of arcs and final states in
all weighted automata are shown for the real (+,×) semiring.
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left to right – the expected counts transducer ΨN
n , the left-most matching path counting

transducer ΨL
n , and the right-most matching path counting transducer ΨR

n .
The second row shows the result of composing each of these transducers with the weighted

lattice En. The composition En ◦ ΨN
n shows how u1 is counted twice on the path E2 = u1u1

in En. The composition state sequence (0, 0) → (0, 1) → (1, 4) corresponds to matching the
first u1 with the σ:ǫ transition in ΨN

n and the second u1 with the transition u1:u1; the state
sequence (0, 0) → (1, 3)→ (1, 4) corresponds to matching the first u1 with the u1:u1 transition
in ΨN

n and the second u1 with the σ:ǫ transition in the final state of ΨN
n . Since both matching

paths write u1 on the output label, u1 is counted twice, each time with weight 0.3.
In both E ◦ ΨL

n and En ◦ΨR
n , however, the symbol u1 is counted only once per path. ΨR

n

counts only the last occurrence of u1 on the path E2 = u1u1. The state sequence (0, 0) →
(1, 1) → (3, 5) counts the first u1 by taking the u1:u1 transition in ΨR

n but the second u1 is
also matched, leading to a non-final state; the path in the composition result that matches
the first occurrence of u1 therefore contributes nothing to the count. The state sequence
(0, 0) → (0, 2) → (1, 6) maps the first u1 to ǫ by taking the u1:ǫ transition from the initial
state of ΨR

n , and counts the second u1 by then taking the u1:u1 transition to the final state
of ΨR

n . This avoids multiple counting of the same symbol on each path.
The third row shows the results of connecting and projecting on the output labels. Note

that for En ◦Ψ
L
n , a mixture of u1 and u2 labelled paths lead to the final state q5. For En ◦Ψ

R
n ,

only paths labelled u1 lead to final state q4 and only paths labelled u2 lead to final state q3.
It is this segregation of symbols and final states that allows the use of the modified forward
procedure described in Section 7.2.3.1.

The remaining rows show the optimisation operations that are used to sum the matched
counts to obtain Xn. If ΨR

n is used then these optimisation operations can be omitted and
the modified forward procedure applied directly to the composition result En ◦ΨR

n .

7.2.4 Efficient Decoder Implementation
This section describes an efficient implementation of the linearised lattice MBR decoder de-
cision rule. In contrast to Equation (7.11), the exact values of p(u|E) for all u ∈ Nn at orders
n = 1 . . . 4 are used to compute

Ê = argmin
E′∈E

{

θ0|E
′|+

4
∑

n=1

gn(E,E′)

}

, (7.13)

where gn(E,E′) =
∑

u∈Nn
θu#u(E′)p(u|E) is the contribution to the conditional expected

gain from n-grams of order n. An acceptor Ωn is constructed so that E ◦ Ωn assigns order n
partial gain gn(E,E′) to all paths E ∈ E . Ωn is derived from the mapping transducer Φn by
assigning arc weight θu× p(u|E) to arcs with output label u and then projecting on the input
labels. The algorithm in Figure 7.13 performs this procedure. For each n-gram u = wn

1 in
Nn arcs of Ωn have the form shown in Figure 7.11.

wn-1
1 wn

2

wn/θu × p(u|E)

Figure 7.11: Decoder arc example to apply partial gain associated with n-gram u = wn
1 .

figures/lmbr/fastcount-decoder-arc.eps
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Figure 7.12: Decoding acceptor Ω2 for all possible bigrams Σu = {u1, u2, u3, u4} formed from
lattice alphabet Σw = {w1, w2}. Ω2 is derived directly from the mapping transducer Φu.

Make-Decoder-Fst(Φn)

1 Ωn = Φn

2 for each state q ∈ Q[Ωn]
3 do for each arc e ∈ E[q] : o[e] 6= ǫ
4 do u← o[e]; w[e]← θu × p(u|E)
5 return Project(Ωn, input)

Figure 7.13: Algorithm to build decoding automaton Ωn. The input is the unweighted map-
ping transducer Φn for mapping a word lattice to a lattice of order-n sequences.

Figure 7.12 shows a decoding acceptor example Ω2 derived from the n-gram mapping
transducer Φ2 in Figure 7.5.1 Decoding with the acceptors Ωn, n = 1 . . . 4 requires only four
compositions; this is much more efficient than the sequential method of Section 7.1.4 which
requires a separate composition with the acceptor Ωu for each u ∈ N .

Decoding proceeds as follows. To apply θ0 a copy is made of E , called E0, with fixed weight
θ0 on all arcs. The decoder is formed as the composition chain

E0 ◦ Ω1 ◦ Ω2 ◦ Ω3 ◦ Ω4, (7.14)

and the translation hypothesis Ê that maximises the conditional expected gain is extracted
as the maximum cost string. The maximum cost string is easily extracted by multiplying all
arc weights by −1 and using the shortest path algorithm in the tropical semiring.

7.3 Lattice MBR Decoding Experiments
This section describes large lattice minimum Bayes-risk decoding performance and efficiency
experiments. For Arabic→English translation, single-system lattice-based minimum Bayes-
risk decoding is evaluated within the framework of the NIST MT08 machine translation task.2

The development set mt0205tune is formed from the odd numbered sentences of the MT02–
MT05 evaluation sets; the even numbered sentences form the validation set mt0205test. Test
performance is measured on the MT08 sets: mt08nw for newswire data and mt08ng for

1The n-gram factors θu are omitted for clarity.
2http://www.itl.nist.gov/iad/mig/tests/mt/2008/

figures/lmbr/fastcount-bigram-decoder.eps
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newsgroup data. For Chinese→English translation, the testsets are those of the GALE P3
evaluation and include separate development and evaluation sets for newswire and web data.
The Chinese→English tuning sets exclude the sentences from NIST MT08; these are reserved
for the evaluation sets mt08.text.nw (newswire data) and mt08.text.web (web data). All
BLEU scores and TER are reported for uncased translations. Tables 7.1 and 7.2 summarise
the number of sentences and genre of these testsets.

AR→EN Testset Genre Sentences

mt0205tune news 2075
mt0205test news 2040
mt08nw news 813
mt08ng web 547

Table 7.1: Development and testsets for NIST MT08 Arabic→English translation.

ZH→EN Testset Genre Sentences

tune.text.nw news 1755
mt08.text.nw news 691
tune.text.web web 2495
mt08.text.web web 666

Table 7.2: Development and testsets for GALE P3 Chinese→English translation.

7.3.1 System Development
For Arabic→English translation, word alignments are generated using MTTK (Deng and
Byrne, 2008) over approximately 150M words of parallel text specified for the constrained
NIST MT08 Arabic→English track. Prior to generating the alignments, the Arabic side of
the parallel text is pre-processed with the MADA morphological toolkit (Habash and Rambow,
2005). The word alignments for Chinese→English translation are trained from nearly 250M
words of parallel text distributed for the GALE P3 evaluation by BBN Technologies. The
source side of the parallel data is pre-processed with a Chinese word segmentation algorithm
prior to generating the alignments.

For both language pairs, hierarchical rules are extracted from the aligned text using the
constraints described in Chiang (2007) with the count and pattern filters of Iglesias et al.
(2009a). First-pass translation decoding with HiFST (Iglesias et al., 2009b) (Section 4.3.3)
generates word lattices encoding large numbers of alternative hypotheses. A shallow-1 gram-
mar (de Gispert et al., 2010) is used for Arabic→English decoding. With this grammar, only
a single level of rule nesting is allowed and no pruning is required in search. Chinese→English
decoding supports arbitrary nesting with a fully hierarchical grammar. In practice, the degree
of nesting is indirectly constrained by setting the maximum number of words that may be cov-
ered by each non-terminal. The larger space of translations encoded by the Chinese→English
grammar requires pruning during search.

For both systems, minimum error rate training (Och, 2003) under the BLEU score (Pap-
ineni et al., 2002b) optimises the following list of features with respect to the development set:
target language model, source→target and target→source rule translation models, word and
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Configuration
Newswire Data Web Data

mt0205tune mt0205test mt08nw mt08ng
BLEU TER BLEU TER BLEU TER BLEU TER

HiFST+5g 54.23 40.49 53.78 41.02 51.35 43.47 36.31 54.92
+MBR 54.58 40.29 54.31 40.73 51.82 43.34 36.45 54.97
+LMBR 54.99 39.91 54.55 40.50 52.25 43.10 36.79 54.64

Table 7.3: BLEU scores and TER for k-best and lattice MBR of NIST MT08 Arabic→English
evaluation sets. The lists used for k-best MBR contain 1000 hypotheses.

Configuration
Newswire Data Web Data

tune.text.nw mt08.text.nw tune.text.web mt08.text.web
BLEU TER BLEU TER BLEU TER BLEU TER

HiFST+5g 34.46 59.25 34.55 57.71 17.06 70.46 22.25 61.40
+MBR 34.93 59.15 34.93 57.51 17.31 70.11 23.01 61.12
+LMBR 35.00 59.23 35.13 57.44 17.38 70.56 23.83 60.71

Table 7.4: BLEU scores and TER for k-best and lattice MBR of GALE P3 Chinese→English
evaluation sets. The lists used for k-best MBR contain 1000 hypotheses.

rule penalties, number of usages of the glue rule, source→target and target→source lexical
translation probabilities, and three count-based features that track the observed frequency
of rules in the parallel data (Bender et al., 2007). The English language model used during
decoding is a modified Kneser-Ney (Kneser and Ney, 1995) smoothed 4-gram estimated over
the English side of the parallel text and a 465M word subset of the English GigaWord Third
Edition (Graff et al., 2007).

The first-pass HiFST lattices are rescored with large 5-gram sentence-specific zero-cutoff
stupid-backoff language models (Brants et al., 2007) estimated over a collection of more than
six billion words of English language training text (Blackwood et al., 2009). For k-best list
MBR, the top 1000 hypotheses are extracted from each of the first-pass translation lattices.

The posterior distribution scaling parameter α and per-word factor θ0 in the lattice MBR
decoder of Equation (7.7) are optimised with respect to the development set: mt0205tune for
Arabic→English translation, and tune.text.nw or tune.text.web for Chinese→English trans-
lation.

7.3.2 Lattice MBR Results and Analysis
Tables 7.3 and 7.4 show single-system LMBR decoding baselines for Arabic→English and
Chinese→English translation. The first row of each table shows the 5-gram rescored first-
pass translation ML 1-best BLEU score and TER (Section 4.4.4). Row MBR shows the gains
from regular k-best MBR and row LMBR shows the gains from lattice-based MBR.

The results show that for Arabic→English translation, both MBR and LMBR provide
good gains over the ML 1-best. LMBR gives absolute gains of between +0.2 and +0.4 BLEU
compared to k-best MBR on each of the development and testsets. Overall gains from LMBR
compared to the ML 1-best are about +0.8 BLEU for newswire data and +0.5 BLEU for web
data. These results validate the linearised BLEU approximation of Equation (7.7), and show
that decoding can be applied to lattices containing even very large numbers of translation
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mt0205tune mt0205test
BLEU TER BP BLEU TER BP

HiFST+5g 54.23 40.49 0.995 53.78 41.02 0.994

+LMBR

p = 1 54.36 40.46 0.996 54.02 40.91 0.995
p = 2 54.46 40.51 0.998 54.23 40.94 0.997
p = 3 54.67 40.20 0.991 54.33 40.63 0.994
p = 4 54.70 40.07 0.992 54.42 40.48 0.992
p = 5 54.82 39.92 0.990 54.42 40.41 0.989
p = 6 54.97 39.74 0.987 54.48 40.35 0.987
p = 7 54.96 39.67 0.985 54.50 40.26 0.984

Table 7.5: BLEU score, TER and brevity penalty (BP) for LMBR decoding of NIST MT08
Arabic→English testsets at a range of lattice likelihood pruning thresholds p.

hypotheses. For Chinese→English MBR decoding, lattice MBR improves only a little over
k-best MBR, with larger gains in some places.

7.3.2.1 Likelihood Pruning and MBR Decoding Performance

The effect of likelihood pruning on lattice MBR for Arabic→English translation of mt0205tune
and mt0205test is shown in Table 7.5. The parameter p specifies a negative log probability
pruning threshold that is used to prune hypotheses relative to the best translation in the
lattice. Likelihood pruning is applied using the WFST prune operation (Allauzen et al.,
2007) (Chapter 4, Section 4.2.2). Larger values of p indicate larger thresholds and thus
pruning of fewer hypotheses; the heaviest pruning occurs at p = 1. It is clear from the results
in the table that the BLEU score is maximised by pruning as little as possible. Comparing
these results with the k-best MBR gains in Table 7.3 shows that lattice MBR achieves as
large a gain as k-best MBR even when the lattices are pruned to p = 3. These results show
that the k-best lists contain only a relatively small subset of the hypotheses encoded in the
lattice and that these additional hypotheses are useful for MBR decoding.

7.3.2.2 Evidence Space Size and MBR Decoding Performance

One of the main reasons why lattice MBR decoding performs so much better than k-best
list MBR decoding is that it is able to exploit a much larger evidence space of translations
(Tromble et al., 2008). The purpose of the following experiment is to show that k-best list
MBR decoding is limited because the k-best lists often represent a surprisingly small fraction
of the total probability mass in the lattice.

Let Ee denote the full evidence space of the lattice and Ek the k-best list of hypotheses
obtained from it. If φ(E) =

∑

E∈E P (E|F ) sums the posterior translation probabilities of
all hypotheses in E (computed according to Equation (7.4)), then the proportion of lattice
probability mass contained in the k-best list is the ratio φ(Ek)/φ(Ee). It follows that the
proportion of lattice probability mass missing from the list is 1−φ(Ek)/φ(Ee). These statistics
can be computed exactly by converting the k-best list to a lattice and pushing weights to the
final state in the log semiring (Chapter 2, Section 2.4.3).

Figure 7.14 plots the proportion of lattice probability mass missing from k-best lists of size
k = 1000 hypotheses (top) and k = 20000 hypotheses (bottom) as a function of the number of
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Figure 7.14: Proportion of lattice probability mass 1− φ(Ek)/φ(Ee) missing from k-best lists
of size k = 1000 (top) and k = 20000 (bottom) as a function of the number of lattice n-grams
|N | for the NIST MT08 Arabic→English mt0205tune and mt0205test translation testsets.

lattice n-grams |N | for the Arabic→English mt0205tune and mt0205test testsets. The lattices
for this experiment were generated at a likelihood pruning threshold of p = 7. For k = 1000,
about half of the sentences in each testset have 1000 or fewer hypotheses and therefore use the
same space for lattice and k-best list MBR decoding (for these sentences En = Ee). However,
the plots show that there are many sentences for which the top 1000 hypotheses accounts
for only a relatively small proportion of the total lattice probability mass. For example, 111
sentences of mt0205tune and 122 sentences of mt0205test (approximately 5% of each testset)
have 1000-best lists that account for less than 10% of the lattice probability mass; this means
that more than 90% of the probability mass distributed amongst the hypotheses in the lattice
evidence space is missing from the 1000-best lists and therefore ignored during 1000-best list
MBR decoding. Comparing k = 1000 and k = 20000 shows that longer k-best lists account
for a larger proportion of the lattice probability mass. However, there are still a fair number
of sentences, particularly the longer sentences, for which k = 20000 lists account for less than
50% of the total lattice probability mass. Table 7.6 shows the average proportion of missing

figures/lmbr/masses.aren.mt0205tune.n1000.eps
figures/lmbr/masses.aren.mt0205test.n1000.eps
figures/lmbr/masses.aren.mt0205tune.n20000.eps
figures/lmbr/masses.aren.mt0205test.n20000.eps
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k mt0205tune mt0205test

1000 24.41 24.91
10000 13.96 14.27
20000 11.73 12.00
50000 9.30 9.52

100000 7.78 7.98

Table 7.6: Average proportion (%) of missing probability mass by k-best list size for the NIST
MT08 Arabic→English mt0205tune and mt0205test translation testsets.

probability mass in k-best lists of various sizes for mt0205tune and mt0205test.
Although hypotheses in the lattice that are missing from the k-best lists may have low

probability with respect to the ML 1-best translation, there are so many of them that their
aggregate probability is significant and can be usefully exploited to improve translation quality
through lattice minimum Bayes-risk decoding. The investigation of evidence space size in this
section shows why k-best list minimum Bayes-risk decoding does not normally perform so well.
The full space of the lattice is required for good performance.

