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Summary

This thesis proposes a new probabilistic model and speech parameter generation

method for statistical parametric text-to-speech synthesis. These are designed to ad-

dress drawbacks with the conventional approach to statistical parametric speech syn-

thesis, in which a form of hidden Markov model (HMM) is used for modelling and

one of two methods, known as standard speech parameter generation and parameter

generation considering global variance, is used for speech parameter generation.

The new probabilistic model is a form of autoregressive HMM, and addresses an

inconsistency in the treatment of the dynamics of speech parameter sequences present

in the conventional approach. Compared to previous attempts to address this inconsist-

ency such as the trajectory HMM, our model has the advantage of supporting efficient

parameter estimation using expectation maximization and decision tree clustering.

The new speech parameter generation method is informed by a mathematical ana-

lysis of parameter generation considering global variance and an investigation into why

it sometimes introduces artifacts into the synthesized speech. The proposed method is

as fast as standard speech parameter generation but improves naturalness as much as

parameter generation considering global variance, without introducing artifacts. This

makes it an attractive generation method when fast, high-quality generation is desired.

As we develop the new model and generation method we also investigate and develop

a better understanding of several aspects of existing approaches. We show that the

conventional approach, due its lack of consistency, greatly underestimates the variance

present in speech parameter sequences. We present a view of the trajectory HMM

as a directed graphical model, which serves to highlight both its similarities to and

differences from the autoregressive HMM. Finally we investigate the causes of the

artifacts sometimes introduced by parameter generation considering global variance.

We find that excursions in the generated speech parameter sequence are associated

with artifacts, and identify the source of these excursions as a pathology in parameter

generation considering global variance.
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Notation and terminology

In this section we review the notational conventions and terminology used in this thesis.

We first review basic notation. A set consisting of elements 1, 2 and 3 is denoted {1, 2, 3}.
A pair is denoted (5, 2), a 3-tuple (5, 2, 3), etc. We denote the natural numbers {1, 2, . . .}
by N, the integers by Z and the real numbers by R.

We now review our notation and terminology for functions. A function has a domain

and a range, both of which are sets, and maps each input element x in the domain to a

unique output element, denoted f(x), in the range. In the expression f(x) we refer to x as

the argument of f . We write f : A→ B to indicate that f is a function with domain A and

range B. We write x 7→ x2 to denote a function which maps the element x to x2, leaving

the domain and range of the function unspecified. Thus f : R→ R, x 7→ x2 fully specifies a

simple quadratic function. For functions where the domain is a Cartesian product A×B we

often write f(x, y) instead of f((x, y)) and consider f to be a function of two arguments.

Sometimes, particularly when the domain is a “discrete” set, it is convenient to use the

subscript notation fi as an alternative to f(i), in which case we refer to i as an index.

Similarly we may write fij as an alternative to f(i, j). We use superscripted expressions

such as f r to denote taking a power rather than indexing.

We now discuss our notation and terminology for sequences. A sequence is a function

whose domain is a totally ordered set, for example {1, . . . , T} or Z. We refer to the domain

of a sequence as its index set, and the cardinality of the index set as the length of the

sequence. We use len(a) to denote the length of a sequence a. Most of the sequences we

consider in this thesis have index set {1, . . . , T} for some length T . We generally use the

indexing notation for sequences, for example at rather than a(t). If a is a sequence, we

sometimes use a1:T to denote the subsequence [at]
T
t=1, where the notation [·]Tt=1 is described

below.

We now discuss our terminology for tensors. A tensor is a function whose domain is a

Cartesian product of R totally ordered sets. We refer to R as the rank of the tensor. Thus

a rank 1 tensor is just a sequence. We refer to a rank 0 tensor as a scalar and a rank 2

tensor as a matrix. We do not use the geometric notion of a tensor from multilinear algebra

in this thesis. We often refer to a rank 1 tensor as a vector. However we also use the term
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Notation and terminology

vector to mean an element of a vector space, i.e. a set for which there is a notion of addition

and scalar multiplication that satisfies certain axioms. Which meaning of vector is intended

should be clear from context. It is sometimes helpful to consider a T -dimensional rank 1

tensor a as a T ×1 matrix or column vector, in which case its transpose aT is a 1×T matrix

or row vector. We generally use the indexing notation for tensors, for example writing aij

rather than a(i, j).

We will often find an alternative notation for constructing functions convenient. The

expression [·]x∈A, where · is an expression that typically involves x as a free variable,

denotes a function f with domain A where f(u) is given by the expression · evaluated with

x set to u. For example: [x2]x∈R denotes a simple quadratic function; and [t2]t∈N denotes

the sequence 1, 4, 9, . . .. We refer to this as function builder notation. The range of the

constructed function is left unspecified by this notation. We use [·]bt=a as a concise notation

for [·]t∈A where A = {a, . . . , b} and a, b ∈ Z. We sometimes use [·]x if we wish to leave the

domain implied. For example trivially for any sequence a we have a = [at]t. When the

expression · above is a tuple, for example [(at, bt)]t∈A, we often drop the nested brackets and

write [at, bt]t∈A. We also allow multiple indices in function builder notation. For example

[·]i∈I,j∈J , or simply [·]i,j , denotes a function with domain I × J .

Our notation for probability distributions is as follows. We denote the probability of a

“discrete” random variable x taking a value a by P(x = a). We also denote the probability

density of a “continuous” random variable x at a by P(x = a). The equals sign here could

be considered misleading but the notation has the advantage of being concise and precise.

From a measure theoretic perspective there is no inherent distinction between the discrete

and continuous cases, and in the discrete case P(x = a) can be viewed as a density with

respect to the counting measure. Where it is not likely to cause confusion we follow the

common convention of using the same symbol to denote a random variable and its value,

and of writing P(x) as shorthand for P(x = x).

Finally, in following the text it may be helpful to know how we use the overline or

overbar. If a is a quantity of interest, e.g. the area of a square, and there is a function of

interest which returns the value of a in a particular situation, e.g. the function l 7→ l2 which

gives the area of a square from its side length, then this function is often denoted a.
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CRF conditional random field

DTW dynamic time warping

EM expectation maximization

GAM Gaussian acoustic model

GMSD global mean squared deviation

GSTM Gaussian state transition model
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HMM hidden Markov model

HTS HMM-based speech synthesis system (software)

LGLAR linear Gaussian linear autoregressive

LSPA local static parameter adjustment

MCD mel cepstral distortion
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Chapter 1

Introduction

In recent years statistical parametric speech synthesis has been widely adopted for building

text-to-speech synthesis systems, offering the ability to build a synthesis system from a

corpus of natural speech, output of predictable and reasonably high quality, a relatively

low memory footprint, and the ability to mimic and control voice characteristics (Zen

et al., 2009; Taylor, 2009). This approach involves the use of a probabilistic model defined

over sequences of speech parameters representing the speech audio. The parameters of

the probabilistic model are first learned from the corpus of natural speech in a process

referred to as model parameter estimation, then the trained probabilistic model is used

to synthesize speech parameter sequences for new text in a process referred to as speech

parameter generation. The field has largely converged on a standard approach to statistical

parametric speech synthesis based on hidden Markov models (HMMs) (Zen et al., 2009),

and we refer to this as the standard HMM synthesis framework.

Despite its success, there are many potential areas for improvement in the standard

framework, and we consider two of these in detail in this thesis. The first issue we consider

is the fact that the standard HMM synthesis framework is inconsistent in its treatment

of the dynamics of speech parameter sequences, with one approach to modelling these

dynamics being used during parameter estimation and another approach used during speech

parameter generation. As we will see, this inconsistency means that the probabilistic model

trained by the standard framework is a terrible probabilistic model of speech parameter

sequences, in the sense of having a very low test set log probability. Thankfully typical

speech parameter generation techniques, such as standard speech parameter generation and

parameter generation considering global variance, do not rely strongly on aspects of the

probabilistic model that are deficient due to this inconsistency, and it is still possible to

obtain high quality synthesized speech. Nevertheless it may be of interest, both theoretically

and practically, to address this inconsistency. Previous work addressing this inconsistency

has resulted in consistent models at the cost of more complicated parameter estimation (van
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1. Introduction

Horn, 2002; Zen et al., 2007b). For example the trajectory HMM (Zen et al., 2007b) results

in more natural synthesized speech, but does not support efficient parameter estimation

methods such as expectation maximization or decision tree clustering, and gradient ascent-

based parameter estimation using a fixed alignment and fixed decision trees are typically

used instead. The challenge remains to find a model which can efficiently and consistently

be used for both parameter estimation and speech parameter generation.

The second issue with the standard framework which we consider is the fact that there

are trade-offs involved in the choice of speech parameter generation method. Standard

speech parameter generation optimizes a quadratic utility function which has an analytic

solution, whereas parameter generation considering global variance optimizes a more com-

plicated utility function designed to increase the global variance (GV) of generated traject-

ories, which is a measure of how spread out the values in a trajectory are around their

mean value. The two techniques have different strengths and weaknesses: parameter gen-

eration considering global variance results in clearer and less “muffled”-sounding speech

than standard generation; the conventional algorithm for standard generation is fast and

exact, whereas the conventional gradient ascent-based algorithm for parameter generation

considering global variance is slower and approximate; there is a low latency approximate

algorithm available for standard generation but not for parameter generation considering

global variance; and parameter generation considering global variance sometimes results

in artifacts in the synthesized speech, though using early stopping during gradient ascent

is an effective way to reduce the occurrence of artifacts. It would be preferable to have a

generation method which achieves both speed and quality and does not introduce artifacts.

In this thesis we address the above two issues. To address the first issue, we propose

using a form of autoregressive HMM, specifically the linear Gaussian linear autoregressive

HMM (LGLAR HMM), for parametric speech synthesis. The proposed model is consistent,

supports efficient model parameter estimation, supports existing effective speech parameter

generation methods, and supports a simple and exact low latency parameter generation

method. To address the second issue, we introduce a new GV-like generation method

which is as fast as standard generation but improves naturalness as much as parameter

generation considering global variance, without introducing artifacts. This makes it a very

attractive generation method when fast, high-quality generation is desired.

In addition we attempt to contribute to a better understanding of various aspects of

existing and new models and generation methods. For example:

• We show that one of the major practical effects of the lack of consistency present in

the standard framework is that it greatly underestimates predictive variance.

• We identify a weakness in the autoregressive HMM which we refer to as future state

blindness. This weakness must be alleviated by any practical autoregressive HMM

2



system in order to obtain good performance, and we explore the implications of this

weakness for the LGLAR HMM.

• We describe two ways to view the trajectory HMM and the LGLAR HMM within a

common framework, including a view of the trajectory HMM as a directed graphical

model. These views serve to highlight both the similarities and differences between

the two models.

• Parameter generation considering global variance is often thought of as “sharpening”

the trajectory produced by standard generation. We make the sense in which this

happens precise, showing that it involves subtracting a constant from the elements

on the diagonal of the precision matrix.

• We show theoretically and experimentally that consistent models such as the traject-

ory HMM and autoregressive HMM model global variance very well. This implies

that, for consistent models, parameter generation considering global variance is per-

haps best viewed as compensating for a deficiency in standard generation, not a

deficiency in the model.

• We investigate the causes of artifacts in some detail. We show that parameter gen-

eration considering global variance without early stopping suffers from a pathology

which can result in excursions in the generated trajectory, and show that excursions in

different cepstral components often occur simultaneously. We provide evidence that

these excursions are the cepstral-level phenomenon responsible for the perceptual-

level phenomenon of artifacts. We also provide a partial explanation of why early

stopping helps to prevent artifacts, and show that a previously suggested hypothesis

about the causes of artifacts has only a small effect for our experimental systems.

These considerations provide us with a better understanding of when artifacts are

likely to occur and how to prevent them.

The remainder of this thesis is organized as follows. In Chapter 2 we review some of the

fundamentals of probabilistic modelling. In Chapter 3 we review some of the fundamentals

of statistical parametric speech synthesis, and define the standard HMM synthesis frame-

work and the trajectory HMM. In Chapter 4 we propose using a form of autoregressive

HMM, the LGLAR HMM, for statistical parametric speech synthesis, and compare it to

the standard framework and the trajectory HMM in subjective and objective evaluations.