7.3.2.3 Hybrid Decision Rule Accuracy

The hybrid decision rule for linearised lattice minimum Bayes-risk decoding (Allauzen et al.,
2010) can be written as

Ê = argmax
E′∈E

{

θ0|E
′|+

∑

u∈N :1≤|u|≤k

θ|u|#u(E′)p(u|E) +
∑

u∈N :k<|u|≤N

θ|u|#u(E′)c(u|E)

}

, (7.15)

where k determines the range of n-gram orders at which the path posterior probabilities
p(u|E) (Equation (7.9)) and conditional expected counts c(u|E) (Equation (7.10)) are used
to compute the conditional expected gain. Note that when k = 0 the conditional expected
counts are used for all orders, and when k = 4 the path posterior probabilities are used for
all orders.

The following experiment investigates the accuracy of the hybrid decision rule approxima-
tion in lattice MBR decoding. Tables 7.7 and 7.8 show BLEU scores for Arabic→English and
Chinese→English first-pass ML 1-best translations (row ML), regular linearised lattice MBR
(row LMBR) (Equation (7.7)), and scores obtained using the hybrid decision rule of Equation
(7.15) for 0 ≤ k ≤ 4. The optimised LMBR parameters for Arabic→English translation are
α = 0.4 and θ0 = −0.02 for newswire data, and α = 0.6 and θ0 = 0.01 for newsgroup data.
For Chinese→English translation, α = 0.4 for both newswire and web data, with θ0 = −0.02
for newswire data and θ0 = +0.10 for web data.

For both Arabic→English and Chinese→English translation, the hybrid decision rule per-
forms poorly when k = 0 so that the conditional expected counts are used for all orders. The
k = 0 hybrid decoding scores are considerably lower than even the ML 1-best scores. This
poor performance is because there are many unigrams u for which c(u|E) is much greater than
p(u|E). The selection of the consensus translation maximising the conditional expected gain is
then dominated by unigram matches: this has a big impact on LMBR decoding performance.
If the posterior probabilities are used for unigrams and conditional expected counts are used
for all other orders (i.e. k = 1), then Chinese→English hybrid MBR decoding performs as
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mt0205tune mt0205test mt08nw mt08ng

ML 54.2 53.8 51.4 36.3

k

0 52.6 52.3 49.8 34.5
1 54.8 54.4 52.2 36.6
2 54.9 54.5 52.4 36.8
3 54.9 54.5 52.4 36.8
4 55.0 54.6 52.4 36.8

LMBR 55.0 54.6 52.4 36.8

Table 7.7: BLEU scores for Arabic→English maximum likelihood translation, linearised lat-
tice MBR, and MBR decoding using the hybrid decision rule at values of k = 0 . . . 4.

tune.text.nw mt08.text.nw tune.text.web mt08.text.web

ML 34.5 34.6 17.1 22.3

k

0 33.5 34.0 17.0 23.7
1 34.9 35.1 17.3 23.9
2 35.0 35.1 17.4 23.9
3 35.0 35.1 17.4 23.8
4 35.0 35.1 17.4 23.8

LMBR 35.0 35.1 17.4 23.8

Table 7.8: BLEU scores for Chinese→English maximum likelihood translation, linearised
lattice MBR, and MBR decoding using the hybrid decision rule at values of k = 0 . . . 4.

well as regular linearised lattice MBR on the mt08.text.nw and mt08.text.web testsets. For
Arabic→English translation, the hybrid decision rule is an accurate approximation only when
k ≥ 2. The exact contribution to the gain function must be computed using the path posterior
probabilities for orders n = 1 and n = 2.

Figure 7.15 compares the n-gram path posterior probabilities and conditional expected
counts with ratio c(u|E)/p(u|E) > 1.05 for n-grams in a single sentence of the mt0205tune
testset. The large differences between p(u|E) and c(u|E) for many unigrams shows why the
hybrid decision rule is a poor approximation when k = 0. Some large bigram differences are
also observed; this explains the slight degradation in Arabic→English hybrid LMBR decoding
at k = 1. For higher-order n-grams, the conditional expected counts are an acceptable
approximation since there are relatively few higher-order n-grams with significantly differing
values of p(u|E) and c(u|E).

These experiments have shown that the hybrid decoder of Equation (7.15) is an acceptable
approximation for Chinese→English LMBR decoding when k = 1, and for Arabic→English
LMBR decoding when k = 2. These results differ from Allauzen et al. (2010) where the k = 1
hybrid decoder was reported to perform well for both language pairs. Since the suitability of
the hybrid decoder depends on how closely c(u|E) approximates p(u|E), the fast path counting
transducers proposed in Section 7.2 should be used to extract the exact statistics required to
compute the n-gram path posterior probabilities at all orders.
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n-gram order ratio c(u|E)
p(u|E) p(u|E) c(u|E) n-gram u

1g

10.54 1.00 10.54 the
6.08 1.00 6.08 of
5.24 1.00 5.24 ,
3.92 1.00 3.92 ”
2.72 1.00 2.71 which
2.27 1.00 2.27 in
2.18 1.00 2.18 and
2.00 1.00 2.00 line
2.00 1.00 2.00 one
1.98 1.00 1.98 commitment
1.98 1.00 1.98 hariri
1.77 0.99 1.75 president
1.73 0.95 1.64 to
1.72 1.00 1.72 national
1.70 0.97 1.66 -
1.61 0.99 1.60 @-@
1.59 0.95 1.51 is
1.56 0.99 1.55 al
1.43 0.84 1.20 last
1.35 0.74 1.00 on
1.29 1.00 1.29 .
1.27 0.78 0.99 it
1.18 1.00 1.18 with
1.14 0.87 0.99 was
1.11 1.00 1.11 him
1.10 0.31 0.34 a
1.08 0.21 0.23 that
1.07 0.30 0.32 had
1.05 0.32 0.33 has

2g

3.45 0.99 3.43 of the
1.61 0.86 1.38 , which
1.56 0.99 1.55 al @-@
1.55 0.92 1.43 , and
1.52 0.99 1.50 the ”
1.42 0.99 1.41 @-@ hariri
1.31 0.75 0.99 the last
1.29 0.70 0.91 ” which
1.20 0.56 0.67 ” ,
1.15 0.92 1.05 to the
1.10 0.63 0.69 which was
1.09 0.73 0.80 the president
1.09 0.29 0.32 line ,
1.08 0.27 0.29 , ”
1.06 0.99 1.06 the commitment
1.06 0.98 1.03 commitment of

3g

1.42 0.99 1.41 al @-@ hariri
1.20 0.56 0.67 ” , which
1.08 0.26 0.28 , ” which
1.07 0.46 0.49 of the ”
1.06 0.97 1.02 the commitment of
1.06 0.93 0.98 commitment of the

4g 1.06 0.92 0.97 the commitment of the

Figure 7.15: Path posterior probabilities p(u|E) and conditional expected counts c(u|E) of
n-grams with ratio c(u|E)/p(u|E) > 1.05 for an Arabic→English mt0205tune testset sentence.
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Figure 7.16: Expected target sentence length E(l) and total number of lattice n-grams (p = 7)
for the NIST MT08 Arabic→English mt0205tune and mt0205test evaluation sets.

7.3.3 Lattice Minimum Bayes-Risk Decoding Efficiency
This section compares the lattice minimum Bayes-risk decoding efficiency of the sequential
implementation (Tromble et al., 2008) described in Section 7.1.3, and the implementation
based on path counting transducers proposed in Section 7.2.3. It should be noted that the
sequential method and both simultaneous implementations ΨL

n and ΨR
n yield the same hy-

potheses (allowing for numerical accuracy); they differ only in speed and memory usage.
The time required for linearised LMBR decoding using the decision rule of Equation

(7.7) is a function of the number of n-grams in the lattice. It is useful to examine how
the number of n-grams varies as a function of the target sentence length. Figure 7.16 plots
the total number of lattice n-grams against expected sentence length for each lattice in the
NIST MT08 Arabic→English mt0205tune and mt0205test testsets. Most sentences have an
expected length of less than 80 words and contain less than 3000 n-grams. LMBR decoding is
fast for these sentences. Some sentences contain many more n-grams than expected. These are
sentences with a high lattice branching factor resulting from the existence of many alternative
translations and applications of hierarchical rules in first-pass decoding. Although quicker
than k-best list MBR, computing many thousands of n-gram posterior probabilities from a
large lattice one-by-one in sequence is inefficient.

The time in seconds required to compute the n-gram path posterior probabilities, time
required to execute the MBR decision rule, and overall time, summed over each sentence of
the Arabic→English and Chinese→English testsets, is shown in Tables 7.9 and 7.10.

7.3.3.1 Posteriors Efficiency

In calculating path posterior n-gram probabilities p(u|E), the use of the left-most matching
path counting transducer ΨL

n is found to be around twice as slow as the sequential method
for both Arabic→English and Chinese→English lattice decoding. This is due to the difficulty
of counting higher-order n-grams in large lattices. ΨL

n is clearly not an appropriate form of
counting transducer for efficient lattice MBR. Using the right-most matching path counting
transducer ΨR

n is nearly twice as fast as the sequential method for Arabic→English lattices,

figures/lmbr/scatter.mt0205tune.eps
figures/lmbr/scatter.mt0205test.eps
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mt0205tune mt0205test mt08nw mt08ng

Posteriors
sequential 3160 3306 2090 3791

ΨL
n 6880 7387 4201 8796

ΨR
n 1746 1789 1182 2787

Decoding
sequential 4340 4530 2225 4104

Ψn 284 319 118 197

Overall
sequential 7711 8065 4437 8085

ΨL
n 7458 8075 4495 9199

ΨR
n 2321 2348 1468 3149

Table 7.9: Time in seconds for n-gram path posterior probability computation and decoding
using sequential and left-most (ΨL

n) or right-most (ΨR
n ) counting transducer implementations

for Arabic→English translation testsets.

tune.text.nw mt08.text.nw tune.text.web mt08.text.web

Posteriors
sequential 7779 3974 11796 2581

ΨL
n 12321 6208 19301 4341

ΨR
n 2954 1525 4223 855

Decoding
sequential 10161 4725 16072 3215

Ψn 245 91 352 77

Overall
sequential 18356 8899 28506 5922

ΨL
n 13013 6503 20341 4554

ΨR
n 3576 1795 5157 1047

Table 7.10: Time in seconds for n-gram path posterior probability computation and decoding
using sequential and left-most (ΨL

n) or right-most (ΨR
n ) counting transducer implementations

for Chinese→English translation testsets.

and nearly three times faster for the much larger Chinese→English lattices, which contain
many more n-grams. This difference in speed is due to the simultaneous computation of all
n-grams of a fixed order in a single composition. The transducer ΨR

n is also designed so as to
allow the use of an efficient forward algorithm. For higher-order n, the composition En ◦ ΨR

n

requires less memory and produces a smaller machine than En ◦ ΨL
n . This shows that it is

easier to count weighted paths by the final occurrence of a symbol than by the first. Since
much of the time in calculation is spent dealing with ǫ-arcs that are ultimately removed, an
optimised composition algorithm that skips over such redundant structure may lead to further
improvements in time efficiency.

7.3.3.2 Decoding Efficiency

Decoding times are significantly faster using Ωn than the sequential method; average decoding
time is just 0.1 seconds per sentence. Decoding is faster since only four compositions are
required to assign the exact expected partial gain to all hypotheses in the lattice. The absence
of ǫ-arcs and deterministic topology of Ωn also allows for very fast composition.
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Figure 7.17: Total decoding time in seconds versus number of lattice n-grams for
Arabic→English mt0205tune translation testset.
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Figure 7.18: Total decoding time in seconds versus number of lattice n-grams for
Chinese→English tune.text.nw translation testset.

figures/lmbr/fastcount-times.aren.eps
figures/lmbr/fastcount-times.zhen.eps
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7.3.3.3 Overall Efficiency

The overall MBR time is dominated by the calculation of the path posterior n-gram prob-
abilities. This is a function of the number of n-grams in the lattice |N |. For each sentence
in the Arabic→English mt0205tune and Chinese→English tune.text.nw testsets, Figures 7.17
and 7.18 plot the total LMBR time for the sequential method (marked ‘o’) and for the im-
plementation using the right-most matching efficient path counting transducer ΨR

n (marked
‘+’). This compares the two techniques on a sentence-by-sentence basis. As |N | grows, the
simultaneous path counting transducer is found to be much more efficient. Although the
path counting transducer ΨR

n requires the additional step of mapping to a lattice of n-gram
sequences, a large proportion of the testset sentences can be processed more quickly. Using
the sequential method, MBR decoding can be performed in one second or less for 768 out
of 2075 Arabic→ mt0205tune sentences; using ΨR

n , 1608 sentences can be processed in one
second or less. These results suggest the path counting transducer ΨR

n is a more appropriate
implementation for real-time MBR translation decoding.

7.3.4 Summary and Conclusions
This chapter proposed an efficient and exact implementation of linearised lattice minimum
Bayes-risk decoding using general purpose weighted finite-state transducer operations (Black-
wood and Byrne, 2010). A mapping transducer was described for transforming sequences
of words to sequences of n-grams, simplifying the extraction of higher-order statistics. A
weighted path counting transducer ΨR

n was introduced that can be used to extract the re-
quired statistics for all n-grams of order n in a single composition. The topology of ΨR

n

is designed to allow the path posterior probabilities to be efficiently accumulated using a
modified version of the forward procedure.

The efficiency of the path counting transducer was evaluated on large Arabic→English
and Chinese→English machine translation lattices, where it was shown to be nearly twice
as fast as the sequential method of Tromble et al. (2008). The importance of a large lattice
evidence space was demonstrated by examining the effect of pruning on MBR performance,
and through a comparison of lattice decoding with regular k-best list decoding. Analysing
the efficiency of the two forms of weighted path counting transducer shows that it is more
efficient to count paths by the last occurrence of a symbol than by the first.

Even approximate search criteria should be implemented exactly where possible, so that
it is clear exactly what the system is doing. For SMT lattices, conflating p(u|E) and c(u|E)
may not be a serious problem, but for other scenarios – especially where symbol sequences
are repeated multiple times on the same path – it may be a poor approximation. The
efficient weighted path counting operations described in this chapter are general techniques
that may prove useful in applications other than machine translation, whenever it is necessary
to accumulate statistics at the path level rather than the symbol or symbol sequence level.

In the following chapter, lattice minimum Bayes-risk decoding is applied to the task of
combining multiple statistical machine translation lattices generated from alternative analyses
of the foreign source sentence.



CHAPTER 8
Lattice Minimum

Bayes-Risk Decoding for
System Combination

Different machine translation paradigms have different strengths and weaknesses. Al-
though example-based systems are capable of generating highly accurate translations

when the input sentence matches a previously observed example, SMT systems typically pro-
vide better generalisation and robustness. The goal of hypothesis combination is to combine
the outputs from multiple translations in a way that is able to exploit differences in the nature
of errors made by the individual systems.

This chapter extends the lattice minimum Bayes-risk decoder described in Chapter 7 to
the task of combining multiple statistical machine translation lattices. This allows the decoder
to operate on a much richer and more diverse space of translations, resulting in significant
improvements in translation quality for several language pairs.

A comparative overview of recent approaches to machine translation combination is pre-
sented in Section 8.1. An efficient lattice MBR system combination decoder based on weighted
finite-state transducers is introduced in Section 8.2. Arabic→English, Chinese→English and
Finnish→English multi-input translation experiments exploiting alternative analyses of the
source language input sentence are described in Section 8.3. In Section 8.4, the lattice MBR
combination decoder is used for multi-source translation by combining French→English and
Spanish→English translation lattices.

96
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8.1 Background and Related Work
This section presents an overview and comparison of the main approaches to improving ma-
chine translation quality through the combination of multiple system outputs.

8.1.1 Consensus Network Decoding for Machine Translation
Probably the most widely used method for system combination is consensus network decoding.
Consensus network decoding has been successfully applied to combine multiple system out-
puts in automatic speech recognition using recogniser output voting error reduction (ROVER)
based on simple confidence measures (Fiscus, 1997). More recently, consensus decoding tech-
niques have been demonstrated to improve the quality of machine translation (Matusov et al.,
2006; Rosti et al., 2007a,b; Sim et al., 2007). The importance of ensuring sufficient diversity
amongst individual system outputs is shown to have a significant impact on consensus de-
coding performance in an empirical study by Macherey and Och (2007). Consensus networks
are constructed from k-best lists by aligning each hypothesis against a single alignment refer-
ence. For machine translation, an appropriate choice of alignment reference is the minimum
Bayes-risk hypothesis (Kumar and Byrne, 2004). Alignments are computed with respect to
alignment metrics such as Word Edit Rate (WER) in Bangalore et al. (2001) or Translation
Edit Rate (TER) in Sim et al. (2007). The use of TER is motivated by the greater flexibility
in word reordering allowed by shifts and the relative simplicity of the alignment model.

The consensus network created by aligning each hypothesis to the alignment reference
consists of a sequence of word alternatives with scores. Figure 8.1 shows an example word
confusion network from Sim et al. (2007). The scores on each arc indicate the number of
hypotheses for which the labelled word was aligned to the chosen reference. The consensus
output is easily found during decoding by selecting the word sequence with the maximum
score. Computing alignments for each pair of hypotheses is computationally expensive so this
form of system combination is usually limited to relatively short k-best lists.

Matusov et al. (2006) use IBM Model 1 and HMM alignments to explicitly model word
reordering in pairs of hypotheses produced by different machine translation systems. These
alignments allow each translation alternative to be reordered with respect to a chosen ref-
erence. The confusion network is formed as the union of the monotone one-to-one word
alignments and the consensus translation is then extracted using voting based on global sys-
tem probabilities. The reordering and alignment of words in the confusion network allows
consensus translations that differ from all of the original system translations. One limitation
of this approach is that it is expensive to compute the alignment so only the single best
translation hypothesis from each system is considered during combination.

Sentence-level, phrase-level and word-level system combination approaches based on con-
fidence measures have been applied to the task of combining k-best lists generated by six
different machine translation systems (Rosti et al., 2007a). At the sentence level, a linear
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Figure 8.1: Word confusion network formed from four alternative translation hypotheses.
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interpolation of the sum, max and average system-specific confidence scores, sentence poste-
rior probabilities and a 5-gram language model are combined in a generalised linear model
to re-rank merged k-best lists using feature weights optimised on the tuning set. For phrase-
level combination, sentence-specific phrase tables are estimated using posterior probabilities
and target-to-source phrase alignments. The best hypothesis is obtained by re-decoding with
the new phrase table and a language model. System combination was shown to be most
effective at the word level; decoding selects the hypothesis with minimum Bayes risk under
WER, based on a TER alignment to the sentence that best agrees with the other hypotheses
following the work of Sim et al. (2007).

8.1.2 Multi-Source Machine Translation
System combination can be applied to the task of multi-source translation whenever multiple
translations of the source language input sentence are available. Multinational corporations
and multi-lingual international organisations such as the European Parliament and the United
Nations often need to provide translations in multiple languages. It is interesting to consider
how such translations can be exploited to improve overall quality. The main motivation for
multi-source translation is that some of the ambiguity that must be resolved in translating
between one pair of languages may not be present in a different pair.

For example, a French document might first be translated into Spanish. If the document
must also be translated into English, then it is useful to be able to exploit both existing transla-
tions by combining French→English and Spanish→English translation knowledge. Combining
translations from multiple sources is useful since different language pairs might better handle
the translation of particular syntactic or semantic ambiguities, and the inclusion of additional
source inputs with similar word order to the target language may reduce the prevalence of
errors due to limitations in word reordering associated with particular language pairs.

Och and Ney (2001) show small improvements in WER through multi-source translation
of up to six European languages by replacing the single-system translation probability in the
standard Bayes decision rule with either the product or max of the individual system trans-
lation probabilities. The advantage of this simple approach is that no changes are required
to the decoder or search algorithms. However, only the 1-best output from each bilingual
system is considered and there is no hypothesis combination, only likelihood-based hypothe-
sis re-ranking. More recently, Schwartz (2008) has shown the product and max methods to
perform less well with modern multi-parallel corpora such as Europarl (Koehn, 2005) when
evaluated using translation metrics such as BLEU and TER.

Consensus decoding based on word alignments is applied to multi-source translation in
order to select hypotheses from a combination of Chinese→English and Japanese→English
translation outputs in Matusov et al. (2006). The errors common in one language pair may
be correctly translated in the other language pair and consensus decoding is an effective way
of exploiting the individual strengths of each system. Again, only the 1-best translation from
each source language is considered during combination. Multi-source translation using two
Chinese→English and Japanese→English systems results in good gains in BLEU score with
respect to the best of the individual translations.

Schroeder et al. (2009) compares three methods for multi-source translation: (i) selection
of a single hypothesis from one of a set of regular bilingual translation outputs using the
max method of Och and Ney (2001) (this is the baseline); (ii) hypothesis combination using
consensus network decoding with a lattice of confusion networks following the work of Rosti
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et al. (2007b); and (iii) a novel approach to multi-source translation that combines multiple
source language input sentences as a single multi-lingual lattice prior to single-pass translation
decoding. System combination of individual k-best lists is found to be simpler and more
effective than the multi-lingual input lattice approach.

8.1.3 Multi-Input Machine Translation
If multiple representations of the input sentence in the same source language are available,
multi-input translation can be used to improve translation quality. One example of this is the
exploitation of multiple morphological decompositions of the source language sentence.

When translating from languages with a rich morphology it is common practice to apply
a morphological analyser to the training corpus and evaluation data prior to training the
alignments and models used during translation. In phrase-based and hierarchical phrase-based
statistical machine translation systems, different morphological analyses result in different
phrasal constituents and probabilities (phrase-pairs in phrase-based SMT; hierarchical rules
in hierarchical phrase-based SMT). Multiple translations can be generated by running the
same system trained on each of the morphological analyses, a technique known as hybrid
translation. MBR decoding over k-best lists has been shown to improve Arabic→English
and Finnish→English translation quality by combining translations generated from multiple
morphological decompositions of the foreign language sentence (de Gispert et al., 2009). The
experiments presented later in this chapter extend these techniques to lattice-based MBR
decoding. Figure 8.2 shows the Arabic→English multi-input hybrid translation pipeline.
Lattice MBR decoding is an appropriate framework for combination since it allows for efficient
combination of large lattices generated from multiple alternative morphological analyses of
the input sentence.

ةيريض. ةن, اشنت نا تررقو  

ىف ةماعلا ةيعمجلل ةعماج  

Aسم?او ةيناثلا اهترود  ;

MADA Translation
Reordering /

LMs / ...

SAKHR

MBR 

a preparatory committee 

of the whole of the 

general assembly is to be 

established at its fifty @-

@ second session ;Translation
Reordering / 

LMs / ...

w+ qrrt >n tn$A ljnp tHDyryp jAmEp l+ AljmEyp AlEAmp fy dwrthA AlvAnyp w+ Alxmsyn ;

ني سمخ + لا*و ةي ناث +ل ا اه+ ت رود ىف ةماع +لا ةيعمج +ل*@ل ةعماج+ ةيريض.!! ةن,^ اشنت نا تررق +و  ;

Figure 8.2: Multiple lattice hybrid translation pipeline using MBR decoding to combine
lattices generated by two different morphological analysers: MADA and SAKHR.

Multi-input translation can be applied to other tasks where there is uncertainty associated
with the input. Chinese text is normally preprocessed by segmenting the unbroken charac-
ter stream as a series of words (Chang et al., 2008). Since there is uncertainty about the
most appropriate segmentation for MT, multiple segmentations can be translated separately
and then combined. Multi-input methods may also be appropriate for translating alterna-
tive ASR transcriptions in speech translation (Mathias and Byrne, 2006), or for combining
translations generated from context-independent and context-dependent alignment models
(Brunning et al., 2009).

figures/syscomb/mada-sakhr-syscomb.eps
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8.1.4 Lattice-Based Combination Techniques
Consensus decoding enforces a monotone one-to-one alignment and order on the words of the
translated sentence with null tokens used to ensure all hypotheses are the same length. While
this topology is well suited to the time series nature of automatic speech recognition, it is
less appropriate for machine translation which allows arbitrary alignments and a large degree
of phrase reordering. Furthermore, word-level confusion networks permit hypotheses that
break phrase-internal fluency and consistency, one of the main advantages of phrase-based
and hierarchical phrase-based systems. These limitations motivate more recent lattice-based
approaches to the combination of multiple translations.

8.2 Minimum Bayes-Risk Decoding for Lattice
Combination

The much larger space of hypotheses encoded in lattices motivates the extension of lattice
MBR decoding to lattice MBR system combination. First-pass decoding results in a set of
M distinct translation lattices E(i), i = 1. . .M for each foreign input sentence. These lattices
might be generated by M separate translation systems, or, alternatively, the same translation
system under different training conditions or configurations. The evidence space for MBR
decoding is formed as the union of the individual lattices using the WFST union operator:

E =

M
⊕

i=1

E(i) (8.1)

Let N (i) = {u
(i)
1 , u

(i)
2 , . . ., u

(i)
|N |} denote the set of all n-grams in lattice E(i). Then the set of

all n-grams in the union of lattices E is defined as follows:

N =

M
⋃

i=1

N (i) (8.2)

With the definitions (8.1) and (8.2), the multiple lattice MBR system combination decoder
has the same form as the single lattice decoder of Equation (7.7). The only difference is in
the computation of the n-gram path posterior probabilities p(u|E). The posterior probability
of n-gram u in the union of lattices is computed as a linear interpolation of the posterior
probabilities according to the evidence of each individual lattice so that

p(u|E) =
M
∑

i=1

λi pi(u|E
(i)), (8.3)

where the parameters 0 ≤ λi ≤ 1 such that
∑M

i=1 λi = 1 specify the interpolation weight
associated with each system in the combination and are optimised with respect to a tuning
set. The system specific posteriors required for the interpolation are computed as

pi(u|E
(i)) =

∑

E∈E
(i)
u

Pi(E|F ), (8.4)
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Lmbr-System-Combination(E(1), . . . , E(M), αM
1 , λM

1 , θ0...4)

1 for i← 1 . . . M

2 do E(i) ← Normalize(αi × E
(i))

3 N (i) ← Extract-Ngrams(E(i))

4 for each u ∈ N (i)

5 do Ψu ←Make-Count-Fsa(u)

6 E
(i)
u ← E(i) ◦ Ψu

7 pi(u|E
(i))←

∑

E∈E
(i)
u

Pi(E|F )

8 N ←
⋃M

i=1N
(i)

9 for each u ∈ N

10 do p(u|E)←
∑M

i=1 λipi(u|E
(i))

11 Eh ← 0×
⊕M

i=1 E
(i)

12 Eh ← Fst-Optimize(Eh)
13 Eh ← Apply-Word-Factor(Eh, θ0)
14 for each u ∈ N
15 do Ωu ←Make-Gain-Fsa(u, θ|u|×p(u|E))
16 Eh ← Eh ◦ Ωu

17 return Find-Best-Path(Eh)

Figure 8.3: Lattice minimum Bayes-risk system combination algorithm.

where Pi(E|F ) is the posterior probability of translation E given source sentence F and the

sum is taken over the subset E
(i)
u = {E ∈ E(i) : #u(E) > 0} of the lattice containing paths

with at least one occurrence of the n-gram u. These posterior probabilities can be computed
efficiently by pushing weights in the log semiring, as described in Section 7.1.4. The smoothing
factor α in Equation (7.4) applied to the posterior translation probabilities can be optimised
independently for each set of lattices, or jointly for system combination.

8.2.1 Lattice Combination Implementation with WFSTs
The lattice minimum Bayes-risk system combination decoder over M individual evidence
spaces E(i), i = 1 . . . M is obtained by substituting the definitions (8.1), (8.2) and (8.3) into
the single-system LMBR decoder of Equation (7.7). The system combination hypothesis Ê+

that maximises the conditional expected gain is

Ê+ = argmax
E′∈

LM
i=1 E

(i)

{

θ0|E
′|+

∑

u∈
SM

i=1 N
(i)

(

θu#u(E′)

M
∑

i=1

λi pi(u|E
(i))

)}

, (8.5)

where pi(u|E
(i)) is the n-gram path posterior probability of u defined by Equation (8.4).

The lattice minimum Bayes-risk system combination decoder of Equation (8.5) is im-
plemented by the algorithm shown in Figure 8.3. The input parameters are the individual
evidence spaces E(1), . . . , E(M), exponential smoothing factors αM

1 , interpolation weights λM
1 ,

fixed per-word factor θ0 and order-specific n-gram factors θ1 . . . θ4.
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The evidence space is first normalised to form the smoothed posterior distribution (line
2). Next, the n-grams in each lattice E(i) are extracted (line 3). Then, the n-gram path
posterior probabilities pi(u|E

(i)) are computed from each evidence space E(i) (lines 4–7). These
probabilities can be efficiently computed using path counting transducers (Blackwood and
Byrne, 2010) (Section 7.2). The set of n-grams in the union of the lattices is formed (line
8), and the interpolated posterior distribution p(u|E) of Equation (8.3) is computed in lines
9 and 10. The system combination hypothesis space is formed as the unweighted union of
the M individual hypothesis spaces (line 11), and optimised by ǫ-removal, determinization,
and minimisation (line 12). MBR decoding in the union of the evidence spaces under the
interpolated distribution p(u|E) proceeds in exactly the same way as for single-system LMBR
decoding (lines 13–17). Fast decoding (Section 7.2.4) can be used to improve time efficiency.

Instead of computing the interpolated posterior distribution from the individual distribu-
tions as in Equation (8.3), the n-gram path posterior probabilities could be found directly
from the weighted union of lattice evidence spaces:

p(u|E) = p(u| ∪M
i=1 {λi × E

(i)}) (8.6)

However, the WFST optimisation operations (especially determinize) take a very long
time when applied to the weighted union of lattices containing many similar paths with
slightly different costs. If the lattice is not optimised, then computing the n-gram path
posterior probabilities is very slow. It is therefore much faster to compute pi(u|E

(i)) for each
individual lattice and then interpolate the posterior distribution offline. The optimisation of
the hypothesis space (line 12) is fast since the weights of the unioned lattices are removed
before the determinization.

8.3 Multi-Input Translation Experiments
This section describes the use of lattice minimum Bayes-risk decoding to improve the quality
of Arabic→English and Chinese→English translation by combining lattices generated from
multiple inputs (Section 8.1.3). Finnish→English system combination experiments are also
briefly summarised. For Arabic and Finnish translation, the multiple inputs consist of dif-
ferent morphological analyses of the input sentence (de Gispert et al., 2009). For Chinese
translation, the multiple inputs represent different Chinese word segmentations.

8.3.1 System Development and Lattice Generation
This section describes the experimental framework and lattice generation procedures used in
Arabic→English, Chinese→English, and Finnish→English LMBR system combination.

Arabic→English For Arabic→English translation, multi-input system combination is
evaluated within the framework of the NIST MT08 constrained track.1 The baseline transla-
tion system and testsets are the same as for single-system LMBR (Section 7.3).

Prior to generating the alignments, the Arabic side of the parallel text is pre-processed
according to one of three different morphological analyses. The MADA1 and MADA2 analyses
are generated using the MADA toolkit (Habash and Rambow, 2005). The SAKHR analysis

1http://www.itl.nist.gov/iad/mig/tests/mt/2008/
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Arabic wzrA′ Alby}p AlErb yTAlbwn bAglAq mfAEl dymwnp AlAsrA}ylY

MADA1 wzrA′ Alby}p AlErb yTAlbwn b+ <glAq mfAEl dymwnp Al<srA}yly
MADA2 wzrA′ Al+ by}p Al+ Erb yTAlbwn b+ <glAq mfAEl dymwnp Al+ <srA}yly
SAKHR wzrA′ Al+ by}p Al+ Erb yTAlbwn b+ AglAq mfAEl dymwnp Al+ AsrA}ylY

English arab environment ministers call for israeli nuclear reactor at dimona to be shut down

Figure 8.4: Buckwalter transliterated Arabic source language sentence, three different mor-
phological analyses, and one of the English references from NIST MT08 mt0205tune.

is generated using the Arabic Morphological Tagger of Sakhr Software.1 Figure 8.4 shows
the Buckwalter transliterated Arabic language input sentence, the sentences that result from
three different morphological analyses, and one of the English references for the first sentence
of the Arabic→English mt0205tune testset.

Separate translation systems are trained from each of these morphological analyses and
used to generate three different translation lattices for each sentence to be translated. Prior
to system combination, these lattices are rescored with 5-gram language models as described
in Chapter 5. It is these 5-gram rescored translation lattices that form the evidence space for
multi-input LMBR system combination.

Two-way and three-way k-best list and lattice-based minimum Bayes-risk decoding is used
to combine the individual system hypotheses. For k-best combination, k-best lists from each
system (k=500 for two-way combination; k=333 for three-way combination) are merged to
create an aggregate list, with posterior distributions over the individual lists interpolated to
form a new distribution over the merged list (de Gispert et al., 2009). MBR decoding under
the sentence-level BLEU score (Kumar and Byrne, 2004) is used to select the minimum risk
hypothesis.

For lattice-based combination, the hypothesis space is formed from the union of the full
lattices generated by decoding with each morphological analysis. The n-gram posterior prob-
abilities required by the lattice MBR decoder of Equation (8.5) are computed as a linear
interpolation of posteriors according to each individual system. The interpolation weights λi

in Equation (8.3) are optimised with respect to the tuning set mt0205tune.

Chinese→English Since written Chinese does not normally explicitly mark the spaces
between words, the Chinese input sentence must be segmented into a sequence of tokens before
alignments can be generated. Various word segmentation algorithms exist, with different
strengths and weaknesses (Chang et al., 2008). It is possible to improve translation quality
and robustness by training a hybrid SMT system from multiple segmentations and combining
the outputs using the lattice MBR decoder described in Section 8.2.