In Chapter 5 we examine a variety of connections between the standard framework, the

trajectory HMM and the LGLAR HMM, and discuss the effect of the inconsistency present

in the standard framework. In Chapter 6 we investigate parameter generation considering

global variance in detail and propose a new generation method which addresses some of its

drawbacks.
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Chapter 2

Probabilistic modelling

In this chapter we review some of the fundamentals of probabilistic modelling, by which we

mean the use of probability distributions to model aspects of the world. Using probabilistic

models allows the broad form of a model to be specified by the investigator while the

details are learned automatically from data. The ability to incorporate domain-specific

knowledge in the design of probabilistic models while allowing specific details to be learned

in a data-driven and flexible way is a powerful asset of probabilistic modelling.

The layout of this chapter is as follows. We first describe how probabilistic models can

be used for prediction. We discuss both probabilistic models and conditional probabilistic

models, and review fundamental notions such as parameter estimation. We also discuss

how to evaluate probabilistic models. We then review some basic probabilistic models that

will be used as building blocks for many of the more complicated models considered in this

thesis. We also review the concept of an exponential family and a conditional exponential

family. These concepts will be central to much of our exposition and will provide us with

a number of insights about specific models. We then review two parameter estimation

methods, decision tree clustering and expectation maximization, that are widely used and

broadly applicable to certain classes of probabilistic model. Finally we review how the basic

probabilistic models can be combined to form a sequential probabilistic model known as

the hidden Markov model and discuss how to perform parameter estimation for this model.

2.1 Probabilistic models and prediction

Consider an infinite sequence [Yr]r∈N of random variables, where each observation Yr takes

its value in a set Y. In many situations we wish to make some form of prediction about

the value of a test corpus Y ∗ = [Yr]r∈R∗ of future observations given the value of a training

corpus Y ◦ = [Yr]r∈R◦ of past observations, where R◦ and R∗ are disjoint subsets of N.

We refer to r as the utterance index ; this terminology is speech-focused but the concept is
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2. Probabilistic modelling

general. We refer to [Yr]r∈N as the potential corpus. For example for a series of coin tosses

the set Y might consist of heads and tails, with the potential corpus consisting of an infinite

sequence of tosses.

Often it is reasonable to assume that the potential corpus is generated by sampling each

observation independently from a common distribution, where the common distribution is

known to belong to some specified family but the precise member of this family, as specified

by a random variable λ, is unknown and to be inferred from data. In this case we have

P(Y1:N |λ) =

N∏
r=1

P(Yr |λ) (2.1)

for any N ∈ N. The conditional distribution P(Yr |λ) above is the same for all r, and so

when specifying this distribution we often simply write P(y |λ), where y is an unspecified

observation in the potential corpus and takes values in Y. For simplicity we typically assume

λ is a member of a finite set, a finite-dimensional Euclidean space, or a combination of the

two. In this case we refer to λ as the collection of model parameters, and refer to the family

of probability distributions parameterized by λ as a parametric family or probabilistic model.

When we write “the probabilistic model P(y |λ)” we therefore intend to denote a family of

probability distributions over y, where the family is parameterized by λ.

Sometimes the desired form of the prediction is a probability distribution over possible

test corpus values. One approach to producing predictions of this form is to use P(Y ∗ |
λ = λ̂(Y ◦)) as the desired distribution, where λ̂ is a function mapping each possible value

of the training corpus to a value of the model parameters. We refer to λ̂(Y ◦) as a point

estimate of the model parameters λ, and refer to the process of choosing the value of the

model parameters as parameter estimation, training or learning. For maximum likelihood

estimation the point estimate is chosen to maximize the training corpus likelihood, that is

λ̂(Y ◦) = arg max
λ

P(Y ◦ |λ) (2.2)

Maximum likelihood estimation is susceptible to overfitting (MacKay, 2003; Bishop,

2006), where the estimated model parameters encode happenstances of the training cor-

pus rather than facts about the underlying distribution, leading to good training corpus

performance but bad test corpus performance. If there is not substantial overfitting then

we say the parameters have been estimated robustly. Despite this disadvantage, max-

imum likelihood estimation has the advantage of often being slightly simpler to implement

than alternatives with better properties such as Bayesian (MacKay, 2003; Bishop, 2006)

approaches, and we will use maximum likelihood estimation in this thesis.
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2.1. Probabilistic models and prediction

2.1.1 Latent variable models

Often P(y |λ) is of the form

P(y |λ) =
∑
x

P(y |x, λ)P(x |λ) (2.3)

In this case we refer to the random variable x as a hidden or latent variable, and the

corresponding model as a latent variable model. Just as y above denotes the observation

Yr for some unspecified utterance r, x above denotes the latent variable Xr for the same

utterance. The latent variable takes values X◦ = [Xr]r∈R◦ on training corpus utterances

and values X∗ = [Xr]r∈R∗ on test corpus utterances. The training corpus and test corpus

themselves are still Y ◦ and Y ∗ since the latent variable is unobserved.

2.1.2 Conditional probabilistic models

The conceptual framework described at the start of this section can be extended to the case

of conditional prediction. Each utterance index r is now associated with a conditioned-on

variable Xr ∈ X , whose value is known at prediction time even for the test corpus. We

wish to make some form of prediction about the value of future observations Y ∗ = [Yr]r∈R∗

given the value of future conditioned-on variables X∗ = [Xr]r∈R∗ , the value of past observed

variables Y ◦ = [Yr]r∈R◦ , and the value of past conditioned-on variables X◦ = [Xr]r∈R◦ . Now

the training corpus is (X◦, Y ◦) and the test corpus is (X∗, Y ∗). For example we might have

a red coin and a blue coin, where for each utterance r we toss the coin with colour Xr,

specified by some external source, and record the result Yr. Here X = {red,blue}.
Sometimes it is reasonable to assume that

P(Y1:N |X1:N , λ) =
N∏
r=1

P(Yr |Xr, λ) (2.4)

for any N ∈ N. Again for simplicity we typically assume λ is a member of a finite set, a

finite-dimensional Euclidean space, or a combination of the two. We refer to a family of

conditional probability distributions parameterized by λ as a conditional parametric family

or conditional probabilistic model. When we write “the conditional probabilistic model P(y |
x, λ)” we therefore intend to denote a family of conditional probability distributions over

y given x, where the family is parameterized by λ. Maximum likelihood estimation is now

defined by

λ̂(X◦, Y ◦) = arg max
λ

P(Y ◦ |X◦, λ) (2.5)

2.1.3 Statistics

A statistic is a real-valued function of the observed data. Its value can be seen as a one-

dimensional summary of the observed data, paying particular attention to certain aspects
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2. Probabilistic modelling

of the data and ignoring others. Thinking in terms of statistics will prove helpful in various

sections below, and in this section we establish terminology.

In the context of a probabilistic model P(y |λ) where y takes values in Y, an utterance-

level statistic is a function Y → R, and a corpus-level statistic is a function S(Y) → R,

where S(Y) denotes the set of finite sequences with values in Y. Often a corpus-level

statistic is obtained by summing an utterance-level statistic across all utterances in the

corpus. In the context of a conditional probabilistic model P(y |x, λ) where y takes values

in Y and x takes values in X , an utterance-level statistic is a function X × Y → R and a

corpus-level statistic is a function S(X × Y)→ R.

Since the observed data is a random variable, so is the value of a statistic. We refer

to the marginal distribution over the value of a statistic under a given probabilistic model

as the implied distribution of that statistic. For a probabilistic model P(y |λ), the implied

distribution for an utterance-level statistic f is a distribution over the value of f(y) given

λ, and the implied distribution for a corpus-level statistic f for a corpus Y ◦, say, is a

distribution over the value of f(Y ◦) given λ. For a conditional probabilistic model P(y |
x, λ), the implied distribution for an utterance-level statistic f is a distribution over the

value of f(x, y) given x and λ, and the implied distribution for a corpus-level statistic f for

a corpus (X◦, Y ◦), say, is a distribution over the value of f(X◦, Y ◦) given X◦ and λ.

We have defined statistics as real-valued functions of the observed data above, but we

sometimes also refer to a vector-valued function of the observed data as a statistic. A

vector-valued statistic may be thought of as a finite collection of real-valued statistics.

2.1.4 Evaluating probabilistic models

There is a natural, simple and powerful way to evaluate the combination of a probabilistic

model P(y |λ) and a point estimation procedure λ̂. The test set log probability (TSLP) is

defined as

logP(Y ∗ |λ = λ̂(Y ◦)) (2.6)

where Y ∗ is the value of the test corpus actually observed and Y ◦ is the value of the training

corpus observed. In the case of a conditional probabilistic model the TSLP is defined as

logP(Y ∗ |X∗, λ = λ̂(X◦, Y ◦)) (2.7)

Since the probability distribution is determined before observing the test corpus, there is

no way to “cheat” the metric: the only way to achieve a high expected TSLP score is for

the trained model to model unseen data well. TSLP is measured in nats, which is a unit of

information bearing the same relationship to the natural logarithm as the bit bears to the

base-2 logarithm (MacKay, 2003).
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2.2. Some probabilistic models

2.2 Some probabilistic models

In this section we describe some of the basic probabilistic models and conditional probab-

ilistic models that we will make use of in this thesis.

2.2.1 Exponential families

An exponential family (Bishop, 2006) is a probabilistic model of a particular form. They

are a useful concept for two reasons. Firstly many commonly used probabilistic models are

exponential families, and this conceptual framework allows them to be treated in a unified

way. Secondly each exponential family admits simple finite-dimensional sufficient statistics,

defined below, which simplifies parameter estimation techniques such as maximum likeli-

hood, expectation maximization and decision tree clustering. In fact, exponential families

are the only non-conditional probabilistic models (of a certain broad class) which admit

finite-dimensional sufficient statistics, a result known as the Pitman-Koopman theorem or

Fisher-Darmois-Koopman-Pitman theorem (Barankin and Maitra, 1963).

We give a mathematically loose definition of an exponential family, ignoring issues such

as integrability. An exponential family is a probabilistic model P(y | η) specified by a set

Y, a function f : Y → RK for some non-negative integer K, a function h : Y → R, and

a convex set Ξ ⊂ RK . For any η ∈ Ξ the random variable y takes values in Y. Define a

function Z : RK → R by

Z(η) =

∫
exp

(
h(y) +

∑
k

ηkfk(y)

)
dy (2.8)

where we have opted to view f as a finite collection [fk]
K
k=1 of functions where each fk is a

function Y → R. To define a valid exponential family, Z(η) <∞ must hold for all η in Ξ.

For each η ∈ Ξ the corresponding probability distribution over Y is defined by

P(y | η) =
1

Z(η)
exp

(
h(y) +

∑
k

ηkfk(y)

)
(2.9)

so logP(y | η) = h(y) +
∑
k

ηkfk(y)− logZ(η) (2.10)

The parameterization of the probabilistic model in terms of η is referred to as the natural

parameterization (Bishop, 2006), and we use the phrase “the natural parameters η” to

indicate that we are considering the natural parameterization with parameters η. The

function h can be seen as specifying a base measure with respect to which the exponential

family is defined, and we refer to it as the base measure function. In a machine learning

context each fk is sometimes referred to as a feature function. Note that Y, K, f , h and Ξ

determine the exponential family, while η specifies the member of the exponential family.
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2. Probabilistic modelling

Exponential families have a useful sufficiency property. The log likelihood after ob-

serving a training corpus Y ◦ = [Yr]r∈R◦ is

logP (Y ◦ | η) =
∑
r

h(Yr) +
∑
k

ηk
∑
r

fk(Yr)− |R◦| logZ(η) (2.11)

= H(Y ◦) +
∑
k

ηkFk(Y
◦)− len(Y ◦) logZ(η) (2.12)

= h̃+
∑
k

ηkf̃k − R̃ logZ(η) (2.13)

where

H(Y ◦) =
∑
r

h(Yr) (2.14)

F (Y ◦) =
∑
r

f(Yr) (2.15)

h̃ = H(Y ◦) (2.16)

f̃ = F (Y ◦) (2.17)

R̃ = len(Y ◦) (2.18)

Here h̃ is a scalar, f̃ is a K-dimensional vector, and the occupancy R̃ is a scalar. The

functions H, F and len are corpus-level statistics obtained by summing the utterance-level

statistics h, f and y 7→ 1. For later reference it will be helpful to define

η̂(f̃ , R̃) = arg max
η

{∑
k

ηkf̃k − R̃ logZ(η)

}
(2.19)

L̂(h̃, f̃ , R̃) = max
η

{
h̃+

∑
k

ηkf̃k − R̃ logZ(η)

}
(2.20)

where f̃ is a K-dimensional vector. The functions F and len are sufficient statistics for

η, meaning that any inference that can be made about the value of η depends only on

f̃ = F (Y ◦) and R̃ = len(Y ◦) and not on the precise details of Y ◦ (Bishop, 2006). In

particular the maximum likelihood estimate of η for a given Y ◦ is given by η̂(f̃ , R̃), and

this depends only on the values of the sufficient statistics. We will see in more detail how

this sufficiency property is useful for parameter estimation in §2.4 and §2.5.2.

Exponential families have a fairly strong statistics-matching property: maximum likeli-

hood estimation typically matches the expected value of the statistic F to its value on the

training corpus. It can be verified that

∂

∂ηk
logZ(η) =

∫
P(y | η)fk(y) dy (2.21)

= Efk(y) (2.22)
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where the distribution over y used for the expectation is P(y | η). Thus the derivative of

the log likelihood is

∂

∂ηk
logP(Y ◦ | η) =

∑
r

fk(Yr)− R̃Efk(y) (2.23)

= Fk(Y
◦)− EFk(Y ) (2.24)

where the expectation in (2.24) is taken assuming Y is a sequence with index set R◦ where

each Yr is sampled independently from P(Yr | η). If the maximum likelihood estimate is

in the interior of Ξ then (2.23) must be equal to zero here, and so the expected value of

the utterance-level statistic fk under the trained model is equal to its average value on the

training corpus, or equivalently the expected value of the corpus-level statistic Fk under

the trained model is equal to its value on the training corpus. This statistics-matching

property is often insightful when thinking about which aspects of a real world situation

are captured by a given exponential family. It also means that if the trained probabilistic

model is found to be deficient in some way, and that deficiency can be distilled into a

specific statistic which has an inappropriate implied distribution, then this deficiency can

be fixed in a conceptually simple way: by adding the statistic, or more generally powers of

the statistic, to the list of feature functions defining the exponential family, we can ensure

that the expected value, or more generally the moments, of the implied distribution of

that statistic matches its value on the training corpus. This gives the exponential family

framework flexibility from the point of view of designing probabilistic models.

Exponential families also have a useful convexity property. The function η 7→ logZ(η)

is convex, so the log likelihood function is concave. In particular this means that any local

maximum in the likelihood function is a global maximum.

2.2.2 The Gaussian distribution

A multivariate Gaussian distribution is a probability distribution over RD for some di-

mensionality D (Bishop, 2006). It is most commonly parameterized in terms of a mean

vector µ ∈ RD and a symmetric positive definite covariance matrix Σ ∈ RD×D, and has

probability density function

P(y |µ,Σ) = N (y;µ,Σ) (2.25)

where

logN (y;µ,Σ) = −D
2 log 2π − 1

2 log det Σ− 1
2(y − µ)TΣ−1(y − µ) (2.26)

for y ∈ RD. If y is a random variable distributed normally with mean µ and covariance Σ

we write

y |µ,Σ ∼ N (µ,Σ) (2.27)
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2. Probabilistic modelling

We have Ey = µ and E(y − µ)(y − µ)T= Σ.

The collection of Gaussian distributions of a particular dimensionality forms an ex-

ponential family. We can see this by rewriting the Gaussian probability density function

in (2.25) in terms of its natural parameters, which are the inverse covariance matrix or

precision matrix P = Σ−1 and a precision-times-mean or b-value1 b = Pµ. In this para-

meterization the probability density function is

logP(y | b, P ) = logNNP(y; b, P ) (2.28)

where

logNNP(y; b, P ) = −1
2y

TPy + bTy − logZ(b, P ) (2.29)

logZ(b, P ) = D
2 log 2π − 1

2 log detP + 1
2b

TP−1b (2.30)

Here P is a symmetric positive definite matrix. If y is a random variable distributed

normally with b-value b and precision matrix P we write

y | b, P ∼ NNP(b, P ) (2.31)

We briefly show explicitly how (2.28) defines an exponential family. In the notation

of (2.9), h for the Gaussian exponential family is just the constant function y 7→ 1, the

finite collection of feature functions [fk]
K
k=1 consists of y 7→ yd for d = 1, . . . , D together

with y 7→ −1
2ydye for d, e = 1, . . . , D, and the natural parameters η above consist of the

b-value b and the precision matrix P . Here the parameter corresponding to y 7→ yd is the

entry bd of the b-value b, and the parameter corresponding to y 7→ −1
2ydye is the entry Pde

of the precision matrix P . In this general view of the Gaussian family as an exponential

family, P need not be symmetric, but only the symmetric part of P affects the resulting

distribution so without loss of generality we may assume it is symmetric. The constraint

that P is positive definite corresponds to Z(η) <∞ above.

For the Gaussian exponential family, the sufficient statistics are Y ◦ 7→∑
r Yr and Y ◦ 7→

−1
2

∑
r YrYr

T. The maximum likelihood estimate of the parameters is given by

µ̂ =
1

|R◦|
∑
r

Yr (2.32)

Σ̂ =
1

|R◦|
∑
r

YrYr
T− µ̂µ̂T (2.33)

as long as |R◦| > 0 and the right side of (2.33) is invertible. If the maximum likelihood

natural parameters b̂ and P̂ are desired, these may be computed from µ̂ and Σ̂. If the

right side of (2.33) is not invertible then the likelihood function has a singularity and

1There appears to be no standard short term for this quantity, so we chose b-value.
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can be made arbitrarily large. Parameters (b, P ) with an extremely large likelihood may

seem desirable, but such parameters typically do not generalize well. This is a well-known

pathology in maximum likelihood estimation (MacKay, 2003). One way to ensure there

are no singularities in the likelihood function when D = 1 is to restrict P11 to have some

maximum allowed value. This is referred to as variance flooring. Restricting the set of

allowed parameters of a one-dimensional Gaussian using variance flooring still yields an

exponential family, since the set of allowed natural parameters is convex.

2.2.3 Conditional exponential families

There is an extension of the concept of an exponential family to the case of conditional

probabilistic models. The theory in this case is not quite as neat as in the non-conditional

case, but we will nonetheless find it useful.

A conditional exponential family (Feigin, 1981) is a conditional probabilistic model P(y |
x, η) specified by sets X and Y, a function f : X × Y → RK for some non-negative integer

K, a function h : X ×Y → R, and a convex set Ξ ⊂ RK . For any η ∈ Ξ the random variable

y takes values in Y and x takes values in X . The log pdf is

logP(y |x, η) = h(x, y) +
∑
k

ηkfk(x, y)− logZ(x, η) (2.34)

where Z(x, η) =

∫
exp

(
h(x, y) +

∑
k

ηkfk(x, y)

)
dy (2.35)

To define a valid conditional exponential family, Z(x, η) <∞ must hold for all η in Ξ and

x in X . We may again refer to the parameterization of the probabilistic model in terms of

η as the natural parameterization. The function η 7→ logZ(x, η) is convex for any x ∈ X ,

and so the log likelihood function η 7→ logP(Y ◦ |X◦, η) is concave. Here X◦ = [Xr]r∈R◦ . It

should be noted that our terminology differs from that used by Feigin (1981), who instead

used the term conditional exponential family to refer to a family of Markov processes with

transition probabilities of the form (2.34).

In general conditional exponential families do not have the nice sufficiency properties

of exponential families. The log likelihood after observing a training corpus (X◦, Y ◦) is

logP(Y ◦ |X◦, η) =
∑
r

h(Xr, Yr) +
∑
k

ηk
∑
r

fk(Xr, Yr)−
∑
r

logZ(Xr, η) (2.36)

= H(X◦, Y ◦) +
∑
k

ηkFk(X
◦, Y ◦)−

∑
r

logZ(Xr, η) (2.37)

= h̃+
∑
k

ηkf̃k −
∑
r

logZ(Xr, η) (2.38)
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where

H(X◦, Y ◦) =
∑
r

h(Xr, Yr) (2.39)

F (X◦, Y ◦) =
∑
r

f(Xr, Yr) (2.40)

h̃ = H(X◦, Y ◦) (2.41)

f̃ = F (X◦, Y ◦) (2.42)

Here h̃ is a scalar and f̃ is a K-dimensional vector. Thus X◦ and f̃ are sufficient. How-

ever the extra term
∑

r logZ(Xr, η) in the log likelihood function, which may involve a

complicated interaction between Xr and η, means that f̃ is not sufficient on its own.

Conditional exponential families have a fairly strong statistics-matching property sim-

ilar to that of exponential families: maximum likelihood estimation typically matches the

expected value of the statistic F to its value on the training corpus. It can be verified that

∂

∂ηk
logZ(x, η) =

∫
P(y |x, η)fk(x, y) dy (2.43)

= Efk(x, y) (2.44)

where the distribution over y used for the expectation is P(y |x, η). Thus the derivative of

the log likelihood is

∂

∂ηk
logP(Y ◦ |X◦, η) =

∑
r

fk(Xr, Yr)− E
∑
r

fk(Xr, Yr) (2.45)

= Fk(X
◦, Y ◦)− EFk(X◦, Y ) (2.46)

where the distribution over Yr used for the first expectation is P(Yr |Xr, η), and the second

expectation is taken assuming Y is a sequence with index set R◦ where each Yr is sampled

independently from P(Yr |Xr, η). If the maximum likelihood estimate is in the interior of

Ξ then (2.45) must be equal to zero here, and so the expected value of the corpus-level

statistic F given inputs X◦ is equal to its value on the training corpus. As for exponential

families, this statistics-matching property is often insightful when thinking about which

aspects of a real world situation are captured by a given conditional exponential family,

and also means that if a deficiency in the model can be distilled to a specific statistic with

the wrong implied distribution then this deficiency can be fixed in a conceptually simple

way.

There is a special type of conditional exponential family for which simple finite-dimensional

sufficient statistics do exist. Following Feigin (1981) we refer to a conditional exponential

family as a conditionally additive exponential family if the log normalization constant is of

the form

logZ(x, η) =

J∑
j=1

gj(x)ξj(η) (2.47)

14



2.2. Some probabilistic models

where J is a non-negative integer, g : X → RJ and ξ : Ξ → RJ . This is a slight generaliz-

ation of the definition used by Feigin (1981), who focused on the case J = 1. In this case

the log normalization term behaves nicely under summation over r, and if we define

G(X◦) =
∑
r

g(Xr) (2.48)

then F and G are sufficient statistics for η.

It is natural to ask whether the conditional probabilistic models with finite-dimensional

sufficient statistics can be characterized in the way the Pitman-Koopman theorem does

for non-conditional probabilistic models. We are not aware of any work addressing this.

Another natural question is how rare the existence of finite-dimensional sufficient statistics

is for conditional models, and relatedly how rare the conditional additivity property is. We

will see one example of a conditionally additive exponential family below, but we do not

know of any work addressing this question in general.

2.2.4 Linear regression models

In this section we describe a simple tractable form of conditional probabilistic regression

model, following Bishop (2006).