Chinese→English multi-input translation experiments are presented for the GALE P4
evaluation. The newswire testsets tune.text.nw and test.text.nw contain 3085 and 2055 sen-
tences. The web testsets tune.text.web and test.text.web contain 4221 and 3092 sentences.
The baseline system is the same hierarchical decoder as was used for single-system LMBR
(Section 7.3). However, two hierarchical rulesets are extracted and separate optimised trans-
lation decoders trained for each ruleset. The first ruleset is extracted using tokenized Chinese
data distributed by BBN Technologies for the GALE P4 evaluation. The second ruleset is

1http://www.sakhr.com/default.aspx
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extracted using a segmentation of the Chinese side of the parallel data produced using the
Oxford Chinese word segmentor (Zhang and Clark, 2007).

Separate lattices are generated by translating with each optimised decoder; these are
rescored with 5-gram language models as described in Chapter 5. The union of the lattices is
then used as the evidence space for lattice MBR system combination. The per-word factor θ0

and interpolation weights λi are optimised with respect to the tune.text.nw set for newswire
translation, and the tune.text.web set for web data translation.

Finnish →English Finnish has a rich morphology that can cause data sparsity problems
for alignments based on words. For this reason, the Finnish side of the parallel text is usually
preprocessed with a morphological analyser before generating the alignments. One of the aims
of Morpho Challenge 2009 (Kurimo et al., 2009) was to use unsupervised morpheme analysis to
improve the quality of statistical machine translation from morphologically complex languages
such as Finnish and German into English.

The effect of morpheme analysis on translation quality was evaluated by translating the
proceedings of the European Parliament (Koehn, 2005) using the Moses decoder (Koehn
et al., 2007).1 For both the word-based and morphologically analysed models, k-best lists
of depth k=200 were generated, converted to lattices, and then evaluated using the MBR
system combination framework described in Section 8.2.

The development set eu-dev contains 2849 sentences and the test set eu-test contains 3000
sentences. Approximately 1.2M lines of Finnish→English parallel data were used to train
the translation decoder. The k-best lists obtained by translating with the word-based and
morpheme-based models were generated to contain only unique hypotheses. The interpolation
weights λi are optimised with respect to the development set eu-dev.

8.3.2 Minimum Bayes-Risk Combination Results and Analysis
Arabic→English Table 8.1 shows IBM BLEU scores and TER for k-best list and lattice-

based minimum Bayes-risk system combination of Arabic→English translation lattices. The
rows A, B, and C show single-system MERT optimised translation scores after rescoring
with the large 5-gram language models for the MADA1, MADA2, and SAKHR systems
respectively. Interestingly, all three systems have quite similar translation quality as measured
by the BLEU score, although the SAKHR system handles the newsgroup set (mt08ng) less
successfully.

The following rows show the results of two-way and three-way system combination us-
ing k-best lists (merged k=1000) (row MBR) and lattices (row LMBR). In agreement with
de Gispert et al. (2009) large gains are observed for two-way k-best system combination of
lattices generated from alternative morphological decompositions. The relative gains from
lattice-based MBR are about +0.6 BLEU higher than the gains from k-best MBR. The opti-
mised interpolation weights for two-way lattice combination were λ1 = λ2 = 0.5 for all three
pairs A+B, B+C, and A+C. This is not surprising given that the ML 1-best BLEU scores of
all three systems are so similar.

These results show that lattice minimum Bayes-risk decoding is able to exploit the much
larger space of hypotheses encoded in multiple lattices, and that these additional hypotheses

1The Finnish→English first-pass translation and k-best list generation was performed by Sami Virpioja
and Mikko Kurimo of the Adaptive Informatics Research Centre, Helsinki University of Technology.
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Configuration
mt0205tune mt0205test mt08nw mt08ng

BLEU TER BLEU TER BLEU TER BLEU TER

A HiFST+5g 54.2 40.5 53.8 41.0 51.4 43.5 36.3 54.9
B HiFST+5g 53.8 41.2 53.6 41.4 51.4 43.8 36.2 54.1
C HiFST+5g 54.1 40.7 53.8 40.7 51.5 43.6 35.5 55.3

A+B
+MBR 55.1 40.0 54.7 40.3 52.7 42.8 37.1 54.1
+LMBR 55.7 39.8 55.5 39.8 53.4 42.3 37.7 53.1

B+C
+MBR 54.7 40.2 54.5 40.3 52.5 43.0 37.4 54.3
+LMBR 55.3 40.0 55.2 40.0 53.1 42.6 38.1 53.1

A+C
+MBR 55.4 39.7 54.9 39.9 53.0 42.5 37.7 54.3
+LMBR 55.9 39.3 56.0 39.4 53.7 42.3 38.1 53.0

A+B+C
+MBR 55.3 39.7 54.9 40.0 53.0 42.6 37.7 54.4
+LMBR 56.0 39.5 55.8 39.7 53.9 42.3 38.5 52.9

Table 8.1: BLEU scores and TER for uncased k-best list and lattice MBR system combination
of Arabic→English translations generated from alternative morphological analyses.

mt0205tune
A B C

A 0.0 +1.5 +1.7

B 0.0 +1.1

C 0.0

mt0205test
A B C

A 0.0 +1.7 +2.2

B 0.0 +1.4

C 0.0

mt08nw
A B C

A 0.0 +1.9 +2.2

B 0.0 +1.6

C 0.0

mt08ng
A B C

A 0.0 +1.4 +1.8

B 0.0 +1.8

C 0.0

Table 8.2: Absolute improvements in BLEU for LMBR two-way combination of
Arabic→English translations generated from alternative morphological decompositions.

are useful for improving the quality of translation. Some of the additional gain from lattice
MBR might be obtained by using deeper k-best lists, but the O(n2) computational complexity
usually limits k-best MBR decoding to fairly short lists.

Three-way system combination (A+B+C) shows only relatively small gains over the best
two-way combination (A+C) on the tuning sets, although lattice MBR is again seen to perform
significantly better than k-best MBR. The investigation of lattice and k-best list evidence
space sizes in Section 7.3.2.2 of Chapter 7 explains why k-best list 3-way combination is so
much worse than lattice-based combination: the k = 333 lists are much too short. Comparing
two-way and three-way combination shows modest gains of +0.2 BLEU for newswire and
+0.4 BLEU for newsgroup data on the MT08 testsets. It may be that two of the three
systems are too similar for there to be any real benefit from including both of them in the
combination. These results were obtained under the same evaluation conditions as the NIST
MT08 evaluation and are highly competitive with the other submissions.1

1http://www.itl.nist.gov/iad/mig/tests/mt/2008/doc/mt08 official results v0.html
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Configuration
Newswire Data Web Data

tune.text.nw test.text.nw tune.text.web test.text.web

A HiFST+5g 28.4 62.10 21.0 64.05 16.1 70.37 14.4 69.10
B HiFST+5g 27.6 63.26 20.2 66.29 15.3 73.09 13.7 71.87

A+B +LMBR 29.2 61.77 21.9 64.26 16.4 72.00 15.0 70.79

Table 8.3: BLEU scores and TER for Chinese→English lattice MBR system combination
(A+B) generated from translation systems trained on different Chinese word segmentations.

Configuration eu-dev eu-test

A Moses 29.37 27.64
B Moses 29.48 27.42

A+B +LMBR 29.75 28.61

Table 8.4: BLEU scores for Finnish→English MBR system combination of lattices (A+B)
generated from word-based model (A) and morpheme-based model (B).

The absolute gains in BLEU from lattice-based two-way MBR system combination over
the best of the individual systems are summarised in Table 8.2. Absolute gains of between
+1.7 and +2.2 BLEU are very large indeed on top of an already highly scoring baseline,
re-emphasising that lattice-based minimum Bayes-risk decoding for multi-input translation
is a very effective way of improving overall translation quality. The combination A+C (i.e.
MADA1 and SAKHR) gives the largest gains on all four evaluation sets.

Chinese→English The Chinese→English multi-input translation results are shown in
Table 8.3. Again, the ML 1-best translations of the individual systems have very similar
BLEU scores. Compared to the best of the individual system scores, the newswire data
test.text.nw set gains +0.9 BLEU and the web data test.text.web set gains +0.6 BLEU.
These results show that alternative Chinese word segmentations can be exploited to improve
translation quality using lattice MBR decoding over multiple lattices.

Finnish →English Table 8.4 shows the results of MBR system combination of multiple
Finnish→English k-best lists. The translations generated from the word-based models (row
A) and morpheme-based models (row B) have very similar BLEU scores. However, it is
possible to improve translation quality by MBR system combination (row A+B), especially
on the eu-test set where there is an improvement of +1.2 BLEU over the best of the individual
systems. More detailed experiments that use the multiple-lattice MBR decoder described in
this chapter to combine translations generated from a variety of unsupervised morphological
analysers are presented in Kurimo et al. (2009).

8.3.2.1 Length Tuning

Lattice MBR system combination under linear BLEU with the per-word factor θ0 of Equation
(8.5) set in the way suggested by Tromble et al. (2008) often produces output that is shorter
than required. Figure 8.5 shows the effect of tuning θ0 on the BLEU score (upper plot) and
brevity penalty (lower plot). If the per-word factor is not tuned, i.e. when θ0 = 0, then the
brevity penalty is approximately 0.97 and the BLEU score is penalised accordingly.
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Figure 8.5: Effect of per-word factor θ0 on IBM BLEU score (upper plot) and brevity penalty
(lower plot) in three-way lattice MBR system combination of Arabic→English translations.

For the Arabic→English three-way system combination experiments reported above, the
optimal word factor of θ0 = −0.03 favours longer hypotheses and results in gains of +0.5
BLEU for mt0205tune and +0.2 BLEU for mt0205test, with good testset generalisation.
Comparing the two plots shows that the BLEU score is maximised with a word factor θ0 that
produces output that is as short as possible without incurring a brevity penalty.

The experiments presented throughout this chapter report scores using the IBM imple-
mentation of BLEU in which the brevity penalty is computed with respect to the closest
reference length. For NIST BLEU, where brevity is computed with respect to the shortest
reference, the penalty can be more severe and it is even more important to make sure the
translation output is the right length.

8.3.2.2 Evidence Space Size

In order to better understand the large gains in BLEU observed for lattice minimum Bayes-
risk combination, Table 8.5 contrasts BLEU scores and TER for k-best lists of various depths
and for full lattice MBR. One reason for the difference in performance is that MBR and LMBR
decoding use different approximations to the BLEU score: MBR uses the sentence-level BLEU

figures/lmbr/word-penalty.syscomb.bleu.eps
figures/lmbr/word-penalty.syscomb.bp.eps
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mt0205tune mt0205test
BLEU TER BP BLEU TER BP

System A 54.23 40.49 0.995 53.78 41.02 0.994
System B 53.79 41.22 0.998 53.59 41.36 0.995

10 54.66 40.51 0.998 54.38 40.91 0.996
50 55.06 40.25 0.996 54.72 40.50 0.992

100 55.20 40.34 0.999 54.79 40.65 0.996
200 55.25 40.26 0.998 54.90 40.50 0.995
500 55.37 40.14 0.997 55.12 40.31 0.994

1000 55.41 40.10 0.996 55.18 40.28 0.995
2000 55.35 40.13 0.996 55.23 40.26 0.994
5000 55.43 40.10 0.996 55.24 40.18 0.993

10000 55.41 40.07 0.995 55.23 40.17 0.993
20000 55.52 40.02 0.995 55.21 40.18 0.992

LMBR 55.69 39.75 0.991 55.49 39.84 0.989

Table 8.5: BLEU score, TER and brevity penalty (BP) for first-pass translation and system
combination of k-best lists of various sizes contrasted with full lattice-based MBR decoding.

(Kumar and Byrne, 2004), while LMBR uses a linear approximation to the sentence-level
BLEU based on n-gram posterior probabilities (Tromble et al., 2008). Since computing the
risk for large numbers of hypotheses can be slow, k-best MBR is typically limited to relatively
short lists. In this experiment, k-best lists are first converted to lattices so that much deeper
lists can be used. The conversion also allows k-best list and full lattice MBR performance
to be directly compared using the same approximation to the BLEU score. The results show
that increasing the k-best list depth up to 500 hypotheses gives gradual incremental gains
in BLEU, but that increasing the depth further beyond 500 gives no real additional gains,
even at a depth of 20000. Combination with the full lattice, however, improves upon the
20000-best lists: +0.2 BLEU for mt0205tune and +0.3 BLEU for mt0205test. Using the full
evidence space of lattice hypotheses is clearly beneficial in MBR decoding.

8.3.2.3 Translation Examples

Figure 8.6 shows an example of improved Arabic→English translation obtained through com-
bination of translation lattices generated from alternative morphological decompositions. The
sentence-level BLEU score BLEUS(E) for a sentence E is just the geometric mean of n-gram
precisions, ignoring the brevity penalty so that

BLEUS(E) = exp
( 1

N

N
∑

i=1

log pi

)

, (8.7)

where the order N is 4 and pi denotes the n-gram precision at order i computed with respect
to the union of all n-grams in the set of references for sentence E.

Although the maximum likelihood 1-best translation ÊA produced by system A is quite
poor, several higher-order n-grams do match the references correctly. The maximum likeli-
hood 1-best translation ÊB is much more fluent and closer to the references, although in-
formation content (i.e. the number of new plants) has been omitted. The lattice minimum
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Source Tokenized translation string BLEUS

R1 over the next 13 years , peking invested in the construction of 7 new plants . -
R2 peking invested in the construction of 7 new plants over the next 13 years . -
R3 beijing has invested in building 7 new plants over the following 13 years . -
R4 peking has invested in the construction of 7 new plants in the next 13 years . -

ÊA the beijing invested in the construction of 7 new factor in the next 13 years . 0.6865

ÊB beijing has invested in building new plants in the next 13 years . 0.7882

Ê+ beijing has invested in the construction of 7 new plants in the next 13 years . 1.0000

Figure 8.6: Four reference translations, single-system ML 1-best translation hypotheses ÊA

and ÊB , and improved LMBR system combination hypothesis Ê+ (from mt0205tune).

Source Tokenized translation string Length BLEUS

R1 but the world it was born into is no longer there . 12 -
R2 but the world in which it was born exists no more . 12 -
R3 but the world in which it was born no longer exists . 12 -
R4 but the world in which it was born is no longer exists . 13 -

ÊA but the world no longer existed was being born . 10 0.1809

ÊB but the world in which it was born no longer exists . 12 1.0000

Ê+ but the world in which no longer existed . 9 0.3803

Figure 8.7: Four reference translations, single-system ML 1-best translation hypotheses ÊA

and ÊB , and degraded LMBR system combination hypothesis Ê+ (from mt0205test).

Bayes-risk decoding hypothesis Ê+ is much better than both of the individual system outputs:
it is completely fluent and captures all of the information in the reference translations with
perfect precision over all n-gram orders.

Figure 8.7 shows an example of degraded translation quality. The maximum likelihood
hypothesis ÊB is a flawless translation with perfect n-gram precisions at all orders. The
LMBR system combination hypothesis Ê+ has a much lower sentence-level BLEU score. It
is missing the important content word “born” (even though it is present in the ML 1-best
of both of the individual system outputs), and has poor fluency. The per-word factor θ0,
optimised at the corpus-level, is set inappropriately for this short sentence.

For the degraded sentence shown in Figure 8.7, the expected gains for the ML 1-best
hypotheses ÊA and ÊB , and for the LMBR system combination hypothesis Ê+ are shown in
Table 8.8. These gains are computed using the linear interpolation of n-gram path posterior
probabilities defined in Equation (8.3). The table shows the partial gain at each order and
the total gain before and after application of the per-word factor θ0. The expected gain
∑

u∈N gu(E,E′) of the hypothesis ÊB is higher than that of the poor quality system com-

bination hypothesis Ê+. However, after applying the per-word factor θ0, the hypothesis Ê+

has the highest gain. For this sentence, a smaller θ0 may be appropriate. Ideally, the value of
θ0 should be a function of the length of the sentence and optimised on the development set.

8.3.2.4 Hypothesis Selection

Lattice MBR system combination selects the hypothesis in the union of lattices that max-
imises the expected gain. Ignoring the corpus-level brevity penalty, the best possible system
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E′ 1g 2g 3g 4g
∑

u∈N gu(E, E′) θ0|E′|+
∑

u∈N gu(E, E′)

ÊA 0.2831 0.2371 0.1634 0.1184 0.8020 -0.3980

ÊB 0.3102 0.2830 0.2326 0.2253 1.0510 -0.3490

Ê+ 0.2799 0.2627 0.2133 0.1849 0.9408 -0.1592

Figure 8.8: Expected gains before and after applying the per-word factor θ0 for single-system
ML 1-best hypotheses ÊA and ÊB , and LMBR system combination hypothesis Ê+.

Ê+ < ÊA Ê+ = ÊA Ê+ > ÊA

mt0205tune
Ê+ < ÊB 261 91 299

Ê+ = ÊB 108 138 125

Ê+ > ÊB 342 141 570

mt0205test
Ê+ < ÊB 268 88 279

Ê+ = ÊB 89 142 146

Ê+ > ÊB 301 135 592

mt08nw
Ê+ < ÊB 90 22 150

Ê+ = ÊB 35 49 51

Ê+ > ÊB 120 55 241

mt08ng
Ê+ < ÊB 80 34 83

Ê+ = ÊB 16 41 27

Ê+ > ÊB 79 27 160

Table 8.6: Number of Arabic→English sentences where LMBR hypothesis Ê+ has sentence-
level BLEU score equal to, worse than, or better than the individual systems ÊA and ÊB .

combination outcome is for LMBR decoding to choose a hypothesis that has better sentence-
level BLEU score than each of the individual systems in the combination. The worst possible
outcome is to choose a hypothesis that has lower sentence-level BLEU score than each of the
individual systems, since then it would have been better to pick any of the individual systems
rather than the combination hypothesis.

Table 8.6 shows for the Arabic→English testsets how many sentences had better, worse,
or exactly equal sentence-level BLEU score when compared to each of the individual systems
in a two-way combination of lattices. For mt0205tune, more than 27% of the LMBR sys-
tem combination 1-best hypotheses Ê+ had a higher sentence-level BLEU score than both
the system A hypothesis ÊA and system B hypothesis ÊB . 13% of the system combination
hypotheses had worse sentence-level BLEU score than both ÊA and ÊB . So, although com-
bination improves hypotheses more than twice as often as it degrades them, there are still
many sentences for which it would be better not to apply combination. At the set-level, as
shown by the BLEU scores in Table 8.1, LMBR system combination performs very well.

It is interesting to examine the differences in sentence-level BLEU score between the
system combination hypothesis and the 1-best translations in the individual lattices. Let Êi,k

denote the 1-best translation of the kth sentence produced by the ith system, i = 1 . . . M , in
an M -way combination of lattices. Let Ê+,k denote the 1-best translation of the kth sentence
obtained by lattice MBR system combination of the M individual systems. The mean change
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Ê+ < ÊA Ê+ = ÊA Ê+ > ÊA

mt0205tune
Ê+ < ÊB −6.20 −4.39 −0.06

Ê+ = ÊB −5.39 +0.00 +4.89

Ê+ > ÊB +0.12 +4.95 +7.76

mt0205test
Ê+ < ÊB −5.75 −3.80 +0.09

Ê+ = ÊB −3.76 +0.00 +4.22

Ê+ > ÊB +0.82 +4.87 +7.46

mt08nw
Ê+ < ÊB −5.97 −5.41 +0.51

Ê+ = ÊB −5.93 +0.00 +5.09

Ê+ > ÊB −0.53 +6.50 +7.21

mt08ng
Ê+ < ÊB −4.71 −6.47 −0.18

Ê+ = ÊB −4.50 +0.00 +7.25

Ê+ > ÊB +1.65 +4.94 +5.95

Table 8.7: Mean change in sentence-level BLEU (MCB) for lattice minimum Bayes-risk two-
way system combination of Arabic→English translation lattices.

in sentence-level BLEU score, MCB, in a set of S sentences is defined as

MCB =
1

S

S
∑

k=1

1

M

M
∑

i=1

{

BLEUS(Ê+,k)− BLEUS(Êi,k)

}

, (8.8)

where BLEUS(E) is the sentence-level BLEU score of E given by Equation (8.7). The MCB
is just the average difference in sentence-level BLEU between each individual system and the
system combination hypothesis, averaged over the collection of sentences.

The mean change in sentence-level BLEU score is shown in Table 8.7. For mt0205tune,
the sentences with higher scores than each of the individual systems gain on average +7.76
BLEU in system combination. These are very large gains. Unfortunately, the sentences for
which MBR decoding selected a hypothesis with worse sentence-level BLEU score than each of
the individual systems degrade by an average of -6.20 BLEU which is also very large. Similar
patterns of gains and degradations are observed over all testsets. Part of the problem is
that system tuning is optimised using corpus-level BLEU which includes the brevity penalty.
In order to maximise corpus-level BLEU the length of some sentences may be increased or
decreased inappropriately. What is really needed is a way to know when to take the system
combination hypothesis and when to fall back to one of the individual system outputs.

8.4 Multi-Source Translation Experiments
Lattice minimum Bayes-risk decoding is readily applied to the task of multi-source translation
(Section 8.1.2). The baseline for the following experiments is the Cambridge University Engi-
neering Department (CUED) phrase-based statistical machine translation system (Blackwood
et al., 2008a), as submitted to the ACL Third Workshop on Statistical Machine Translation
(WMT) 2008 shared task.1 CUED participated in two of the WMT shared task tracks:
French→English and Spanish→English. The target language English output is the same for

1http://www.statmt.org/wmt08
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both tracks so the goal is to improve translation quality by combining two separate trans-
lations generated from French and Spanish. The results presented in this section show that
lattice minimum Bayes-risk decoding is a simple but highly effective framework for this form
of multi-source system combination.

8.4.1 System Development
Table 8.8 summarises the parallel training data of the Europarl corpus, showing the number
of sentences, number of words, and lower-cased vocabulary size for each language pair. All
training and tuning was performed using only the parallel text and language model data
distributed for the shared task.

Sentences Words Vocabulary

FR
1.33M

39.9M 124k
EN 36.4M 106k

ES
1.30M

38.2M 140k
EN 35.7M 106k

Table 8.8: Number of sentences, number of words, and vocabulary size for French→English
and Spanish→English Europarl translation. The difference in the number of English words
for the two tracks is a result of limitations in the word alignment algorithm.

Word alignments were generated using GIZA++ (Och and Ney, 2003) over a stemmed
version of the parallel text. Stems for each source language were obtained using the Snowball
stemmer.1 After unioning the Viterbi alignments and replacing stems with their original
words, phrase-pairs of up to five foreign words in length were extracted in the usual fashion
(Koehn et al., 2003).

The CUED WMT 2008 decoder follows the Transducer Translation Model (Kumar et al.,
2006) (Section 4.2.3) and is implemented using the OpenFst Toolkit (Allauzen et al., 2007).
Adjacent phrases can be reordered according to the MJ1 reordering model (Kumar and Byrne,
2005) with a uniform jump probability. Minimum error training (Och, 2003) under the BLEU
score (Papineni et al., 2002b) optimises the following list of features with respect to the
dev2006 development set: language model scale factor; word and phrase insertion penalties;
reordering scale factor; insertion scale factor; source→target and target→source translation
model scale factors. Three phrase-pair count features that track whether the phrase-pair
occurred once, twice, or more than twice in the training data are also included (Bender et al.,
2007).

The English language model is a modified Kneser-Ney (Kneser and Ney, 1995) smoothed
5-gram backoff language model estimated using SRILM (Stolcke, 2002) and converted to
WFST format for use in TTM translation (Allauzen et al., 2003). TTM translation with
MERT parameters results in word lattices that are then combined using the lattice minimum
Bayes-risk decoder of Equation (8.5).

1http://snowball.tartarus.org
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Configuration
dev2006 devtest2006 test2007

BLEU NIST BLEU NIST BLEU NIST

FR→EN
TTM+MERT 31.9 7.65 32.5 7.72 32.9 7.81

+LMBR 32.2 7.69 32.7 7.74 33.1 7.83

ES→EN
TTM+MERT 33.1 7.80 32.3 7.65 32.9 7.77

+LMBR 33.2 7.85 32.6 7.70 33.4 7.84

FR→EN + ES→EN LMBR 34.2 8.00 34.4 7.95 34.7 8.09

Table 8.9: Single-reference uncased BLEU and NIST scores for single-source and two-way
minimum Bayes-risk multi-source translation of French (FR) and Spanish (ES) European
Parliament proceedings into English (EN).

8.4.2 Results and Discussion
BLEU and NIST scores for single-source and multi-source translation of the dev2006, de-
vtest2006, and test2007 Europarl evaluation sets are shown in Table 8.9. For this task, only
small gains in BLEU are observed from single-system lattice minimum Bayes-risk decoding;
this agrees with our previous experience of k-best list MBR when preparing our WMT 2008
submission (Blackwood et al., 2008a). The limited quantity of translation model training data
and relatively simplistic reordering model result in lattices without the richness and diversity
required for good gains with LMBR.

For multi-source translation much larger gains are observed. The lattices produced by
each system are sufficiently different that the interpolated distribution over posteriors is able
to select hypotheses with higher BLEU and NIST scores. The absolute gains in BLEU over
the best of the two single systems involved in the combination are +1.1 for dev2006, +1.9 for
devtest2006, and +1.8 for test2007. These are very large gains for BLEU scored with respect
to a single reference translation. Optimisation of the interpolation weights of Equation (8.3)
for the dev2006 set resulted in λFR = λES = 0.5; this is as expected given that the baseline
systems are of similar quality as measured by the BLEU score.

Even larger gains may be possible through lattice MBR multi-source translation of more
than two language pairs, although careful tuning of the system-specific interpolation weights
will be necessary.

8.5 Summary and Conclusions
This chapter has demonstrated the effectiveness of lattice minimum Bayes-risk decoding as
a framework for the combination of multiple machine translation lattices. A multiple lattice
MBR system combination decoder was introduced, and an efficient implementation based on
weighted finite-state transducers was described. Large gains in BLEU score were obtained by
combining Arabic→English and Chinese→English translation lattices generated from alter-
native analyses of the source language sentence. The quality of Finnish→English translation
was improved by combining k-best lists generated from word-based and morpheme-based
SMT systems. The lattice MBR decoder was also applied to multi-source translation. Large
improvements in the BLEU score were obtained by combining lattices from French→English
and Spanish→English SMT systems.
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Lattice-based MBR system combination is very effective because it is able to operate on
a much richer and more diverse space of hypotheses than traditional k-best list combination
methods. The larger evidence space resulting from the combination of multiple lattices also
allows for more accurate computation of the n-gram path posterior probabilities that drive the
decoding process. The weighted interpolation over multiple evidence spaces provides greater
robustness: aspects of translation handled poorly in one set of lattices may be compensated
for by more appropriate handling in another set of lattices.

Each lattice encodes a potentially astronomical number of hypotheses. In k-best list de-
coding, the lists are normally limited to a fixed depth for efficiency reasons. If the maximum
list size is 1000, then in three-way combination only 333 hypotheses from each system are con-
sidered and the majority share of the evidence space is completely ignored (see the discussion
of lattice and k-best list probability masses in Section 7.3.2.2 of Chapter 7).

The lattice-based MBR system combination decoder introduced in this chapter is very
general. It can be used for efficient combination of any set of multiple lattices produced by
any technique, so long as the lattices represent a translation of the same foreign language
sentence. Instead of the multi-input and multi-source translation described in this chapter,
the decoding framework could be used to combine multiple lattices produced by any number
of machine translation systems, even systems with very different architectures.



CHAPTER 9
Hypothesis Space

Constraints for Statistical
Machine Translation

Fluency

This chapter develops a novel and robust approach to improving the quality of statistical
machine translation within a lattice minimum Bayes-risk decoding framework. Seg-

mentation of first-pass word lattices according to confidence measures over the maximum
likelihood translation hypothesis makes it possible to focus on regions with potential errors
in translation. Hypothesis space constraints based on high-order n-gram coverage in a large
monolingual text collection are applied to partial hypotheses in low confidence regions in
order to improve overall translation fluency.

Weighted finite-state transducer approaches to language model rescoring (Chapter 5) and
lattice minimum Bayes-risk decoding (Chapter 7) are synthesised in this chapter to form
a novel framework for improving MT fluency. This framework constitutes a new approach
to machine translation decoding with great potential for future research. As with phrasal
segmentation models (Chapter 6), the techniques introduced in this chapter represent an
effective new way in which statistical machine translation can benefit from the exploitation
of monolingual data that is ordinarily used only for building language models.
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The rest of this chapter is organised as follows. Section 9.1 discusses the problem of
poor fluency in existing approaches to machine translation and motivates the new framework
proposed in this chapter. Section 9.2 introduces a confidence measure based on n-gram path
posterior probabilities; this confidence measure is used to identify ‘trusted’ subsequences
in the maximum likelihood translation hypothesis. Sections 9.3 and 9.4 describe a general
framework for improving machine translation fluency based on a segmentation of the lattice
into regions of high and low confidence. An application of this framework, monolingual
coverage constraints, is presented in Section 9.5. Lattice generation procedures are described
in Section 9.6, and a human evaluation of translation fluency is presented in Section 9.7. The
chapter concludes, with suggestions for future research, in Section 9.8.

9.1 Introduction and Motivation
Translation quality is often described in terms of fluency and adequacy. Fluency reflects the
‘nativeness’ of the translation, while adequacy indicates how well a translation captures the
meaning of the original text (Ma and Cieri, 2006).

From a purely utilitarian point of view, adequacy should be more important than fluency.
But fluency and adequacy are subjective and not easy to tease apart (Callison-Burch et al.,
2009, 2006; Vilar et al., 2007). There is a human tendency to rate less fluent translations
as less adequate. One explanation for this is that errors in grammar cause readers to be
more critical. A related phenomenon is that the nature of translation errors changes as
fluency improves so that whatever errors are present in fluent translations must necessarily
be relatively subtle. It is therefore not enough to focus solely on adequacy in translation.
SMT systems must also be fluent if they are to be accepted and trusted. It may be that the
reliance on automatic metrics has led SMT researchers to pay insufficient attention to fluency.
Automatic metrics such as BLEU (Papineni et al., 2002b), TER (Snover et al., 2006), and
METEOR (Lavie and Denkowski, 2009) show broad correlation with human rankings of MT
quality, but are not capable of fine distinctions between fluency and adequacy.

There is a growing concern that the fluency of current SMT systems is inadequate (Knight,
2007a). SMT is robust, in that a translation is nearly always produced. But unlike translators
who should be skilled in at least one of the languages involved, SMT systems are limited in
both source language and target language competence. SMT fluency and accuracy therefore
tend to suffer together as translation quality degrades. This should not be the case. Ideally,
an SMT system should never be any less fluent than the best stochastic text generation (STG)
system available in the target language (Oberlander and Brew, 2000). What is needed is a
good way to enhance the fluency of SMT hypotheses.

The maximum likelihood (ML) formulation (Brown et al., 1990) (Chapter 4, Section 4.1.1)
of translation of a source language sentence F to a target language sentence Ê

Ê = argmax
E

P (F |E)P (E) (9.1)

makes it clear why improving SMT fluency is a difficult modelling problem. The language
model P (E), the closest thing to a ‘fluency component’ in the original formulation, only
affects candidates which are likely under the translation model P (F |E). Given the weakness
of current translation models this is a severe limitation. For example, it often happens that
SMT systems assign P (F |Ē) = 0 to a correct reference translation Ē of F . This is one of the
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reasons why translation systems are usually not used to align parallel text and also why one
SMT system often fails in re-scoring the hypotheses of a second SMT system. The cause is
often as minor as one or two words or phrases which cannot be aligned or translated. This
problem, sometimes called the ‘reachability’ problem, motivates the integration of natural
language generation systems in statistical machine translation, an area for future work that
is discussed in more depth in the conclusions to this thesis (Chapter 10, Section 10.3).

In such situations the reference translation is not even a valid candidate under the trans-
lation model. The problem is that in ML decoding the language model can only encourage
the production of fluent translations; it cannot easily enforce constraints on fluency or in-
troduce new hypotheses. Simply replacing the language model by a generation system will
not overcome this limitation. This analysis applies to phrase-based SMT and the situation is
similar in syntax-based SMT.

In syntax-based SMT, the primary role of syntax is to drive the translation process. The
translations produced by these systems respect the syntax of their translation models, but
this does not force them to be grammatical in the way that a typical human sentence is
grammatical. In Hiero (Chiang, 2005, 2007), the grammar consists of hierarchical rules for
the movement and translation of words and phrases (see Chapter 4, Section 4.3). Hiero
allows complex long-range movement, but as a grammar it imposes little constraint on the
generation of target language sentences. In tree transduction grammars (Knight and Graehl,
2005; Knight, 2007b), parse trees generated by source language parsers are mapped to trees
in a target language grammar. The grammar must have broad enough coverage to accept the
trees which are generated automatically by the stochastic analysis and translation processes.
These systems are very powerful in the types of translations they support, but they allow many
translations which are not fluent. The problem is the need for robustness. Generating fluent
translations demands a tightly constraining target language grammar but such a grammar is
at odds with the broad-coverage parsing needed for robust translation.

There are thus two main problems in translation fluency: (i) SMT may fail to generate
fluent hypotheses and there is no simple way to introduce them into the search; (ii) SMT
can produce many translations which are not fluent, but tightening syntactic constraints to
improve fluency can hurt robustness. Both problems are rooted in the maximum likelihood
decoding framework in which robustness and fluency are conflicting objectives.