Consider a conditional probabilistic model P(y |x, λ) where the observed value y is real-

valued, the value x is an element of an arbitrary set X , and where the observed value y is

assumed to be the value of some underlying function X → R at x corrupted by Gaussian

noise. If the underlying function is assumed to be a linear combination of a fixed collection

[ϕd]
D
d=1 of basis functions, where ϕd : X → R, then we have

y |x, λ ∼ N
(

D∑
d=1

adϕd(x), σ2

)
(2.49)

where ad is the regressive coefficient of the basis function ϕd, σ
2 is referred to as the con-

ditional variance, and λ = ([ad]
D
d=1, σ

2). The collection of basis functions may equivalently

be considered as a single function ϕ : X → RD with ϕ(x) = [ϕd(x)]Dd=1. This is a linear

regression model (Bishop, 2006). Note that here “linear” means “linear in the regressive

coefficients”.
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Given a training corpus (X◦, Y ◦), the log likelihood is given by

∑
r

logP(Yr |Xr, λ) = −1

2
|R◦| log 2π − 1

2
|R◦| log(σ2)− 1

2

1

σ2

∑
r

(
Yr −

∑
d

adϕd(Xr)

)2

(2.50)

= −1

2
R̃ log 2π − 1

2
R̃ log(σ2)− 1

2

1

σ2

ũ− 2
∑
d

s̃dad +
∑
d,e

S̃deadae


(2.51)

where

ũ =
∑
r

Y 2
r (2.52)

s̃ =
∑
r

ϕ(Xr)Yr (2.53)

S̃ =
∑
r

ϕ(Xr)ϕ
T(Xr) (2.54)

R̃ = |R◦| =
∑
r

1 (2.55)

Here s̃ is a D-dimensional vector and S̃ is a D×D matrix. Thus (ũ, s̃, S̃, R̃), or rather the

functions which compute these values from (X◦, Y ◦), are sufficient statistics. The maximum

likelihood estimate of the parameters is given by

â = S̃−1s̃ (2.56)

σ̂2 =
1

R̃

(
ũ− s̃TS̃−1s̃

)
(2.57)

as long as R̃ > 0, S̃ is invertible and the right side of (2.57) is greater than zero. If S̃ is

not invertible then there are multiple optimal values of a. In this case we might choose to

select the value of a with smallest Euclidean norm, which corresponds to using the pseudo-

inverse instead of the inverse in (2.56). If the right side of (2.57) is equal to zero then the

likelihood function has a singularity and can be made arbitrarily large. As in the case of the

Gaussian family, we can ensure such singularities do not occur by using variance flooring,

i.e. restricting σ2 to have some minimum allowed value.

The linear regression model is a conditionally additive exponential family. The natural

parameters are (τ,−τa), where τ = 1/σ2 and a = [ad]
D
d=1, with corresponding feature

functions (x, y) 7→ −1
2y

2 and (x, y) 7→ −ϕ(x)y. The only term in the log normalization

constant involving both x and the parameters is 1
2τ(aTϕ(x))2, which may be rewritten as

1
2tr(τaaTϕ(x)ϕT(x)) and is therefore of the form (2.47). Viewing the linear regression model
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2.2. Some probabilistic models

as a conditionally additive exponential family provides another way to see that it has finite-

dimensional sufficient statistics, and shows that the log likelihood is concave in the above

natural parameterization.

There is another parameterization of the linear regression model that we sometimes find

useful. Define a vector ã = [ãd]
D
d=0 by

ã0 =
1

σ
(2.58)

ãd = −ad
σ
, d ∈ {1, . . . , D} (2.59)

We refer to this as the ã parameterization. It differs from the natural parameterization by

a factor of σ. In this parameterization the log pdf is

logP(y |x, ã0:D) = −1
2 log 2π + 1

2 log(ã2
0)− 1

2v
T
(
ã0:Dã

T
0:D

)
v (2.60)

where v ∈ RD+1 is the vector ϕ(x) ∈ RD with the value y ∈ R prepended. Perhaps

surprisingly the log likelihood is also concave in this parameterization. As defined above

the ã parameterization has the constraint that ã0 > 0. However we may allow ã0 < 0

by specifying that we still use (2.60) in this case. This introduces a redundancy of a

factor of two into our parameterization, since replacing ã0:D by −ã0:D does not change the

distribution in (2.60). We are not free to allow ã0 = 0, since this corresponds to τ = 0

and σ =∞ and does not define a valid probability distribution, but we can view this as a

limiting case that we can get arbitrarily close to but not reach. Thus we can view essentially

any value ã0:D ∈ RD+1 as specifying a linear regression model, and any linear regression

model as being specified by some ã0:D ∈ RD+1.

The tractability of the linear regression model presented above depends on the under-

lying function being linear in the regressive coefficients, but allows it to be non-linear in

the input. Nevertheless it is common, in the case where X is a vector space, to use affine

(linear plus a bias) basis functions so that the underlying function is affine in the input. A

particularly simple instance of this when X = RK is to use the canonical basis functions

[ϕk]
K+1
k=1 , where ϕk(x) = xk for k = 1, . . . ,K and ϕK+1(x) = 1. This corresponds to al-

lowing the underlying function to be a general affine function of the input. We refer to a

linear regression model P(y |x, λ) with canonical basis functions as a linear Gaussian linear

regression model. Note that the “linear” in “linear Gaussian” refers to being linear in the

input. Such a model defines a family of conditional distributions over y given x, and we

refer to a member of this family as a linear Gaussian distribution (Roweis and Ghahramani,

1999; Bishop, 2006). To say that a conditional distribution P(y |x) where x ∈ RK is linear

Gaussian thus means that P(y |x) = N (y;
∑K

k=1 akxk + aK+1, σ
2) for some [ak]

K
k=1 ∈ RK ,

aK+1 ∈ R and σ2 ∈ R with σ2 > 0.

The above linear regression model may trivially be extended to a model P(y |x, λ) where

y is a vector by using a separate linear regression model P(yi |x, λi) for each component i,
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2. Probabilistic modelling

that is

yi |x, λ ∼ N
(

D∑
d=1

aidϕid(x), σ2
i

)
(2.61)

where λ = [λi]i. The distribution of y −Ey given x is Gaussian with a diagonal covariance

matrix. We also refer to this extended model as a linear regression model, and again it has

sufficient statistics. Alternatively we can assume that the distribution of y − Ey given x

is Gaussian with a full covariance matrix, or equivalently allow y1:i−1 to form part of the

input for the linear regression model for yi. We refer to this as the full-covariance linear

regression model.

2.2.5 Composite linear Gaussian distributions

In this section we define composite linear Gaussian distributions and show that every Gaus-

sian distribution can be written in this form. The concepts and properties established in

this section will be used in various sections throughout the thesis.

We first define a variant of the Cholesky decomposition. It is well known that for a given

positive definite matrix P , there exists a unique lower triangular matrix M with positive

entries along its diagonal such that P = MMT. The Cholesky factor M can be computed in

O(T 3) time where T is the size of P . Similarly there exists a unique lower triangular matrix

L with positive entries along its diagonal such that P = LTL, and we refer to this as the

alternative Cholesky decomposition. The alternative Cholesky factor L can be computed in

O(T 3) time using a variant of the algorithm used to compute the conventional Cholesky

factor, or alternatively by using the fact that L = RM̃TR where M̃ is the conventional

Cholesky factor of RPR and R is a matrix with ones along its anti-diagonal, so that Ry is

the vector y with the components reversed.

A canonically ordered composite linear Gaussian distribution is a distribution P(y) over a

vector y ∈ RT of the form P(y) =
∏T
t=1 P(yt | y1:t−1) where each factor P(yt | y1:t−1) is linear

Gaussian. This implies the overall distribution P(y) is Gaussian. Since the conditional

distribution P(yt | y1:t−1) is linear Gaussian, it can be written as

yt =

t−1∑
k=1

atkyt−k + att + σtzt (2.62)

where [atk]
t−1
k=1, att and σ2

t are the parameters of a linear regression model and we have

introduced a vector z = [zt]
T
t=1 where z ∼ N (0, I). As we saw in §2.2.4, there are a number

of ways to parameterize a linear regression model. By using the ã parameterization we can
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2.2. Some probabilistic models

rewrite (2.62) as a matrix equation

Ly = ξ + z (2.63)

where Ltt =
1

σt
= ãt0 (2.64)

Lt(t−k) = −atk
σt

= ãtk for k = 1, . . . , t− 1 (2.65)

ξt =
att
σt

= −ãtt (2.66)

Here the tth element of ξ and the tth row of L give the linear regression model parameters,

in the ã parameterization, for the distribution P(yt | y1:t−1). We have µ = Ey = L−1ξ,

so y − µ = L−1z, so E(y − µ)(y − µ)T = L−1IL−T = (LTL)
−1

. Thus P(y) is a Gaussian

distribution with precision matrix P = LTL and b-value b = P Ey = LTξ, where L is lower

triangular. It is easy to verify that any Gaussian distribution can be written as a canonically

ordered composite linear Gaussian distribution. Indeed given natural parameters b and P ,

the corresponding L is given by the alternative Cholesky factor of P and the corresponding

ξ is obtained by solving b = LTξ using a triangular matrix solve.

A distribution P(y) is a composite linear Gaussian distribution if it can be written as a

canonically ordered composite linear Gaussian distribution by permuting the components

of y. This definition is equivalent to saying that P(y) is given by a directed graphical model

(Bishop, 2006, chapter 8) where each yt is a node which has linear Gaussian distribution

given its parents, and this is closely related to the definition of a linear Gaussian model

given by Roweis and Ghahramani (1999). If the identity permutation is used then we have

Ly = ξ+z where L is lower triangular with P = LTL, and the corresponding decomposition

of P(y) is of the form
∏
t P(yt | y1:t−1) as above. If the reversing permutation t 7→ T +1−t is

used then it can be verified that Uy = ξ+z where U is upper triangular with P = UTU , and

the corresponding decomposition of P(y) is of the form
∏
t P(yt | yt+1:T ). This clarifies the

relationship between the conventional and alternative Cholesky decompositions of a positive

definite matrix P : the conventional Cholesky decomposition computes the parameters of

the composite linear Gaussian distribution equivalent to NNP(0, P ) where the regressions

are directed “backwards in time”, whereas for the alternative Cholesky decomposition the

regressions are directed “forwards in time”.

We now consider a specialization of the above definitions. Suppose P(y) is a canonically

ordered composite linear Gaussian distribution. If P(yt | y1:t−1) = P(yt | yt−K:t−1) for t > K

where K is a non-negative integer, then we refer to P(y) as a canonically ordered composite

linear Gaussian autoregressive distribution and refer to K as the depth. For uniformity it

is often convenient to specify a fixed initial context y−(K−1):0 so that P(yt | y1:t−1) = P(yt |
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yt−K:t−1) for all t. In this case (2.62) becomes

yt =
K∑
k=1

atkyt−k + at(K+1) + σtzt (2.67)

If the initial context is zero then we have Ly = ξ + z as before, where L is now a ban-

ded lower triangular matrix with subdiagonal width at most K, and the precision matrix

P = LTL is banded with subdiagonal and superdiagonal widths at most K. Since the

alternative Cholesky factor of a banded matrix is banded, any Gaussian distribution with

banded precision matrix can be written as a canonically ordered composite linear Gaussian

autoregressive distribution. A distribution P(y) is a composite linear Gaussian autoregress-

ive distribution if it can be written as a canonically ordered composite linear Gaussian

autoregressive distribution by permuting the components of y. By default we consider

the identity permutation where the autoregressions are directed forwards in time, but oc-

casionally we consider the reversing permutation where the autoregressions are directed

backwards in time.

2.3 Decision tree clustering

Suppose we wish to model the conditional distribution of an observation y given a state ψ,

where ψ belongs to a finite set referred to as the state space. One way to specify such a

model is to use a basic probabilistic model P̃(y | η̃) as a building block, setting

P (y |ψ, [ηψ]ψ) = P̃(y | η̃ = ηψ) (2.68)

In other words, for each state in the state space the distribution over y is modelled using

a separate “copy” of the basic model. However if the state space is very large then there

is often not enough data to robustly estimate separate parameters for each state using

maximum likelihood; indeed for many states there may be no data at all. One solution to

this problem is to partition state space into clusters and constrain the states in each cluster

to have identical parameters, that is

P (y |ψ, [ηC ]C∈C , C) = P̃(y | η̃ = ηC) (2.69)

where C is a partition of state space, and C on the right side is the cluster which contains

ψ. If we choose the partition C judiciously then it may be coarse enough to allow robust

estimation of the parameters for each cluster but fine enough to achieve good modelling

accuracy. In this section we describe a particular approach to choosing a partition based

on data known as decision tree clustering (Young et al., 1994). We focus on the case where

the basic model is an exponential family. We first describe maximum likelihood estimation
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2.3. Decision tree clustering

of the parameters [ηC ]C∈C given a partition C, then define the concept of a decision tree,

and finally describe a typical form of decision tree clustering.

Suppose the basic model above is an exponential family specified by h and [fk]
K
k=1, and

a partition C of state space has been chosen. Then we have

logP (y |ψ, [ηC ]C∈C , C) = h(y) +

K∑
k=1

ηCkfk(y)− logZ(ηC) (2.70)

where C is the cluster containing ψ and ηC = [ηCk]
K
k=1 is the collection of model parameters

for cluster C. From (2.13) the overall log likelihood given data (Ψ◦, Y ◦), where Ψ◦ =

[Ψr]r∈R◦ , is

logP (Y ◦ |Ψ◦, [ηC ]C∈C , C) =
∑
C∈C

h̃C +
∑
C∈C

K∑
k=1

ηCkf̃Ck −
∑
C∈C

R̃C logZ(ηC) (2.71)

where

h̃C =
∑
ψ∈C

h̃ψ (2.72)

f̃Ck =
∑
ψ∈C

f̃ψk (2.73)

R̃C =
∑
ψ∈C

R̃ψ (2.74)

and

h̃ψ =
∑
r

δ(Ψr, ψ)h(Yr) (2.75)

f̃ψk =
∑
r

δ(Ψr, ψ)fk(Yr) (2.76)

R̃ψ =
∑
r

δ(Ψr, ψ) (2.77)

where δ is the discrete delta function defined by δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise.

The sufficient statistic values, e.g. h̃C , for a cluster C are obtained by simply summing the

sufficient statistic values, e.g. h̃ψ, for each state ψ ∈ C in that cluster. The maximum

likelihood estimate of the parameters [ηC ]C∈C is [η̂(f̃C , R̃C)]C∈C , where η̂ is the function for

the basic model given by (2.19). The overall log likelihood value at this maximum is∑
C∈C

L̂
(
h̃C , f̃C , R̃C

)
(2.78)

where L̂ is the function for the basic model given by (2.20).

We now define the concept of a decision tree. For a given state space, a question is

a function from the state space to {yes, no}. A decision tree is a binary tree where each
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2. Probabilistic modelling

internal node is labelled by a question. Each state ψ has an associated leaf obtained by

starting at the root node and recursively descending the tree, at each internal node with

question ζ passing to the left child if ζ(ψ) is no and to the right child if ζ(ψ) is yes. The

set of states which end up in the same leaf under this procedure specifies a cluster, and so

the decision tree as a whole specifies a partition of state space.

The tree is typically learned from data by greedily maximizing a given objective function

over trees with questions taken from a given question set. This is a tractable approximation

to maximizing the objective function over all such trees. The objective function typically

used is the maximum log likelihood given the partition minus a penalty term linear in the

number of leaves, that is ∑
C∈C

L̂
(
h̃C , f̃C , R̃C

)
− ξ

∑
C∈C

1 (2.79)

The constant penalty for a new leaf is referred to as the clustering threshold ξ. To greedily

optimize this objective function we recursively split each leaf using the question that max-

imizes the change in log likelihood, unless the maximum achievable change is less than ξ in

which case we do not split that leaf. The change in log likelihood for splitting a cluster C

into two clusters D and E is

L̂
(
h̃D, f̃D, R̃D

)
+ L̂

(
h̃E , f̃E , R̃E

)
− L̂

(
h̃C , f̃C , R̃C

)
(2.80)

Note that the change in log likelihood for a potential split only depends on the clusters

involved in the potential split and not on other details of the partition C. This means the

order in which we choose to split leaves makes no difference. Typically a hard minimum

occupancy constraint R̃C ≥ R̃min is also imposed on each leaf C, which can be incorporated

above by setting the objective function to −∞ for any tree that violates this constraint.

The minimum description length (MDL) criterion (Shinoda and Watanabe, 2000) is an

automated way to choose the clustering threshold ξ. It sets

ξ = 1
2ρK log R̃root (2.81)

where K is the number of parameters per leaf, R̃root is the total occupancy of the root

node, and ρ is a heuristic scaling factor which arguably should theoretically be 1, and is

often set to 1 in practice. We refer to ρ as the MDL tuning factor.

A partition is defined as a set of sets with certain properties, but sometimes it is helpful

to instead think about it as a surjective function q from state space to {1, . . . , Q} for some

Q ∈ N. We refer to q as a clustering function. These two representations are equivalent:

given a partition of state space we may arbitrarily order the clusters and specify q to be the

function taking a state to the index of its corresponding cluster under this order; given a

surjective function q from state space to {1, . . . , Q} the set C = { q−1({q}) : q ∈ {1, . . . , Q}}
is a partition. We refer to the integer q = q(ψ) assigned to a given state ψ as its cluster
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index or leaf index. The parameters of cluster q may thus be written ηq = [ηqk]k instead

of ηC = [ηCk]k, and the sufficient statistic values as, for example h̃q instead of h̃C . We will

find the representation of a partition as a function q helpful in describing various models

in the remainder of this thesis.

The purpose of the term involving ξ in (2.79) is to help prevent overfitting. Because the

parameters for each leaf are estimated independently only using the data assigned to that

leaf, adding more leaves means that each leaf is estimated using less, but more specific,

data. Performance on the test corpus is therefore a trade-off: using more leaves gives a

finer-grained, more powerful model, but its parameters are estimated less robustly. The

term involving ξ acts as a simple penalty on adding leaves, restricting the size of the tree and

encouraging robust estimation of the parameters for each leaf. It should be noted that the

ξ term is only needed because maximum likelihood estimation is susceptible to overfitting.

When estimation of the leaf model parameters is done in a Bayesian way, even using a

simple independent global prior for all leaves, then we may effectively set ξ = 0 and obtain

very large trees which nevertheless have good generalization performance (Hashimoto et al.,

2009).

2.4 Expectation maximization

The expectation maximization (EM) framework (Dempster et al., 1977) is an approach to

approximate maximum likelihood parameter estimation applicable to a wide range of latent

variable models. Our statement of expectation maximization follows Bishop (2006).

Suppose we have a model P(Y,X |λ) over an observed variable Y and a latent variable

X. For example we might have that Y = [Yr]r∈R◦ and X = [Xr]r∈R◦ are collections of

independent draws of the observed and hidden variables in a latent variable model as in

§2.1.1. However we do not assume this form here, because we want our derivation to also

apply to the sequential models considered below. We assume X is discrete-valued here,

but the theory applies very similarly in the continuous case. It is often the case for such

latent variable models that the overall log likelihood logP(Y,X |λ) has a simple form as a

function of the parameters λ and can be analytically maximized, while the true, marginal log

likelihood logP(Y |λ) we would like to maximize is a complicated function of λ. Expectation

maximization is a way to use the ease of maximizing the overall log likelihood to iteratively

and approximately maximize the marginal log likelihood.

We now give a terse derivation of expectation maximization. Full details are given in

Bishop (2006). For any function Q which is the probability mass function of a distribution
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over X we have

logP(Y |λ) = log
∑
X

P(Y,X |λ) (2.82)

=
∑
X

Q(X) logP(Y,X |λ) +H(Q) + KL (Q;X 7→ P(X |Y, λ)) (2.83)

≥
∑
X

Q(X) logP(Y,X |λ) +H(Q) (2.84)

= F(Q,λ) (2.85)

where

H(Q) = −
∑
X

Q(X) logQ(X) (2.86)

KL(Q;R) =
∑
X

Q(X) log
Q(X)

R(X)
(2.87)

F(Q,λ) =
∑
X

Q(X) logP(Y,X |λ) +H(Q) (2.88)

That is, H is the entropy and KL is the Kullback-Leibler divergence. Here X 7→ P(X |Y, λ)

is the probability mass function of the conditional distribution of X given Y and λ, and R

is the probability mass function of a distribution over X. Note that the dependence of F on

the training corpus Y is left implicit. The inequality (2.84) follows from the fact that the

Kullback-Leibler divergence is non-negative. The basic properties of the Kullback-Leibler

divergence also show that we have equality if and only if Q(X) = P(X |Y, λ).

Expectation maximization conceptually proceeds by iterating two steps. Firstly given

a current estimate of the parameters λ we find the Q which maximizes F(Q,λ), denoted

Q̂(λ). This is called the E step. Secondly given a current value of Q we find the λ which

maximizes F(Q,λ). This is called the M step. In the expectation maximization framework

conceptually we repeat these two steps, thus doing a form of coordinate ascent on F . This

view of EM as coordinate ascent on F is described by Neal and Hinton (1998).

As we saw above Q̂(λ) is just the posterior Q̂(λ)(X) = P(X |Y, λ), and with this value we

have equality, that is logP(Y |λ) = F(Q̂(λ), λ). This shows that expectation maximization

does not decrease the likelihood, since it does not decrease F and F is equal to the log

likelihood after each E step (Neal and Hinton, 1998).

The function λ 7→ F(Q,λ) is referred to as the EM auxiliary function. We include the

H(Q) term as part of the auxiliary function, though some authors omit it.

2.5 Sequential models

We refer to a probabilistic model P(y |λ) where y is a sequence, or a conditional probabilistic

model P(y |x, λ) where y is a sequence, as a sequential model. In this section we review a
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θ0 θ1 θ2 θ3 θ4 θ5 θ6

y1 y2 y3 y4 y5 y6

Figure 2.1: A directed graphical model for a hidden Markov model. Here θ = θ1:6 is the
state sequence and y = y1:6 is the sequence of observations. The value θ0 is a deterministic
initial state. Nodes also depend on the model parameters ν and λ (not shown). We consider
θt hidden and yt observed.

very commonly used sequential model, the hidden Markov model, and describe parameter

estimation for it.

Following standard convention when dealing with sequential models (Rabiner, 1989;

Bishop, 2006), we drop the utterance index r in our notation and effectively assume the

training corpus and test corpus each consist of just one utterance. The multiple-utterance

case is usually easy to recover by replacing sums, products, etc over time t with the same

operation over utterance index r and time t. It is often possible to make this connection

fully rigorous by considering a collection of multiple sequences as one long sequence and

making appropriate adjustments to the model.

2.5.1 Hidden Markov models

A hidden Markov model (HMM) (Rabiner, 1989; Bishop, 2006) is a sequential latent vari-

able probabilistic model. HMMs are frequently used as models of speech due to their

combination of reasonable modelling accuracy and tractability.

An HMM is a probabilistic model P(y, θ | ν, λ) where θ = [θt]
T
t=1 and y = [yt]

T
t=1 are

sequences. At each discrete time t there is a state θt and an observation yt. Each state θt

is a member of a finite set referred to as the state space. Each observation yt is a member

of some observation space, which may be discrete or continuous or something more general.

Conventionally the sequence θ of states is hidden or latent with only the sequence y of

observations observed. The generative model is that the state evolves over time according

to a Markov process, and each observation yt at time t “depends” only on the state θt at

that time. This is most clearly expressed as the following directed graphical model (Bishop,

2006), also shown in Figure 2.1

P(y, θ | ν, λ) =

T∏
t=1

P(yt | θt, λ)P(θt | θt−1, ν) (2.89)
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where we assume there is some deterministic initial state θ0. We have assumed that the

parameters ν of the state transition model P(θt | θt−1, ν) are distinct from the parameters λ

of P(yt | θt, λ). When visualizing directed graphical models such as in Figure 2.1, each large

circle represents a random variable and is shaded if the variable is observed or unshaded if

it is latent. The arrows represent the conditional dependency structure between variables.

A small black circle represents variables which are conditioned on, such as θ0 here.

The form of the HMM model allows efficient inference. For a given y1:T we can compute

the most likely state sequence arg maxθ1:T P(θ1:T , y1:T | ν, λ) efficiently using a recursive

dynamic programming algorithm known as the Viterbi algorithm (Rabiner, 1989). Similarly

we can compute P(y1:t, θt = ψ | ν, λ) for all times t and all possible states ψ efficiently

using the forward algorithm and P(yt+1:T | θt = ψ, ν, λ) for all t and ψ efficiently using the

backward algorithm. By combining the results of the forward and backward algorithms

we can efficiently compute various useful quantities for a given y1:T such as the likelihood

P(y1:T | ν, λ) and the state occupancies γtψ = P(θt = ψ | y1:T , ν, λ) for every time t and state

ψ (Rabiner, 1989). The Viterbi and forward-backward algorithms are special cases of a

general efficient exact inference algorithm for graphical models with tree-structured factor

graphs and discrete latent variables (Bishop, 2006).