This chapter proposes a novel decoding framework to improve the fluency of any SMT
system, whether syntactic or phrase-based. The idea is to perform Minimum Bayes-risk search
(Kumar and Byrne, 2004) over a space of fluent hypotheses H:

ÊMBR = argmin
E′∈H

∑

E∈E

L(E,E′)P (E|F ) (9.2)

In this approach the MBR evidence space E is generated by an SMT system as a k-best
list or lattice. The SMT system runs in its best possible configuration, thus ensuring both
translation robustness and good baselines. Rather than constraining hypothesis search to the
output of the SMT system, translations will be sought among the collection of fluent sentences
which are close to the top SMT hypotheses as determined by the loss function L(E,E′).

Decoupling the MBR hypothesis space from first-pass translation offers great flexibility.
Hypotheses in H may be arbitrarily constrained according to lexical, syntactic, semantic, or
other considerations, with no effect on translation robustness. This is because constraints on
fluency do not affect the production of the evidence space by the baseline system. Robust-
ness and fluency are no longer conflicting objectives. This framework also allows the MBR
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hypothesis space to be augmented or replaced with new hypotheses produced by a natural
language generation system, with great potential for improved translation fluency.

This chapter focuses on searching out fluent strings amongst the vast number of hypothe-
ses encoded in SMT lattices. Oracle BLEU scores computed over k-best lists have shown that
many high quality hypotheses are produced by first-pass SMT decoding (Och et al., 2004).
The difficulty of enhancing the fluency of complete hypotheses is reduced by first identify-
ing regions of high-confidence in the ML translation and using these to guide the fluency
refinement process. This has two advantages: (i) portions of the baseline hypotheses that
are trusted are retained and alternatives searched for elsewhere, and (ii) the task is made
much easier since the fluency of sentence fragments can be refined in the context of their
high-confidence neighbours. Section 9.6 will show that the fluency of the MBR hypothesis
space can be refined with no real degradation in the BLEU score compared to MBR decoding
over an unconstrained first-pass lattice.

The formulation of the MBR decoder in Equation (9.2) separates the hypothesis space
from the evidence space. Linearised lattice MBR (Tromble et al., 2008) rewrites the loss in
terms of a gain and replaces the sum over hypotheses with a sum over lattice n-grams to give

ÊLMBR = argmax
E′∈H

{

θ0|E
′|+

∑

u∈N

θu#u(E′)p(u|E)

}

, (9.3)

where H is the hypothesis space, E is the evidence space, N is the set of all n-grams in H
(typically, n = 1 . . . 4), and θ are constants estimated on held-out data. The quantity p(u|E)
is the path posterior probability of the n-gram u

p(u|E) =
∑

E∈Eu

P (E|F ), (9.4)

where Eu = {E ∈ E : #u(E) > 0} is the subset of lattice paths containing n-gram u at least
once. These path posterior n-gram probabilities can be efficiently calculated using general
purpose WFST operations (Blackwood and Byrne, 2010) (Chapter 7, Section 7.2).

9.2 Posterior Probability Confidence Measures
In the formulation of Equations (9.3) and (9.4) the path posterior n-gram probabilities play a
crucial role. Minimum Bayes-risk decoding under the linear approximation to BLEU is driven
mainly by the presence of high posterior n-grams in the lattice; the low posterior n-grams
contribute relatively little to the MBR decision criterion. Here, the predictive power of these
statistics is investigated. The n-gram path posterior probabilities will be shown to be a good
predictor as to whether or not an n-gram is to be found in a set of reference translations and
hence whether it should be included in a translation hypothesis.

For each sentence, let Nn denote the set of n-grams of order n in the first-pass ML
translation 1-best hypothesis Ê, and let Rn denote the set of n-grams of order n in the union
of the references. For confidence threshold β, let Nn,β = {u ∈ Nn : p(u|E) ≥ β} denote the
set of all n-grams in Nn with posterior probability greater than or equal to β, where p(u|E)
is computed according to Equation (9.4). This is equivalent to identifying all substrings of
length n in the translation hypotheses for which the system assigns a posterior probability of
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Figure 9.1: Average per-sentence n-gram precisions (top) and counts (bottom) for
Arabic→English ML translations at a range of posterior probability thresholds 0 ≤ β ≤ 1.

β or higher. The precision at order n for threshold β is the proportion of n-grams in Nn,β

also present in the references:

Pn,β =
|Rn ∩ Nn,β|

|Nn,β|
(9.5)

9.2.1 Single-System Reference Precisions
The upper plots in Figure 9.1 show the average per-sentence n-gram precisions Pn,β at orders
1, 2, 3, and 4 for the Arabic→English translation testsets mt0205tune and mt0205test, over a
range of posterior probability thresholds 0 ≤ β ≤ 1. Sentence start and end tokens are ignored
when computing unigram precisions. The plots show that precisions at all orders improve
considerably as the threshold β increases. This confirms that these intrinsic measures of
translation confidence have strong predictive power. Note that the upper plots show at β = 0
the n-gram precisions used to compute the BLEU score of the ML baseline system.

The lower plots in the figure show the average number of n-grams per sentence at each
order for the same range of β. For high β, there are relatively few n-grams with p(u|E) ≥ β;

figures/fluency/precisions.aren.mt0205tune.eps
figures/fluency/precisions.aren.mt0205test.eps
figures/fluency/precisions.aren.mt0205tune.counts.eps
figures/fluency/precisions.aren.mt0205test.counts.eps
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Figure 9.2: Average per-sentence n-gram precisions (top) and counts (bottom) for
Chinese→English ML translations at a range of posterior probability thresholds 0 ≤ β ≤ 1.

this is as expected. However, even at a high threshold of β = 0.9 there are still an average of
three 4-grams per sentence with posterior probabilities that exceed that threshold. Therefore,
even at very high levels of confidence, high posterior probability higher-order n-grams still
occur frequently enough to be useful.

Precision plots for GALE Chinese→English newswire and web data translations are shown
in Figure 9.2. The precision scores at all orders are considerably lower than those observed
in Arabic→English translation. This is to be expected given the much lower BLEU score
obtained in translation from Chinese. The web data translations in particular have very low
3-gram and 4-gram precisions. That the 3-gram and 4-gram precisions do not vary much as
the posterior probability threshold β is increased suggests that these higher-order n-grams do
not usefully discriminate amongst hypotheses during minimum Bayes-risk decoding.

The precision results presented in this section motivate the use of n-gram path posterior
probabilities as a statistical machine translation confidence measure. Confidence p(Êj

i |E) is

assigned to subsequences Êi . . . Êj of the ML translation hypothesis.
Prior work focuses on word-level confidence measures extracted from k-best lists and word

graphs (Ueffing and Ney, 2005, 2007), while Zens and Ney (2006) rescore relatively shallow
k-best lists with n-gram posterior probabilities. Similar experiments using different statistics
and with a different motivation are reported by DeNero et al. (2009); they show that expected
counts of n-grams obtained from a lattice can be used to predict which n-grams appear in
the references.

9.2.2 Evidence Space Size and Reference Precisions
One of the main advantages of lattice minimum Bayes-risk decoding over a k-best implemen-
tation is that a much larger evidence space and hypothesis space can be considered. The
following experiment shows that the larger evidence space of the lattice is useful for obtaining
improved posterior probability estimates.

The Arabic→English mt0205tune and mt0205test testset 4-gram reference precisions at a
range of posterior probability thresholds β are shown in Figure 9.3. The posterior probabilities

figures/fluency/precisions.zhen.tune.text.nw.eps
figures/fluency/precisions.zhen.tune.text.web.eps
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Figure 9.3: Average per-sentence 4-gram precisions for NIST MT08 Arabic→English ML
1-best computed using the full lattice and k-best lists of the specified sizes.

are computed using either the full lattice E or a k-best list of the specified size. The 4-gram
precision of the 1-best translations is around 0.35. At higher values of β, the reference
precision increases considerably to around 0.70. Expanding the k-best list size from 1000 to
10000 translation hypotheses only slightly improves the precision, but much higher precisions
are observed when the full evidence space of the lattice is used. The improved level of 4-gram
precision is a result of more accurate estimates of n-gram posterior probabilities using the
full lattice. These precision plots re-emphasise the advantage of lattice-based decoding and
rescoring procedures, previously shown in the comparison of evidence space size and MBR
decoding performance in Chapter 7, Section 7.3.2.2.

These precision plots show that although any hypotheses beyond the 10000th hypothesis
in a k-best list might have a very low posterior probability, the aggregate probability of all
hypotheses beyond the 10000th is substantial and useful for accurate estimation of n-gram
posterior probabilities.

9.2.3 System Combination Reference Precisions
Minimum Bayes-risk decoding of multiple translation lattices generated from alternative de-
compositions of the input sentence has been demonstrated to significantly improve the BLEU
score (see Chapter 8, Section 8.3). This section shows that n-gram posterior probabilities
computed from a combination of multiple lattices have higher reference precisions.

Given evidence space E =
⊕M

i=1 E
(i) formed from the union of M individual translation

lattices E(1), . . . , E(M), the interpolated n-gram posterior probability p(u|E) can be computed
using one of two methods:

Linear Interpolation The posterior probability of n-gram u computed according to a
linear interpolation of the posterior probability in each of the M lattices is

p(u|E) =
M
∑

i=1

λi pi(u|E
(i)), 0≤λi≤1,

M
∑

i=1

λi = 1. (9.6)
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Figure 9.4: Average per-sentence 4-gram precisions for Arabic→English single-system system
combination MBR 1-best translations at a range of posterior probability thresholds β.

Product Interpolation The posterior probability of n-gram u computed according to a
product interpolation of the posterior probability in each of the M lattices is taken as

p(u|E) =

M
∏

i=1

pi(u|E
(i))λi , 0≤λi≤1,

M
∑

i=1

λi = 1. (9.7)

For the special case of combining two equally weighted lattices E(1) and E(2) the interpolation
weights are λ1 = λ2 = 1

2 . The product interpolation simplifies to the geometric mean:

p(u|E) = p1(u|E
(1))

1
2×p2(u|E

(2))
1
2 =

√

p1(u|E(1))×p2(u|E(2)). (9.8)

Figure 9.4 shows how 4-gram precision varies as a function of β for two single systems
A and B, and their combination using a linear interpolation of posterior probabilities (line
A+B) or a product interpolation of posterior probabilities (line A×B). The 4-gram precisions
of the individual systems are very close over the full range of β. This is as expected given that
the single-system BLEU scores are so similar; it is also evidence confirming that the optimal
interpolation weights for this particular combination should be equal. The system combina-
tion 4-gram precisions are higher for both linear interpolation and product interpolation. For
β ≥ 0.6 there is no real difference between the two forms of interpolation. For lower values
of β, the product interpolation has a higher precision than the linear interpolation. The pre-
cision obtained using n-gram posterior probabilities computed from the combined lattices is
higher than that of the individual systems. A higher proportion of the n-grams assigned high
posterior probability under the interpolated distribution are found in the references; this is
one of the reasons for the improved BLEU score of lattice MBR system combination.

The precision results presented in this section show that the reliability of the n-gram path
posterior probability confidence measure can be improved by interpolating the distribution
over multiple first-pass translation lattices.
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<s> the newspaper “ constitution ” quoted brigadier abdullah krishan , the chief of police in
karak governorate ( 521 km south @-@ west of amman ) as saying that the seizure took
place after police received information that there were attempts by the group to sell for more
than $ 100 thousand dollars , the police rushed to the arrest in possession . </s>
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Figure 9.5: ML translation Ê, word lattice E , and segmentation as a sequence of four string
and five sublattice regions H1 . . .H9 using n-gram posterior probability threshold p(u|E)≥0.8.

9.3 Lattice Segmentation Under Posterior
Distributions

The study of reference precisions in the previous section shows that current SMT systems,
although flawed, can identify with confidence partial hypotheses that can be trusted. It is
potentially useful to constrain MBR decoding to include these trusted partial hypotheses but
otherwise allow decoding to consider alternatives in the regions of low confidence. In this way
it is possible to improve the best possible output of the best available systems.

The n-gram path posterior probabilities of Equation (9.4) can be used to segment a lattice
E into regions of high and low confidence. An example ML 1-best translation and segmented
lattice is shown in Figure 9.5. The words of the ML 1-best covered by high confidence n-grams
are marked in bold. The number of hypotheses in each region is also given. As this example
shows, lattice segmentation is performed relative to the ML hypothesis Ê, i.e. relative to the
best path through E according to the first-pass translation decoder.
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Lattice segmentation is performed in the following way. For confidence threshold β, find
all 4-grams u = Êi, . . . , Êi+3 in the ML translation hypothesis for which p(u|E) > β. Then
segment Ê into regions of high and low confidence where the high confidence regions are
identified by consecutive, overlapping high confidence 4-grams. The high confidence regions
are contiguous strings of words for which there is consensus amongst the translations in
the lattice. If the path posterior n-gram probabilities are trusted, then any hypothesised
translation should include these high confidence substrings.

The ML hypothesis string Ê is in this way segmented into R alternating subsequences
of high and low confidence. The segment boundaries are ir and jr so that Êjr

ir
is either a

high confidence or a low confidence subsequence. Each subsequence is associated with an
unweighted subspace Hr. This subspace has the form of a string for high confidence regions
and the form of a lattice for low confidence regions. Figure 9.5 shows the series of nine
unweighted subspaces H1, . . . ,H9 obtained by segmenting the lattice using β = 0.8. This
form of segmentation into regions of high and low confidence is related to segmental MBR for
automatic speech recognition (Goel et al., 2004).

If the rth segment is a high confidence region then Hr accepts only the string Êjr

ir
. If the

rth segment is a region of low confidence, then Hr is built to accept relevant substrings from
E . It is constructed as follows. The rth low confidence region Êjr

ir
has a high confidence left

context êr−1 and a high confidence right context êr+1 formed from subsequences of the ML
translation hypothesis Ê as

êr−1 = Ê
jr−1

ir−1
(9.9)

êr+1 = Ê
jr+1

ir+1
(9.10)

When r = 1 the left context êr−1 is defined to be the empty string and when r = R the right
context êr+1 is defined to be the empty string. A transducer Tr for the regular expression
/. ∗ êr−1(.∗)êr+1. ∗ /\1/ is constructed for finding all subsequences in E associated with Hr.
In this notation, parentheses indicate string matches. For example /. ∗ y(a∗)w. ∗ /\1/ applied
to xyaaawzz yields aaa. Composition with E yields Hr = E ◦ Tr, so that Hr contains all the
reasonable alternatives to Êjr

ir
in E consistent with the high confidence left and right string

contexts êr−1 and êr+1 in the ML 1-best translation.
If Hr is aligned to a high confidence subsequence of Ê, it is called a string region since it

contains only a single string; if Hr is aligned to a low confidence region, then it is a lattice
of partial translation hypotheses and is called a sublattice region. The series of high and
low confidence subspace regions H1, . . . ,HR defines the segmentation of the lattice. The
segmentation example in Figure 9.5 contains four string and five sublattice regions.

9.3.1 Segmentation Transducers
WFST operations can be used to efficiently segment the lattice by extracting sublattices
corresponding to low confidence regions of the ML translation. If the lattice E contains at
least one high confidence string region, then each low confidence sublattice region occurs in
one of three possible orientations: (i) to the left of a string region; (ii) to the right of a string
region; or (iii) between two string regions. For the lattice segmentation shown in Figure 9.5,
the sublattice H1 occurs to the left of a string region, the sublattice H9 occurs to the right
of a string region, and the other sublattices all occur between two string regions.
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0 1 2
w1:ǫ w2:ǫ

ρ:ρ

φ:w1

σ:ǫ

Figure 9.6: Example transducer ML
u for matching sublattice region to the left of u = w1w2.

0 1 2
w1:ǫ w2:ǫ

ρ:ǫ

φ:ǫ

σ:σ

Figure 9.7: Example transducer MR
u for matching sublattice region to the right of u = w1w2.

Transducers ML
u and MR

u are introduced for extracting sublattice regions relative to a
specified n-gram u. ML

u extracts the sublattice region consisting of all partial path prefixes
that occur before (i.e. to the left of) u. MR

u extracts the partial path suffixes that occur after
(i.e. to the right of) u. Both transducers work by mapping the n-gram u and all symbols not
in the required sublattice region to ǫ-arcs.

Sublattice regions are extracted by composing E ◦ ML
u or E ◦ MR

u , removing the weights,
projecting on the output labels, removing ǫ-arcs, and then determinizing and minimising.
The resulting acceptor represents the application of the subsequence regular expression to
the lattice E . It contains the set of all partial translation alternatives corresponding to the
words of the ML 1-best that cover the low confidence region. Figures 9.6 and 9.7 show
transducer examples ML

u and MR
u for the bigram u = w1w2.