The simple form of the HMM also often allows efficient estimation of the model para-

meters ν and λ using expectation maximization. The details depend on the way the distri-

butions P(θt | θt−1, ν) and P(yt | θt, λ) are parameterized. We discuss one fairly general case

of using expectation maximization to estimate λ in the next section.

The HMMs typically used for speech both specialize and generalize the above framework

in a number of ways. Firstly the type of HMM model used for speech typically has a very

sparse transition structure, where each state often has only a handful of possible next states.

We refer to the average number of next states for a given state as the branching factor. If

we assume a fixed branching factor, then exploiting the sparse transition structure changes

the forward-backward and Viterbi algorithms from O(TM2), where T is the number of

frames and M the size of the state space, to O(TM). This is important for typical speech

models, particularly for their use in speech recognition since the state space is typically very

large, but also for their use in speech synthesis where the state space under consideration

can usually be restricted on a per-utterance basis but where a long utterance still contains

many different states. Secondly the HMMs typically used for modelling speech assume that

certain states may be non-emitting, i.e. that generatively they produce no observation and

leave the observation sequence so far untouched (Young et al., 2006, section 1). Allowing

non-emitting states can sometimes complicate algorithms. We follow standard practice and

usually ignore this issue in the statement of our algorithms. Finally the length T of the

generated sequence y1:T is not specified by the model by default, but for certain purposes

such as speech synthesis must be chosen. Conceptually this can be incorporated into the

26



2.5. Sequential models

above framework by including a special end state which only ever transitions to itself and

emits a dummy observation.

There are two important conditional independence assumptions encoded by the HMM:

that P(θt | θ1:t−1) = P(θt | θt−1); and that P(yt | θ1:T ) = P(yt | θt). These conditional in-

dependence assumptions are to a large extent responsible for the efficient inference and

learning described above. These may appear to be very restrictive assumptions in terms of

the range of phenomena which may be modelled, but it is often possible to obtain a more

accurate model by augmenting the state space. We will see examples below of the use of

this trick for building more accurate probabilistic models of speech: it allows more accurate

modelling of the duration of each phoneme (§3.1.5), and modelling of coarticulation effects

where the acoustics at a given time depend not only on the current phoneme but also on

neighbouring phonemes (§3.1.1 and §3.2.1). In general coming up with a good probabilistic

model is often a trade-off between modelling accuracy and tractability of learning and in-

ference. By augmenting the state as described above, we can improve modelling accuracy

while staying within the tractable HMM framework. These conditional independence as-

sumptions mean that in practical systems the state must serve two roles: encoding all the

information about the past state history which is relevant to deciding where to transition

to next; and encoding all the information about the state sequence which is relevant to

producing the current observation.

2.5.2 Parameter estimation for HMMs

In this section we consider how to estimate the parameters of a fairly general form of hidden

Markov model using expectation maximization and decision tree clustering. This form is

closely related to the form used for modelling speech later. We focus on estimating the

parameters λ of the distribution P(y | θ, λ) since the state transition model is not a focus of

this thesis. We first describe expectation maximization for HMMs in general, then describe

expectation maximization for our particular model, then describe decision tree clustering

for this model, and finally outline the complete parameter estimation procedure.

When applying expectation maximization to the HMM the hidden variable is the state

sequence θ. For any HMM P(y, θ | ν, λ) the auxiliary function (2.88) used in expectation

maximization takes the form

F (Q, (ν, λ)) = EQ logP(y | θ, λ) + EQ logP(θ | ν) +H(Q) (2.90)

where we have used the notation EQf(θ) to denote
∑

θQ(θ)f(θ). To re-estimate λ by

maximizing the auxiliary function we may therefore consider only the first term above.
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2. Probabilistic modelling

This has the form

EQ logP(y | θ, λ) = EQ
∑
t

logP(yt | θt, λ) (2.91)

= EQ
∑
t,ψ

I{θt = ψ} logP(yt | θt = ψ, λ) (2.92)

=
∑
t,ψ

γtψ logP(yt | θt = ψ, λ) (2.93)

where IA denotes the indicator function of a set A, and the state occupancy γtψ = EQI{θt =

ψ} is the probability under Q that the state θt at time t is equal to ψ. As we mentioned

above these may be efficiently computed by the forward-backward algorithm.

We now consider an HMM where the distribution P(yt | θt = ψ, λ) for each state ψ is

from an exponential family, and where a partition has been defined on state space and

the model parameters are restricted to be shared across all states in a given cluster. The

partition is specified by a function q from state space to a finite set of integers as described

in §2.3. Let h and [fk]k be the functions defining the exponential family. Then we assume

logP(yt | θt, λ) = h(yt) +
∑
k

ηqkfk(yt)− logZ(ηq) (2.94)

where q = q(θt), ηq = [ηqk]k and λ = ([ηq]q, q). In this case we have

EQ logP(y | θ, λ) =
∑
q,t

γtqh(yt) +
∑
q,k

ηqk
∑
t

γtqfk(yt)−
∑
q

R̃q logZ(ηq) (2.95)

=
∑
q

h̃q +
∑
q,k

ηqkf̃qk −
∑
q

R̃q logZ(ηq) (2.96)

=
∑
q

(
h̃q +

∑
k

ηqkf̃qk − R̃q logZ(ηq)

)
(2.97)

where

γtq =
∑

ψ:q(ψ)=q

γtψ (2.98)

h̃q =
∑
t

γtqh(yt) (2.99)

f̃qk =
∑
t

γtqfk(yt) (2.100)

R̃q =
∑
t

γtq (2.101)

Note that (2.97) is a sum over q of terms of the form (2.13). Thus the values f̃q and R̃q

are sufficient for estimating the parameters ηq for cluster q, and we may re-estimate the

parameters of each cluster separately.
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Thus one iteration of expectation maximization in the above model divides naturally

into the following stages. Given a current estimate of the parameters η = [ηq]q:

• initialize: zero accumulators f̃q and R̃q for each cluster q

• for each utterance in the training corpus:

– infer: use forward-backward to compute the state occupancies γtψ and so the

cluster occupancies γtq.

– accumulate: for each time t and cluster q, add γtqfk(yt) to f̃qk and add γtq to

R̃q

• re-estimate: for each cluster q, use the accumulated values f̃q and R̃q to re-estimate

the parameters ηq (using the general procedure for finding the maximum likelihood

in the given exponential family)

We may estimate the partition q using decision tree clustering. Instead of using the

maximum likelihood given a partition as the first term in the objective function as in

(2.79), we use the maximum of the EM auxiliary function (2.90) given the partition. The

use of a fixed distribution Q over state sequences makes clustering tractable. In fact we may

use just the maximum of the first term EQ logP(y | θ, λ) of the auxiliary function since the

other terms do not depend on λ. As we saw in (2.96) this function has the same functional

form as the log likelihood for an exponential family. We may therefore use the procedure

described in §2.3 to do decision tree clustering in this model, with the modification that the

sufficient statistic values for each state ψ which form the basis of decision tree clustering

are now computed as

h̃ψ =
∑
t

γtψh(yt) (2.102)

f̃ψk =
∑
t

γtψfk(yt) (2.103)

R̃ψ =
∑
t

γtψ (2.104)

A complete parameter estimation procedure might operate as follows. First an initial

model which uses some fixed, simple form of tree is computed. The details of this initial-

ization depend on the precise form of the model. Several iterations of EM may then be

performed. Then decision tree clustering is performed, followed by several iterations of EM.

This last step, consisting of clustering following by EM, may then be repeated zero or more

times.
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2.6 Summary of contributions

This chapter contains only a very minor novel contribution: a slight generalization of

conditionally additive exponential families to the case J > 1 (§2.2.3).
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Chapter 3

Speech synthesis

In this chapter we review some of the fundamentals of text-to-speech synthesis. Text-

to-speech synthesis aims to synthesize speech from text. Modern approaches to speech

synthesis are typically corpus-based, meaning that aspects of the system are learned from a

training corpus of speech from a human speaker. The training corpus consists of a collec-

tion of (text, speech) pairs, where the speech is what the human speaker produced when

asked to read the text aloud. There are two main current approaches to speech synthesis:

unit selection synthesis and statistical parametric speech synthesis. Unit selection systems

synthesize speech for previously unseen text by concatenating small segments of audio from

the training corpus. A detailed overview of the unit selection approach, as well as earlier

formant-based systems and other approaches, is given by Taylor (2009, chapters 13, 14

and 16). In this thesis we focus on statistical parametric speech synthesis. This approach

involves the use of a probabilistic model defined over sequences of speech parameters rep-

resenting the speech audio.

The layout of this chapter is as follows. We first review the extra steps of processing

which surround the probabilistic model itself, converting input text to be read aloud to a

label sequence and converting between a speech waveform and a sequence of speech para-

meters. We then describe the standard approach to using an HMM to model sequences of

speech parameters, which we refer to as the standard HMM synthesis framework. There is

a known inconsistency in the standard framework, and we describe a model known as the

trajectory HMM (Zen et al., 2007b) which has previously been used to address this. Finally

we discuss how to evaluate speech synthesis systems, and give details of the experimental

set-up used for the experimental evaluations in this thesis.
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3. Speech synthesis

3.1 Overview of statistical parametric speech synthesis

In this section we provide an overview of a typical statistical parametric speech synthesis

system. This thesis focuses on the probabilistic model at the heart of this approach, and

so we review the other components of the system only briefly. A more complete overview

is given by Zen et al. (2009).

We first describe the source-filter representation of speech. A speech signal may be fairly

accurately described as a quickly varying source or excitation signal passed through a slowly

varying linear filter (Taylor, 2009). For example for the STRAIGHT vocoder (Kawahara

et al., 1999), the source is treated as having both a periodic component and an aperiodic

component. The periodic component essentially consists of a pulse train and is specified by

a real value giving the fundamental frequency F0 of this pulse train, or a special “unvoiced”

value if there is no periodic component. The aperiodic component consists of coloured

noise and is typically specified as an aperiodicity spectrum giving the relative power of the

periodic and aperiodic components of the source at each frequency.

We now specify the form of a typical statistical parametric speech synthesis system.

The text is represented as a sequence of labels encoding salient phonemic and linguistic

aspects of the text, and the speech audio is represented as a sequence of speech parameters

(not to be confused with the model parameters present in the probabilistic model) encoding

information about the source and filter (Zen et al., 2009). This approach is referred to as

parametric due to the use of speech parameters as the representation of audio. The system

consists of three main components:

• a front end text analysis module which converts text to a label sequence

• a conditional probabilistic model of the speech parameter sequence given the label

sequence, which we refer to as the statistical model

• a back end module consisting of an analysis component which takes a waveform and

converts it to a speech parameter sequence, and a synthesis component which takes

a speech parameter sequence and converts it to a waveform

The purpose of the front end and back end is to encode the raw text and speech in a way

that is more amenable to being modelled using simple probabilistic models. To train the

statistical model, each utterance in the training corpus is converted from a (text, speech)

pair to a (label sequence, speech parameter sequence) pair by using the front end and the

analysis component of the back end. These (label sequence, speech parameter sequence)

pairs may then be used to learn the parameters of the statistical model using standard

techniques such as maximum likelihood estimation. Once the statistical model has been

trained, speech audio may be synthesized for previously unseen text by using the front
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3.1. Overview of statistical parametric speech synthesis

No-sir-ee!

Figure 3.1: Example of some text to be read aloud represented as a sequence of characters.

end to convert the input text to be read aloud to a label sequence, using the statistical

model to generate a speech parameter sequence given this label sequence, and then using

the synthesis component of the back end to generate a waveform.

In the remainder of this section we describe the front end and back end modules in

more detail, and specify aspects of the statistical model that are common to almost all the

models considered in this thesis.

3.1.1 Front-end text analysis

The front end or text analysis module converts text to a label sequence. The text is typically

represented as a sequence of characters. An example of some text to be read aloud is given

in Figure 3.1.

A simple front end would first tokenize the character sequence into a sequence of words,

then look up a pronunciation for each word, consisting of a sequence of phonemes, in a pro-

nunciation dictionary (Taylor, 2009, chapter 5). If no pronunciations exist for a given word

then one is guessed based on a simple pronunciation model. If more than one pronunciation

exists for a given word then one is chosen somehow. In this way the character sequence can

be converted to a sequence of phonemes. Special “pause” or “silence” phonemes can also

be inserted into the phoneme sequence to emulate phrase breaks where a speaker pauses

momentarily at the end of a linguistic phrase. The resulting phoneme sequence is a simple

form of label sequence, where each label, referred to as a monophone label, consists of a

single phoneme, referred to as the base phoneme.

In practice, to obtain higher quality synthesis, more complicated text analysis is typic-

ally used and additional information is attached to each label. Since the text analysis stage

is not the focus of this thesis, we only describe the format of the label sequence output. A

good description of the challenges involved in text analysis is given by Taylor (2009, chapter

5). An example of a label for a typical statistical parametric speech synthesis system is

shown in Figure 3.2. This label is a 53-tuple of various phonemic and linguistic features.

We provide a few examples of the phonemic and linguistic features encoded in this label to

give the reader some idea about the types of contextual information typically considered.

A full list of the contextual features often used in statistical parametric speech synthesis

systems for English is given by a number of authors (Zen et al., 2009; Tokuda et al., 2002b;

HTS working group, 2013).
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pau^n-ow+s=er@2_1/A:0_0_0/B:1-0-2@1-1&1-3#1-3$1-3!0-1;0-1|ow/C:1+1+2

/D:0_0/E:det+1@1+3&1+2#0+1/F:content_1/G:0_0/H:3=3@1=1|L-L%

/I:0=0/J:3+3-1

Figure 3.2: Example of a full-context label. This label encodes a 53-tuple of phonemic and
linguistic context for a base phoneme ow. The format used is described in §3.1.1. The line
wrapping shown is not present in the original.

• The string pau^n-ow+s=er specifies a tuple (pau, n, ow, s, er) of the previous-

previous, previous, current, next and next-next phoneme in the phoneme sequence.

That is, it specifies the base phoneme ow and surrounding phonemic context. Such a

5-tuple of phonemic context is referred to as a quinphone.

• The string @2_1 encodes the fact that the current phoneme is the second and the last

phoneme in the current syllable.

• The string A:0 encodes the fact that the previous syllable was not stressed.

• The string /E:det encodes a guessed part-of-speech tag for the current word.

• The string H:3=3@1=1|L-L% encodes the fact that there are 3 syllables and 3 words

in the current phrase, that the current phrase is the first and last, and that the ToBI

end tone (Silverman et al., 1992) of the current phrase is L-L%.

A label thus encodes a base phoneme together with phonemic and linguistic context which

may be relevant to the acoustic realization of the base phoneme. This contextual informa-

tion can have a significant effect on a phoneme’s acoustic realization due to effects such as

coarticulation (Taylor, 2009). We refer to labels with a large amount of contextual inform-

ation such as the one in Figure 3.2 as full-context labels. For brevity from now on we use

the term phonemic context to refer to the quinphone part of a full-context label, and the

term linguistic context to refer to the remaining parts, which are mostly non-phonemic.

It should be noted that for the text in the training corpus, text analysis typically

contains an additional step. This is to cope with some of the potential mismatches between

the phoneme sequence predicted by the process described above and the phoneme sequence

actually used by the human speaker. For example the speaker may have chosen to insert

phrase breaks at different positions than those predicted by the text analysis process, and

may have used reduced vowels in places where the text analysis predicts non-reduced vowels.

This is typically handled by iteratively training a simple monophone speech recognizer on

the training data, where the network used by the speech recognizer largely follows the

phoneme sequence predicted by text analysis but allows pauses to be inserted between
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Figure 3.3: Example of a synthesized speech waveform. The value at each moment in time
is the amplitude on an arbitrary scale. Time is discretized at a sampling rate of 16 kHz.

words and vowel reductions to be altered. The most likely phoneme sequence produced by

the trained recognizer is then used in place of the original phoneme sequence produced by

the process described above. Thus for utterances in the training corpus the speech audio

is used to inform the text analysis process.

3.1.2 Back-end waveform analysis and synthesis

The back end converts speech audio to a sequence of speech parameters and vice versa.

It consists of an analysis component which takes a waveform and converts it to a speech

parameter sequence, and a synthesis component which takes a speech parameter sequence

and converts it to a waveform.

The speech audio is represented as a waveform, which for the purposes of this thesis we

take to be a sequence of real numbers representing (an affine transform of) the air pressure

at a given position in space over a sequence of successive evenly-spaced moments in time.

The number of such moments per second is referred to as the sampling frequency of the

waveform. An example of a waveform is shown in Figure 3.3.

The representation of the speech audio seen by the statistical model is a sequence [Ct]
T
t=1

of speech parameters. Typically there is approximately one entry in this sequence per 5 ms

of speech audio. The index t of this sequence is referred to as the frame. The speech

parameters Ct for frame t encode information about the source-filter representation of the

waveform near the time corresponding to frame t. For example for a typical statistical para-

metric speech synthesis system based on the STRAIGHT vocoder, the speech parameters

Ct for frame t consist of three portions:

• a 40-dimensional real vector [Ct1i]
39
i=0 encoding the filter power spectrum at frame t

in the form of a mel cepstrum (Fukada et al., 1992)
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Figure 3.4: Example of a sequence of speech parameters. For each 5 ms frame the speech
parameters consist of a 40-dimensional mel-cepstral vector (upper pane), a logF0 value
(middle pane), and a 5-dimensional band aperiodicity vector (lower pane). For visual clarity
the trajectories are offset from each other and are scaled to have unit global variance.
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Figure 3.5: Example of a sequence of source-filter parameters for the STRAIGHT vocoder.
For each 5 ms frame the parameters consist of a 513-dimensional vector specifying the power
spectrum of the filter to be used for that frame (upper panel), an F0 value specifying the
fundamental frequency of the periodic part of the source excitation for that frame (shown
by the solid line on the upper panel), and a 513-dimensional vector specifying the relative
power of the aperiodic part of the source excitation at each frequency (lower panel).
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• a 0/1-dimensional real vector consisting of the log fundamental frequency of the source

excitation (0-dimensional for unvoiced frames, 1-dimensional for voiced frames)

• a 5-dimensional band aperiodicity vector [Ct3i]
4
i=0 encoding the aperiodicity spectrum

as a piecewise constant function of frequency, constant on a set of frequency bands

The speech parameter for frame t, portion p and vector component i will be denoted Ctpi.

An example of a sequence of speech parameters is shown in Figure 3.4. The corresponding

filter power spectrum, fundamental frequency and aperiodicity spectrum for each frame are

shown in Figure 3.5. The effect of using a piecewise constant aperiodicity spectrum can be

clearly seen. While this banding may appear a crude model, the aperiodicity is generally

regarded as having the weakest influence on the acoustics of the three portions of the speech

parameters and so this is often sufficient to obtain reasonably natural speech.

We note in passing that the approach to statistical parametric speech synthesis described

above suffers from a mismatch: the probabilistic model is trained to model speech parameter

sequences extracted from natural speech using the analysis component of the back end, but

its performance is judged on the results of applying the synthesis component of the back

end. The analysis and synthesis components of the back end are designed to be approximate

inverses, so that if we take a waveform, analyze it to obtain a sequence of speech parameters

and then synthesize from these, we end up with something that is perceptually similar to

the original. Running the analysis then the synthesis component of the back end on natural

speech still results in fairly natural-sounding speech, so if the statistical model was perfect

then this mismatch would not pose a substantial problem. However it is conceivable that

weaknesses in the statistical model might interact with the lack of invertibility of the back

end in deleterious ways. One solution to this mismatch would be to specify a conditional

probabilistic model of the waveform given the speech parameter sequence, and train the

overall probabilistic model of the waveform given the text as one big probabilistic model.

There has been some work exploring this approach (Maia et al., 2010; Nakamura et al.,

2013). We do not consider the above mismatch further in this thesis.

3.1.3 Alignments

The statistical model is at the heart of a statistical parametric speech synthesis system,

and bridges the gap between the symbolic label sequence with no explicit notion of time

and the continuous-valued, time-domain speech parameter sequence. To do so it makes

use of a further intermediate representation called an alignment which contains timing

information. A probabilistic model known as the duration model provides a conditional

model of the alignment given the label sequence, and a probabilistic model known as the

speech parameter-level acoustic model or the acoustic model provides a conditional model
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0 37 pau

37 49 n

49 81 ow

81 104 s

104 140 er

140 178 iy

178 216 pau

Figure 3.6: Example of a label-level alignment with monophone labels. The first two
columns are the start and end times of a segment, and the third column is the phoneme.
The timings are in frames, where each frame spans 5 ms. For example ow lasts for 160 ms,
starting at 245 ms from the start of the utterance and ending at 405 ms from the start of
the utterance.

of the speech parameter sequence given the alignment. We now describe the alignment

representation in detail.

A label-level alignment consists of a label sequence together with a duration in frames

for each label, or equivalently a start and end frame for each label. An example of a label-

level alignment with monophone labels is given in Figure 3.6. A label-level alignment thus

associates each label with a certain segment of frames, and so specifies a current label for

each frame t.

For extra modelling accuracy it is found to be helpful to consider each label as composed

of a number of sublabels (slightly confusingly often called states) ordered in time. Each

sublabel for a given label is current in turn for some number of frames. The number of

sublabels for a given label could depend on the label, but we assume it is fixed and denote

it as S, e.g. typically S = 5. We will assume the sublabel takes values in {1, . . . , S}. Using

sublabels is a simple and effective way to allow the acoustic realization of a given label to

vary systematically over the course of that label while using relatively simple probabilistic

models.

Given a label sequence we can form the corresponding sequence of (label, sublabel)

pairs. To take a simple example with monophone labels, if the label sequence was (k,

ae) then the corresponding (label, sublabel) sequence would be ((k, 1), (k, 2), (k, 3), (k,

4), (k, 5), (ae, 1), (ae, 2), (ae, 3), (ae, 4), (ae, 5)). An alignment specifying when each

(label, sublabel) pair is current is referred to as a sublabel-level alignment. An example of

a sublabel-level alignment with monophone labels is given in Figure 3.7.

Note that the fact we assume a hard boundary between successive labels does not mean

the synthesized waveform contains discernible boundaries: we will see that the systems we

build have various mechanisms for modelling effects such as coarticulation. We will treat

39



3. Speech synthesis

0 1 pau 1

1 2 pau 2

2 10 pau 3

10 32 pau 4

32 37 pau 5

37 40 n 1

40 43 n 2

43 46 n 3

46 47 n 4

47 49 n 5

49 52 ow 1

52 61 ow 2

61 69 ow 3

69 76 ow 4

76 81 ow 5

...

Figure 3.7: Example of a sublabel-level alignment with monophone labels. The first two
columns are the start and end times of a segment, and the third and fourth columns are
the phoneme and sublabel. The timings are in frames, where each frame spans 5 ms.

label boundaries as latent variables which have some relationship to physical reality but

which are ultimately just a useful intermediate representation for specifying a model.

3.1.4 Duration model

A duration model is a conditional probabilistic model over the sublabel-level alignment

given the label sequence. Given a label sequence l = [lj ]
J
j=1, the alignment may be thought

of as a specification of the duration djs in frames for each (label, sublabel) pair in the

(label, sublabel) sequence, where j is the index of the label in the label sequence and s is

the sublabel. Thus the duration model is a probabilistic model P(d | l, ν) over the sequence

d = [djs]j,s of durations, where j = 1, . . . , J and s ranges over sublabels, given the label

sequence l = [lj ]
J
j=1. Here ν is a collection of model parameters. Typical models used in

statistical parametric speech synthesis assume the duration of each (label, sublabel) pair is

independent of the duration of the other (label, sublabel) pairs. Typically it is assumed that

the minimum duration of each sublabel is one frame. The duration model parameters ν are

learned from data, often at the same time as the acoustic model parameters λ. We briefly

mention how this can be done for one form of acoustic model in §3.2.3. At synthesis time

we use the duration model to generate a sublabel-level alignment given the label sequence,

i.e. to generate a duration djs for each label lj in the label sequence and each sublabel s.
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This is referred to as duration generation. One way to do this is to use the most likely

duration under the duration model for each (label, sublabel) pair.