1

Sublattice regions located between two high posterior n-grams u1 and u2 are extracted
by composing E ◦ MR

u1
◦ ML

u2
, followed by output label projection and the same sequence of

WFST optimisation operations.

9.4 Hypothesis Space Construction
This section introduces a general framework for improving the fluency of the hypothesis
space H in lattice MBR decoding. The lattice segmentation process described in Section 9.3
considerably simplifies the problem of improving the fluency of H since each region of low
confidence may be considered independently. The low confidence regions can be transformed
one-by-one, and then reassembled to form an improved MBR hypothesis space.

In order to transform the sublattice region Hr it is important to know the context in which
it occurs, i.e. the sequences of words that form its prefix and suffix. Some transformations
might need only a short context; others might need a sentence-level context, i.e. the full
sequence of ML words Ê

jr−1

1 and ÊN
ir+1

to the left and right of the region Hr to be transformed.

1The special symbol σ (all) matches and consumes any arc during composition; ρ (rest) matches and
consumes any arc other than those with an explicit transition from the state. φ (fail) is the non-consuming
equivalent of ρ. Special label matching is described in Chapter 2, Section 2.4.2

figures/fluency/region-transducer.L.eps
figures/fluency/region-transducer.R.eps
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To put this formally, each low confidence sublattice region is transformed by the application
of some function Ψ:

Hr ← Ψ(Ê
jr−1

1 , Hr, ÊN
ir+1

) (9.11)

The hypothesis space is then constructed from the concatenation of high confidence string
regions and transformed low confidence sublattice regions:

H = E ◦

{

⊗

1≤r≤R

Hr

}

(9.12)

The composition with the original lattice E discards any new hypotheses that might be
introduced via the unconstrained concatenation of strings from the regions Hr. It may be that
in some circumstances the introduction of new paths is good, but the experiments that follow
test the ability to improve fluency by searching among existing hypotheses; the composition
with E in Equation (9.12) ensures that no new hypotheses are created.

Section 9.5 describes an implementation of the function Ψ based on monolingual coverage
constraints in a large collection of target language text.

9.4.1 Segmented Hypothesis Space Size
If no new hypotheses are introduced by the operation of Ψ, the size of the hypothesis space H
is determined by the path posterior n-gram probability threshold β. Only the ML hypothesis
remains at β = 0, since all of its subsequences are of high confidence, i.e. can be covered by
n-grams with non-zero path posterior probability. At the other extreme, for β = 1, it follows
that H = E and no paths are removed, since either no n-gram subsequences have posterior
probability equal to 1, or any subsequences u with p(u|E) = 1 occur on every path in E .

The threshold β can be viewed as a ‘tunable knob’ that can be used to tighten or relax
constraints on the LMBR hypothesis space. For β = 0, LMBR decoding returns only the ML
hypothesis; for β = 1, LMBR is performed over the full translation lattice. The effect of β on
the BLEU score obtained by LMBR decoding is investigated in Section 9.6.

The size of the hypothesis space at a given value of β is the product of the number of
sequences in the sublattice regions. If |Hr| denotes the number of hypotheses in region r,
then the total number of hypotheses in the MBR hypothesis space is the product

∏R
i=1 |Hr|.

For Figure 9.5 at β = 0.8, this product is more than 5.4 billion hypotheses, showing that even
for fairly aggressive constraints on the hypothesis space, many hypotheses remain.

9.5 Monolingual Coverage Constraints for
Translation Fluency

This section describes a simple implementation of the transformation function Ψ that results
in improved machine translation fluency. This transformation is based on n-gram coverage in
a large target language text collection: where possible, the sublattice regions are filtered so
that they contain only long-span n-grams which have been previously observed in the target
language text. The motivation is that large monolingual text collections are good guides to
fluency. If a partial hypothesis is composed entirely of previously seen higher-order n-grams,
it is likely to be fluent and should therefore be favoured over other partial hypotheses with
only lower-order n-gram coverage.
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Translation hypothesis E and n-gram orders used by the LM to score each word Score

<s>1 the2 reactor3 produces3 plutonium2 needed2 to3 manufacture4 atomic3 bomb2 .3 </s>4 -22.59
<s>1 the2 reactor3 produces3 plutonium2 needed2 to3 manufacture4 the4 atomic2 bomb3 .4 </s>4 -23.61

<s>1 the2 reactor3 produces4 plutonium5 needed3 to3 manufacture4 atomic5 bomb2 .3 </s>4 -16.04
<s>1 the2 reactor3 produces4 plutonium5 needed3 to3 manufacture4 the4 atomic4 bomb5 .4 </s>5 -17.96

Figure 9.8: Scores and n-gram orders for hypotheses using 4-gram Kneser-Ney (top) and
5-gram stupid-backoff (bottom) language models. Low confidence regions are in italics.

w/0
w∅

wn/0
h h+ φ/1

h h−

(a) (b) (c)

Figure 9.9: Unigram arcs (a), higher-order n-gram arcs (b), and backoff arcs (c) required for
the implementation of the maximum order n monolingual coverage constraints acceptor Cn.

Initial attempts to identify fluent hypotheses in the sublattice regions by ranking hy-
potheses according to n-gram language model scores were not effective. Figure 9.8 provides
an example of the difficulties. For both the first-pass 4-gram Kneser-Ney (Kneser and Ney,
1995) language model (estimated over 1.1 billion tokens) and second-pass 5-gram stupid-
backoff (Brants et al., 2007) language model (estimated over 6.6 billion tokens), the LM score
− log P (E) favours the shorter but disfluent hypothesis; normalising by length did not help.
However, the stupid-backoff LM has better coverage and the backing-off behaviour is a clue
to the presence of a disfluency. Similar cues have been observed in ASR analysis (Chase,
1997). The shorter hypothesis backs off to a bigram for “atomic bomb”, whereas the longer
hypothesis covers the same words with higher order n-grams. The LM scores are therefore
disregarded and the transformation Ψ is instead implemented using n-gram coverage. This is
an example where robustness and fluency are at odds. The backoff n-gram models are robust,
but are often found to favour less fluent hypotheses.

Let S denote the set of all n-grams in the monolingual training data. To identify partial
hypotheses in sublattice regions that have complete monolingual coverage at some maximum
order n, a coverage acceptor Cn is constructed with a similar form to the WFST representation
of a backoff n-gram language model (Allauzen et al., 2003) (see Chapter 3, Section 3.4). Cn
assigns a penalty to every n-gram not found in S. Word arcs in Cn have no cost and backoff
arcs are assigned a fixed cost of 1. Firstly, arcs from the null history start state ∅ are added
for unigrams u ∈ N1 with the form shown in Figure 9.9 (a). Then, for higher-order n-grams
u ∈ {S ∩ {∪n

i=2 Ni}}, where u = wn
1 with history h = wn−1

1 and target word wn, arcs are
added with the form shown in Figure 9.9 (b), where h+ = wn−1

2 if u has order n, and h+ = wn
1

if u has order less than n. Backoff arcs that implement the fixed penalty are then added for
each u as shown in Figure 9.9 (c), where h− = wn−1

2 for |u| > 2 represents the state encoding
the backed-off history; bigrams backoff to the null history start state ∅.

Each sublattice region Hr should penalise paths proportionally to the number of n-grams
on the path not found in the monolingual text collection S. This should be done in context,
so that the effect of the neighbouring high confidence regions Hr−1 and Hr+1 is incorporated.
Given that n-grams are counted at order n, a left context machine Lr is constructed to accept
the last n − 1 words in Hr−1; similarly, Rr is constructed to accept the first n − 1 words of

figures/fluency/coverage-arc-unigram.eps
figures/fluency/coverage-arc-word.eps
figures/fluency/coverage-arc-backoff.eps
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Generated String
for the manufacture of atomic bombs
manufacture of atomic bombs . </s>
needed for the manufacture of atomic
needed for the manufacture of the
plutonium for the manufacture of atomic
plutonium for the manufacture of the
required for the manufacture of atomic
the manufacture of atomic bombs .
the reactor produced plutonium for the
to manufacture atomic bombs . </s>
for the manufacture of atomic bombs .
plutonium for the manufacture of atomic bombs
required for the manufacture of atomic bombs
the manufacture of atomic bombs . </s>
for the manufacture of atomic bombs . </s>
needed for the manufacture of atomic bombs .
plutonium for the manufacture of atomic bombs .
required for the manufacture of atomic bombs .
needed for the manufacture of atomic bombs . </s>
plutonium for the manufacture of atomic bombs . </s>
required for the manufacture of atomic bombs . </s>

Figure 9.10: Example strings generated using monolingual coverage acceptor Cn.

Hr+1. The concatenation of unweighted acceptors

Xr = Lr ⊗ Hr ⊗ Rr (9.13)

represents the partial translation hypotheses in Hr padded with n− 1 words of left and right
context from the neighbouring high confidence regions. Composing Xr ◦ Cn assigns to each
partial hypothesis a cost equal to the number of times it was necessary to back off to lower
order n-grams while reading each string in Xr. A partial hypothesis with a cost of 0 did not
back off at all and contains only n-grams of the longest possible order.

In the following experiments, the unweighted composition Xr ◦ Cn is applied in each
sublattice region. If there are paths with cost zero, then only these are kept and all others
are discarded. This procedure is introduced as a constraint on the hypothesis space which
will be evaluated for improvement in fluency. Here the transformation function Ψ returns Hr

as Xr ◦ Cn after pruning all paths with a cost greater than zero. If Xr ◦ Cn has no zero
cost paths, the transformation function Ψ returns Hr as it is found, since there is not enough
coverage in the monolingual text to guide the selection of more fluent hypotheses. After
applying monolingual coverage constraints in each region, the modified hypothesis space used
for MBR search is formed by concatenation of regions using Equation (9.12).

Note that Cn can be viewed as a very simplistic natural language generation system. It
generates strings by concatenating n-grams found in S. It is not allowed to run ‘open loop’
in the following experiments, but is instead used to find the strings in Xr with good n-gram
coverage. Figure 9.10 shows examples of some of the longer strings generated by running Cn
in open loop mode for the set of n-grams in an unconstrained Arabic→English translation
lattice. These partial hypothesis strings are generated by concatenation of overlapping n-
grams found in the training data, without ever needing to back off to lower order n-grams.
Strings generated in this way are seen to have a very high level of fluency.
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9.6 Lattice Minimum Bayes-Risk Decoding Over
Segmented Lattices

The effect of fluency constraints on lattice MBR decoding is evaluated in the context of the
NIST Arabic→English machine translation task.1 The set mt0205tune is formed from the
odd numbered sentences of the MT02–MT05 testsets; the even numbered sentences form
mt0205test. Performance on mt08nw (newswire) and mt08ng (newsgroup) data is also re-
ported. The first-pass decoder, segmentation process, and lattice MBR procedures are all
implemented using OpenFst (Allauzen et al., 2007).

First-pass translation is performed using HiFST (Iglesias et al., 2009b), a hierarchical
phrase-based decoder. Word alignments are generated using MTTK (Deng and Byrne, 2008)
over approximately 150M words of parallel text specified for the constrained NIST MT08
Arabic→English track. Hierarchical rules are extracted using the constraints of Chiang (2007)
with the additional count and pattern filters described in Iglesias et al. (2009a). In decoding,
a Shallow-1 grammar with a single level of rule nesting is used and no pruning is required
during search (Iglesias et al., 2009b).

The first-pass language model is a modified Kneser-Ney (Kneser and Ney, 1995) 4-gram
estimated over the English side of the parallel text and an 881M word subset of the English
GigaWord 3rd Edition (Graff et al., 2007). Prior to LMBR, the first-pass lattices are rescored
with zero-cutoff stupid-backoff 5-gram language models (Brants et al., 2007) estimated over
more than six billion words of English text. These are the language models used in the
example of Figure 9.8. The factors θ0, . . . , θ4 of the LMBR decoder are set as in Tromble
et al. (2008) using unigram precision p = 0.85 and average recall ratio r = 0.74.

The effect of performing lattice MBR over the segmented hypothesis space is shown in Ta-
ble 9.1. The individual hypothesis spaces Hr are constructed at various confidence thresholds
as described in Section 9.3, with H formed via Equation (9.12); no coverage constraints are
applied at this stage. At confidence threshold β = 0.6, it appears that constraining the search
space to contain n-grams with posterior probability greater than or equal to β leads to little
degradation in LMBR performance under BLEU. This shows that the lattice segmentation
process works as intended.

9.6.1 Decoding with Coverage Constraints
The effect on the BLEU score of applying monolingual coverage constraints is now investi-
gated. The acceptors Cn are constructed as described in Section 9.5 with S consisting of all
n-grams (orders n = 1 . . . 5) in the English GigaWord Third Edition text collection (approxi-
mately 3.6 billion words). At β = 0.6 there are 181 sentences in mt08nw with sublattices Hr

that can be completely spanned by n-grams of the maximum possible order from S, i.e. for
which Xr ◦ Cn contains paths with zero cost; these regions are filtered as described. LMBR
over the concatenation of these coverage-constrained sublattices is denoted LMBR+CC. On
mt08nw the BLEU score for LMBR+CC is 52.0 which is +0.7 over ML decoding and only
-0.2 BLEU below the unconstrained LMBR decoding. These results show that constraining
partial hypotheses in low confidence regions to have no backing off using n-grams from the
GigaWord causes little change in the size of the gain obtained through LMBR decoding.

1http://www.itl.nist.gov/iad/mig/tests/mt
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mt0205tune mt0205test mt08nw mt08ng

ML 54.2 53.8 51.3 36.3

β

0.0 54.2 53.8 51.3 36.3
0.2 54.3 53.8 51.3 36.3
0.4 54.6 54.2 51.6 36.7
0.6 54.9 54.4 52.1 36.6
0.8 54.9 54.4 52.1 36.6
1.0 54.9 54.4 52.2 36.7

LMBR 54.9 54.4 52.2 36.8

Table 9.1: Arabic→English maximum likelihood (ML) and lattice minimum Bayes-risk
(LMBR) decoding BLEU scores over n-gram posterior probability thresholds 0 ≤ β ≤ 1.

At this value of β, 116 of the 813 mt08nw sentences have a low confidence region (i)
completely covered by 5-grams, and (ii) within which the ML hypothesis and the LMBR+CC
hypothesis differ. It is these regions which will be inspected for improved fluency.

9.6.2 Reference Translation Coverage Statistics
The effectiveness of monolingual coverage constraints as a method for improving machine
translation fluency depends crucially on the level of n-gram coverage in fluent monolingual
data. Table 9.2 shows n-gram coverage statistics by order for the union of the four reference
translations of the Arabic→English mt0205tune and mt0205test testsets. These coverage
statistics are computed with respect to approximately 3.6 billion words of tokenized data in
the English GigaWord Third Edition (Graff et al., 2007). An n-gram is considered covered if
it occurs at least once in the monolingual training data.

Order
mt0205tune mt0205test

n-grams coverage (%) n-grams coverage (%)

1 10566 99.3 10449 99.3
2 77638 95.6 76642 95.8
3 150062 82.6 149070 82.9
4 189172 58.5 188672 58.7
5 206802 34.2 206760 34.4

Table 9.2: Total number of unique n-grams and GigaWord Third Edition coverage statistics
by order for the union of the four reference translations of mt0205tune and mt0205test.

The table shows that there is good coverage of unigrams and bigrams, but the coverage
falls off rapidly at higher orders. Only around 59% of 4-grams and 34% of 5-grams in the
references are found in the fluent monolingual text collection.

9.7 Human Fluency Evaluation
Since it is difficult to reliably assess the fluency of MT output using automatic metrics such
as BLEU and TER, 17 native speakers of English were asked to judge the fluency of sen-
tence fragments from the Arabic→English mt08nw testset. 116 sentence fragments from the
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Figure 9.11: Human fluency evaluation web application.

maximum likelihood decoder (ML) and the lattice MBR decoder with monolingual coverage
constraints (LMBR+CC) were compared. Each fragment consisted of the partial translation
hypothesis from a low confidence sublattice region together with its left and right high con-
fidence contexts (examples are given in Figure 9.12, with low confidence regions marked in
italics). For each pair of sentence fragments, judges were asked: “Could the following frag-
ments appear in a fluent sentence?”. The evaluation was based on a modified version of the
web application used for the Blizzard Challenge (Black and Tokuda, 2005). A screen-shot of
the web application presented to the human judges is shown in Figure 9.11.

The results of the evaluation are shown in Table 9.3. Most of the time, the ML and
LMBR+CC sentence fragments were both judged to be fluent; it often happened that they
differed by only a single noun or verb substitution which did not affect fluency. In a small
number of cases, both the ML and LMBR+CC fragments were judged to be disfluent. The
most interesting cases are the ‘off-diagonal’ cases. When one system was judged to be fluent
and the other was not, LMBR+CC was preferred more than twice as often as the ML baseline
(26.9% to 9.7%). In other words, the application of hypothesis space constraints based on
monolingual coverage was judged to have improved the fluency of partial hypotheses in low
confidence regions more than twice as often as fluent hypotheses were made disfluent.

Some examples of improved fluency are shown in Figure 9.12. Although both the ML
and unconstrained LMBR hypotheses could probably be said to satisfy translation adequacy,
they lack the fluency of the LMBR+CC hypotheses. In the first of these examples, the
LMBR+CC sentence fragment is made perfectly fluent by replacing the single word ‘open’
with the three word phrase ‘opening of the’. The resulting 14 word sentence fragment is then
completely covered by a series of 10 overlapping 5-grams in the monolingual text collection.

figures/fluency/web-evaluation.eps
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LMBR+CC
Fluent Not Fluent

ML
Fluent 1175 (59.6%) 192 (9.7%)

Not Fluent 530 (26.9%) 75 (3.8%)

Table 9.3: Partial hypothesis fluency judgements by 17 native speakers of English.

Decoder Partial Translation Hypothesis
ML ... view , especially with the open chinese economy to the world and ...
+LMBR ... view , especially with the open chinese economy to the world and ...
+LMBR+CC ... view , especially with the opening of the chinese economy to the world and ...

ML ... change the position of iran nuclear . </s>
+LMBR ... change the position of the iranian nuclear . </s>
+LMBR+CC ... change the position of iran . </s>

ML ... revision of the constitution of the japanese public , which dates back ...
+LMBR ... revision of the constitution of the japanese public , which dates back ...
+LMBR+CC ... revision of the constitution of japan , which dates back ...

ML <s> it should be remembered the benefits of the ...
+LMBR <s> it should be recalled the benefits of the ...
+LMBR+CC <s> it should be a reminder of the benefits of the ...

Figure 9.12: Improved fluency through the application of monolingual coverage constraints
to the hypothesis space in lattice MBR decoding of the Arabic→English mt08nw testset.

The availability of such higher-order n-gram coverage is the basis for constraints on the MBR
search space that lead to improved fluency.

The second example shows one possible problem with hypothesis space constraints based
on coverage: filtering sublattice regions to retain only hypotheses completely covered by high
order n-grams may lead to the deletion of content. Here, the word ‘nuclear’, which is present
in both the ML and unconstrained LMBR translation, has been deleted from the LMBR+CC
hypothesis. It was deleted since its inclusion in these partial translation hypotheses is not
fluent and maximum order n-grams cannot be found to completely cover the fragments. From
a fluency perspective, the word should be deleted. From an adequacy perspective, however,
the deleted word might represent a loss of information content. Any approach to improving
MT fluency must be careful not to adversely impact translation adequacy.

9.8 Summary and Conclusions
This chapter has described a novel general framework for improving the fluency of machine
translation output. By decoupling the hypothesis space from the evidence space, there is
great potential for flexibility in lattice minimum Bayes-risk search.

The approach to improving fluency described in this chapter is motivated by the analysis
in Section 9.2, where it was shown that high path posterior probability n-grams in the ML
translation hypothesis can be used to guide the segmentation of a lattice into regions of high
and low confidence. Lattice MBR decoding can be performed over such segmented lattices
with little or no degradation in performance relative to unconstrained LMBR.

The segmentation of the lattice into alternating regions of high and low confidence con-
siderably simplifies the process of refining the hypothesis space since low confidence regions
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can be refined in the context of the high confidence strings that surround them. This can
be done independently before reassembling the hypothesis space as the concatenation of re-
fined regions. The use of general purpose weighted finite-state transducer methods allows for
efficient identification of high and low confidence regions. The lattice segmentation process,
implementation of the transformation function, and hypothesis space reconstitution proce-
dures are also greatly simplified. This form of lattice segmentation facilitates the targeted
application of techniques intended to address specific deficiencies in SMT.

As one example of the use of this framework, hypothesis space constraints were applied
to low confidence regions based on maximum order n-gram coverage in a large monolingual
text collection. An evaluation of the constrained regions by native speakers showed improved
translation fluency without a significant degradation in BLEU score relative to LMBR decod-
ing in the unconstrained hypothesis space.

The effectiveness of this particular approach to improving the fluency of the MBR search
space is plainly limited by the coverage of low confidence sublattice regions using fluent
monolingual text. This is expected to improve with larger text collections such as the vast
library of fluent text contained in the Google Books project1, or in tightly focused scenarios
where in-domain text is less diverse.

However, machine translation fluency will be best improved by integrating more sophis-
ticated natural language generation systems. NLG systems capable of generating sentence
fragments in context can be incorporated directly into this framework. This framework could
also be used to improve the fluency of automatic speech recognition (Huang et al., 2001), op-
tical character recognition (Mori et al., 1999), and other language processing tasks in which
the objective is to produce fluent output.

1http://books.google.com



CHAPTER 10
Conclusions

Lattice rescoring methods offer great potential for improving the quality of statistical
machine translation. Complex models and processes that are difficult or impossible to

integrate in first-pass translation decoding can be efficiently applied to large lattices of the
most likely translation hypotheses. This form of multi-pass translation is of increasing interest
to the statistical machine translation community (Rosti et al., 2007a,b; Tromble et al., 2008;
Kumar et al., 2009; Li et al., 2009; DeNero et al., 2009; Allauzen et al., 2010).

The original contributions are reviewed in Section 10.1; the publications and presentations
resulting from the research described in this thesis are listed in Section 10.2. Section 10.3
discusses possible extensions and suggested areas for future research, building on the core
ideas developed in the later chapters of this thesis.

10.1 Review of Work
This thesis developed an inventory of robust and effective lattice rescoring methods for large-
scale statistical machine translation. Efficient realisations of these rescoring methods in terms
of general purpose weighted finite state transducer operations and algorithms were demon-
strated to lead to significant improvements in the quality of state-of-the-art statistical machine
translation systems. The rescoring methods described in this work have been used extensively
for translation research at CUED, and contributed to significant gains in highly-ranked sub-
missions to the NIST and WMT evaluations of SMT quality. This section reviews the original
contributions of this thesis.

134
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10.1.1 Large Language Model Rescoring
In order to establish a high quality baseline for investigations into more sophisticated lattice
rescoring methods, Chapter 5 presented a detailed empirical investigation of SMT lattice
rescoring with high-order n-gram language models estimated over multi-billion word corpora.
5-gram and 6-gram zero-cutoff language models estimated over more than 10 billion words
of English monolingual training data were demonstrated to lead to substantial improvements
in the quality of Arabic→English and Chinese→English translation. French→English and
Spanish→English lattice rescoring experiments were also reported.

The simple dependency structure of stupid-backoff smoothing (Brants et al., 2007) allows
for an efficient, low-memory streaming algorithm to be used to filter counts for relevancy;
this allows large LMs to be applied in lattice rescoring without a distributed client-server
architecture. An efficient rescoring framework based on encoding only the subset of model
parameters required to rescore each lattice as a weighted finite-state acceptor was described.
Limitations of data sparsity and poor coverage of higher-order n-grams in lattice hypotheses
mean that the 6-gram models are currently no better than the 5-gram models for SMT lattice
rescoring.

10.1.2 Phrasal Segmentation Models
Phrasal segmentation models were proposed and developed as a simple but effective stochastic
model of the segmentation process in phrase-based statistical machine translation (Blackwood
et al., 2008b). Chapter 6 described how the parameters of a phrasal segmentation model
can be estimated from naturally occurring phrase sequence examples in a large monolingual
training corpus. First-order phrasal segmentation model rescoring of Arabic→English lattices
was shown to result in significant complementary gains in BLEU score with respect to large
5-gram and 6-gram zero-cutoff language models. Phrasal segmentation model rescoring im-
proves phrase-based SMT quality by exploiting the same abundantly available monolingual
data that is normally used only for building word-based language models.

Although there is no explicit model of the segmentation process in hierarchical phrase-
based SMT, phrases extracted from contiguous strings of terminals in the rules of the grammar
allow phrasal segmentation models to be used to rescore lattices produced by a hierarchical de-
coder. This approach, however, yielded only moderate gains when applied to Arabic→English
and Chinese→English lattice rescoring. As described in the conclusions to Chapter 6, a pa-
rameter estimation procedure that correctly accounts for the hierarchical nature of phrasal
substitutions and reordering may be required before phrasal segmentation models can be
effectively applied to the output of a hierarchical phrase-based decoder.

10.1.3 Efficient Lattice Minimum Bayes-Risk Decoding
Chapter 7 proposed a fast and exact formulation of linearised lattice minimum Bayes-risk
decoding based on efficient path counting transducers (Blackwood and Byrne, 2010). Mapping
word sequences to sequences of n-grams considerably simplifies the extraction of the higher-
order statistics. Weighted path counting transducers allow for all n-gram path posterior
probabilities of a given order to be computed in a single weighted composition; analysing
decoding times showed this approach to be more than twice as fast as the sequential method
of computing n-gram posterior probabilities one-by-one in series (Tromble et al., 2008).
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Comprehensive MBR decoding experiments showed the new decoder to perform well in
rescoring of large Arabic→English and Chinese→English SMT lattices, leading to large gains
in BLEU score over the maximum likelihood translations. The importance of using as large an
evidence space as possible was demonstrated by comparing decoding performance over lattices
and k-best lists. An analysis of k-best list evidence space sizes showed that, for many longer
sentences, a surprisingly small proportion of the total lattice probability mass is represented
by large lists of the top 20000 hypotheses.

10.1.4 Multiple Lattice Minimum Bayes-Risk Combination
Chapter 8 introduced an efficient multiple-lattice generalisation of the lattice MBR decoder
described in Chapter 7. Multiple lattice MBR decoding allows the full evidence space of each
individual lattice to contribute to the calculation of the expected risk. This is a significant
advantage over alternative combination techniques which are often limited to relatively shal-
low k-best lists for efficiency reasons. Multiple evidence spaces provide greater robustness
since aspects of translation that are poorly handled in one set of lattices may be compensated
for by better handling in another set of lattices.

Multiple-lattice MBR decoding was evaluated on two separate combination tasks. Multi-
input translation of alternative decompositions of the source language sentence was shown to
be effective in two-way and three-way combination of lattices generated from different Arabic
morphological analyses (de Gispert et al., 2010). Similar gains were observed through the
combination of lattices generated from alternative Chinese word segmentations. Multi-source
translation of French→English and Spanish→English lattices was shown to lead to very large
gains in BLEU score with respect to the maximum likelihood translations of the best of the
individual systems.

10.1.5 Posterior-Based Lattice Segmentation
The analysis of n-gram precisions in Chapter 9 showed that high probability n-grams in
the maximum likelihood translation are more likely to be found in the human reference
translations. These results motivated the use of n-gram path posterior probabilities to guide
the segmentation of a lattice into regions of high and low confidence. Efficient segmentation
procedures were described in terms of weighted finite state transducers. MBR decoding over
the segmented lattice was shown to result in little or no degradation in the BLEU score
compared to MBR decoding over the unsegmented lattice.

Lattice segmentation considerably simplifies the process of refining the MBR hypothesis
space since low confidence regions can be refined in the context of their high confidence neigh-
bours. This can be done independently in each region of low confidence before reassembling
the refined regions. Lattice segmentation is proposed as a general technique for facilitating
the targeted application of specific post-processing methods intended to address deficiencies
in translation.

10.1.6 Hypothesis Space Constraints
Chapter 9 proposed a novel framework for improving the fluency of statistical machine transla-
tion based on a separation of the hypothesis space and evidence space in a minimum Bayes-risk
decoder. Segmenting first-pass translation lattices using an n-gram path posterior probability
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confidence measure allows the hypothesis space to be refined by enforcing hypothesis space
constraints in the low confidence regions. Constraints based on high-order n-gram coverage
in a large target-language monolingual text collection were demonstrated to lead to improved
machine translation fluency. This framework potentially allows for robust integration of nat-
ural language generation in statistical machine translation, an area for future work that is
discussed in more detail in Section 10.3.

10.2 Publications and Presentations
The research described in this thesis has led to the following publications and presentations:

1. G. Blackwood and W. Byrne. Efficient path counting transducers for minimum Bayes-
risk decoding of statistical machine translation lattices. In Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics, (accepted for publi-
cation) 2010.

2. A. de Gispert, G. Iglesias, G. Blackwood, E. R. Banga, and W. Byrne. Hierarchical
phrase-based translation with weighted finite state transducers and shallow-n grammars.
In Computational Linguistics. Association for Computational Linguistics, (accepted for
publication) 2010.

3. A. de Gispert, G. Iglesias, G. Blackwood, J. Brunning, and W. Byrne. The CUED NIST
2009 Arabic-English SMT System. NIST Open Machine Translation 2009 Evaluation
(MT09) Workshop, August 2009.

4. M. Kurimo, S. Virpioja, V. T. Turunen, G. Blackwood, and W. Byrne. Overview
and results of morpho challenge 2009. In Multilingual Information Access Evaluation
Vol. I-II, 10th Workshop of the Cross-Language Evaluation Forum, CLEF 2009, Corfu,
Greece. Springer Lecture Notes in Computer Science, 2009.

5. G. Blackwood, A. de Gispert, J. Brunning, and W. Byrne. Large-scale statistical ma-
chine translation with weighted finite state transducers. In Proceedings of FSMNLP
2008: Finite-State Methods and Natural Language Processing, Ispra, Lago Maggiore,
Italy, September 2008.

6. G. Blackwood, A. de Gispert, and W. Byrne. Phrasal segmentation models for sta-
tistical machine translation. In Proceedings of the 22nd International Conference on
Computational Linguistics, Manchester, UK, August 2008.

7. G. Blackwood, A. de Gispert, J. Brunning, and W. Byrne. European language transla-
tion with weighted finite state transducers: The CUED MT system for the 2008 ACL
workshop on statistical machine translation. In Proceedings of the ACL 2008 Third
Workshop on Statistical Machine Translation, June 2008.

8. A. de Gispert, G. Blackwood, J. Brunning, and W. Byrne. The CUED NIST 2008
Arabic-English SMT System. Presented at NIST MT Workshop, March 2008.
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10.3 Future Work
The minimum Bayes-risk decoder described in Chapter 9 proposed decoupling the hypothesis
space from the evidence space so as to allow for greater flexibility in search. The fluency
of statistical machine translation was improved within this framework by applying hypoth-
esis space constraints to the low confidence regions of first-pass translation lattices. These
constraints discard partial hypotheses whenever fluent alternatives can be found, where the
degree of fluency was determined by considering coverage of high-order n-grams in monolin-
gual data. Coverage constraints are one simple way of improving SMT fluency but depend
critically on coverage of partial hypothesis n-grams in monolingual training data.

More sophisticated methods for refining the MBR hypothesis space include re-decoding
low-confidence regions with linguistically motivated features, hypothesis combination strate-
gies (Rosti et al., 2007a,b), and long-span language models estimated over massive monolin-
gual text collections such as the Google Books1 project. Hypothesis space constraints derived
from statistical parsing (Charniak, 1997; Collins, 1999) of partial hypotheses may also lead
to higher levels of SMT quality and fluency.

An alternative method for improving SMT fluency is to augment or replace the MBR
hypothesis space with new hypotheses produced by a state-of-the-art natural language gen-
eration system. NLG systems capable of generating sentence fragments in context can be
incorporated directly into the MBR decoding framework of Chapter 9. Decoding in a gen-
erated hypothesis space searches for translations in the space of fluent sentences close to the
hypotheses of the baseline system, as determined by the MBR loss function L(E,E′).

Following on from the discussion of the limitations of the source-channel model of SMT in
the introduction to Chapter 9, if the MBR hypothesis spaceH contains a generated hypothesis
Ē for which P (F |Ē) = 0, it is still possible for Ē to be produced as a translation, since it
can be ‘voted for’ by nearby hypotheses produced by the underlying system. The hypothesis
space can therefore be augmented by new hypotheses without compromising the robustness
of statistical machine translation.

As evidence of the need for a richer hypothesis space, the reachability problem (Chap-
ter 9, Section 9.1) in SMT is briefly analysed. Table 10.1 shows the proportion of NIST
Arabic→English testset sentences that can be successfully aligned to any one of the avail-
able human reference translations using our high quality baseline hierarchical decoder and a
powerful grammar (Iglesias et al., 2009b). The low levels of reachability suggest that without
some form of natural language generation or other augmentation of the hypothesis space it
will be difficult to achieve high levels of translation quality and fluency. Other posterior-based
lattice rescoring methods such as the approaches of Kumar et al. (2009) and Li et al. (2009)
will also benefit from NLG whenever the baseline is incapable of generating the reference.

1http://books.google.com

Testset Sentences Reachability

mt0205tune 2075 15%
mt0205test 2040 14%
mt08nw 813 11%
mt08ng 547 9%

Table 10.1: NIST Arabic→English reference translation reachability.
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