We now specify the conventional duration model used in statistical parametric speech

synthesis (Zen et al., 2009) and the one used throughout this thesis. The Gaussian duration

model assumes that (Yoshimura et al., 1998)

djs | lj , ν ∼ N (µq, σ
2
q ), j ∈ {1, . . . J}, s ∈ {1, . . . , S} (3.1)

where q = q(lj , s) (3.2)

ν =
(

[µq, σ
2
q ]
Q
q=1, q

)
(3.3)

This specifies a probabilistic model P(d | l, ν). The model parameters ν are a finite collection

of means and variances [µq, σ
2
q ]
Q
q=1 and a clustering function q which takes a label m and

sublabel s and returns a value q ∈ {1, . . . , Q}.
At first glance the Gaussian, which has support R, is not well-suited to modelling

the duration, which typically takes values in N, but this mismatch is not found to cause

major problems in practice. At synthesis time a duration must be chosen for each (label,

sublabel) pair in the (label, sublabel) sequence. One way to do this is to choose the most

likely value subject to the constraint that it be a positive integer, or equivalently to choose

the closest integer to the mean of the Gaussian distribution for that pair or 1 if this is

not positive. In principle the mismatch between R and N could be removed by using a

probability distribution of the form

P(d |µ, σ2) =
N (d;µ, σ2)∑
d∈NN (d;µ, σ2)

(3.4)

instead of the unnormalized distribution P(d |µ, σ2) = N (d;µ, σ2). This distribution is

sometimes known as the discrete Gaussian distribution (Gentry et al., 2008), though it

is typically defined over Z rather than N. It forms an exponential family with the same

sufficient statistics as the conventional Gaussian distribution.

3.1.5 State transition model

It is possible to re-work many duration models into a Markovian form. When combined

with certain types of acoustic model, this has the advantage of allowing efficient inference

and learning (Zen et al., 2007c). We give a brief overview of this process. Full details,

including how this affects inference and learning, can be found in a technical report by Zen

(2007).

A semi-Markov process is an extension of the concept of a Markov process where each

state in the state space has an explicit duration distribution associated with it. There is

a simple trick to convert a discrete-time semi-Markov process on one state space into a
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discrete-time Markov process on an enlarged state space: we simply augment the state

with an integer specifying the number of steps remaining in the current original state

and update the transition structure accordingly. Strictly speaking this trick results in a

countably infinite state space unless each state in the original semi-Markov process has a

maximum duration, but we ignore this technicality here.

For a given label sequence [lj ]
J
j=1 a duration model which assumes the duration of each

(label, sublabel) pair is independent of the duration of the other such pairs is a simple

example of a semi-Markov process. If we apply the above trick we obtain a Markovian

state transition model. A state ψ in the state space of this new process is a tuple (m, j, s, d)

consisting of the current label m, the index j of the current label in the label sequence,

the current sublabel s, and the number of frames d remaining in the current sublabel. The

state at frame t is denoted θt, and the sequence of states is referred to as the state sequence

θ = [θt]
T
t=1. Thus the state transition model is a probabilistic model

P (θ | l, ν) (3.5)

over the state sequence θ = [θt]
T
t=1 given the label sequence l = [lj ]

J
j=1 with model paramet-

ers ν. Note that the length T of θ is a random variable. Assuming the minimum duration

of each sublabel is one frame, there is a simple one-to-one correspondence between state

sequences and sublabel-level alignments, so we are free to think in terms of whichever is

most helpful.

If we apply the above procedure to the Gaussian duration model defined in §3.1.4 we

obtain a Markovian state transition model P(θ | l, ν) which we refer to as the Gaussian

state transition model (GSTM). If a state sequence θ = [θt]
T
t=1 given the label sequence

l = [lj ]
J
j=1 is distributed according to the Gaussian state transition model with parameters

([µq, σ
2
q ]
Q
q=1, q) then we write

θ | l, [µq, σ2
q ]
Q
q=1, q ∼ GSTM

(
l; [µq, σ

2
q ]
Q
q=1, q

)
(3.6)

3.1.6 Acoustic model

A speech parameter-level acoustic model or simply acoustic model is a conditional probab-

ilistic model P(C | θ, λ) over the speech parameter sequence C = [Ctpi]t,p,i given the state

sequence θ = [θt]t with model parameters λ, where time t ranges over {1, . . . , T}, portion

p ranges over {1, 2, 3} and vector component i ranges over {0, . . . , Ip − 1}. We refer to a

sequence of real numbers as a trajectory. Most of the speech parameter-level acoustic mod-

els we consider in this thesis assume that the trajectory [Ctpi]
T
t=1 for portion p and vector

component i is conditionally independent of the trajectories for all the other portions and

vector components. We refer to a conditional probabilistic model P(c | θ, λ) over a single

trajectory c = [ct]
T
t=1 given the state sequence as a trajectory-level acoustic model.

42



0.0 0.2 0.4 0.6 0.8 1.0
time (s)

−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

am
pl

itu
de
0 1 x^x-pau+n=ow 1
1 2 x^x-pau+n=ow 2
2 10 x^x-pau+n=ow 3
10 32 x^x-pau+n=ow 4
32 37 x^x-pau+n=ow 5
37 40 x^pau-n+ow=s 1
40 43 x^pau-n+ow=s 2
43 46 x^pau-n+ow=s 3
46 47 x^pau-n+ow=s 4
47 49 x^pau-n+ow=s 5
49 52 pau^n-ow+s=er 1
52 61 pau^n-ow+s=er 2
61 69 pau^n-ow+s=er 3
69 76 pau^n-ow+s=er 4
76 81 pau^n-ow+s=er 5
...

x^x-pau+n=ow
x^pau-n+ow=s
pau^n-ow+s=er
n^ow-s+er=iy
ow^s-er+iy=pau
s^er-iy+pau=x
er^iy-pau+x=x

No-sir-ee!

text

speech parameters

label sequence

sublabel-level
alignment

waveform
0 50 100 150 200

0

100

200

300

400

500

fr
eq

ue
nc

y
ch

an
ne

l

−105

−90

−75

−60

−45

−30

−15

0
sp

ec
tr

um
(d

B
)

150

200

250

300

350

400

450

F 0
(H

z)

0 50 100 150 200
frame index

0

100

200

300

400

500

fr
eq

ue
nc

y
ch

an
ne

l

−32

−28

−24

−20

−16

−12

−8

−4

ap
er

io
di

ci
ty

(d
B

)

0 50 100 150 200

mcep0
mcep1
mcep2
mcep3
mcep4
mcep5
mcep6
mcep7
mcep8
mcep9

mcep10
mcep11
mcep12
mcep13
mcep14
mcep15
mcep16
mcep17
mcep18
mcep19
mcep20
mcep21
mcep22
mcep23
mcep24
mcep25
mcep26
mcep27
mcep28
mcep29
mcep30
mcep31
mcep32
mcep33
mcep34
mcep35
mcep36
mcep37
mcep38
mcep39

50 100 150 200

lf0

0 50 100 150 200
frame index

bap0

bap1

bap2

bap3

bap4
vocoder parameter

generation

speech parameter
generation

vocoder

text analysis

duration
generation

vocoder
parameters

Figure 3.8: Example of a statistical parametric speech synthesis pipeline, which takes text
to be read aloud as input and produces a waveform as output. Rectangles indicate repres-
entations of data, and ovals indicate the processes that map between these representations
at synthesis time. For each representation a dotted line leads to an example of the repres-
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The parameters λ of the speech parameter-level acoustic model are learned from data.

Typically they are learned jointly with the duration model parameters ν. The details of

parameter estimation depend on the form of acoustic model.

At synthesis time we use the speech parameter-level acoustic model to generate a speech

parameter sequence C given a state sequence θ. This is referred to as speech parameter

generation. One way to do this is to use the most likely speech parameter sequence given

the state sequence. We refer to this as maximum probability speech parameter generation.

The term maximum likelihood speech parameter generation is more widely in use for this

parameter generation method, but to us maximum likelihood denotes a particular approach

to estimating the parameters of a probabilistic model, which has nothing to do with speech

parameter generation, and the likelihood function λ 7→ P(C | θ, λ) for the acoustic model is

not involved in any way in speech parameter generation. We will see how to apply this and

other speech parameter generation methods to various acoustic models in the remainder of

this thesis.

A summary of the different processes used at synthesis time to successively transform

text into speech audio is given in Figure 3.8.

3.2 The standard HMM synthesis framework

In this section we describe one particular specialization of the general approach presen-

ted in §3.1 which we call the standard HMM synthesis framework. It operates as follows.

At training time, for each trajectory in the training corpus, we compute its approximate

derivative and second derivative with respect to time to obtain a delta trajectory and delta-

delta trajectory. We then train a statistical model, combining the Gaussian duration model

described in §3.1.4 with a simple acoustic model, on this augmented data. The acoustic

model assumes the original, delta and delta-delta trajectories are conditionally independent

of each other given the state sequence, even though they are in fact deterministically re-

lated. At synthesis time we perform duration generation by finding the most likely duration

for each sublabel under the trained Gaussian duration model. We perform speech para-

meter generation by finding the trajectory such that the combination of this trajectory, the

corresponding delta trajectory and the corresponding delta-delta trajectory has the highest

probability under the trained acoustic model.

This approach has the advantage of using a simple and tractable acoustic model dur-

ing training, while allowing the acoustic model to capture some information about the

dynamics of the speech parameters and to use this information at synthesis time. It has

the disadvantage that it is inconsistent in its treatment of the relationship between the

trajectory and its corresponding delta and delta-delta trajectories, taking this relationship

into account at synthesis time but ignoring it during training.
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3.2. The standard HMM synthesis framework

The remainder of this section specifies the standard HMM synthesis framework in detail.

A commonly used software implementation of the standard HMM synthesis framework is

the HMM-based speech synthesis system (HTS) (HTS working group, 2012), based on the

hidden Markov model toolkit (HTK) (Young et al., 2006).

3.2.1 Gaussian acoustic model

In this section we describe the Gaussian acoustic model (GAM), which is a very simple

trajectory-level acoustic model P(c | θ, λ) used as a building block in the statistical model

used during training by the standard framework. Its model parameters λ are a finite

collection of means and variances [µq, σ
2
q ]
Q
q=1 and a clustering function q which takes a state

ψ and returns a value q ∈ {1, . . . , Q}. The trajectory value ct at time t is assumed to be

conditionally independent of the trajectory value at other times and Gaussian distributed

with mean and variance depending on the corresponding value of q, that is

ct | θt, λ ∼ N (µq, σ
2
q ), t ∈ {1, . . . , T} (3.7)

where q = q(θt) (3.8)

λ =
(

[µq, σ
2
q ]
Q
q=1, q

)
(3.9)

Instead of using the mean and variance, we will find it convenient to parameterize the

Gaussian in terms of its natural parameters, so we have

ct | θt, λ ∼ NNP(bq, τq), t ∈ {1, . . . , T} (3.10)

where q = q(θt) (3.11)

λ =
(

[bq, τq]
Q
q=1, q

)
(3.12)

For generality and notational convenience we have made q a function of the state ψ =

(m, j, s, d), but in practice it typically only depends on the label m and sublabel s. If a

trajectory c = [ct]
T
t=1 given the state sequence θ = [θt]

T
t=1 is distributed according to the

Gaussian acoustic model with parameters ([bq, τq]
Q
q=1, q) then we write

c | θ, [bq, τq]Qq=1, q ∼ GAM
(
θ; [bq, τq]

Q
q=1, q

)
(3.13)

It can be shown that the Gaussian acoustic model is a conditionally additive exponential

family, as long as we allow the base measure function h(c, θ) in (2.34) to take on the value

−∞ when c and θ are of different lengths.

We can also write the Gaussian acoustic model explicitly as a multivariate Gaussian

distribution over c. We have

c | θ, [bq, τq]Qq=1, q ∼ NNP(bwin, Pwin) (3.14)
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where

bwin =
[
bq(θt)

]T
t=1

(3.15)

Pwin = diag
([
τq(θt)

]T
t=1

)
(3.16)

Note that the precision matrix Pwin is diagonal since each the trajectory value at each

frame is independent of the trajectory values at other frames.

3.2.2 Windows

In this section we describe the concept of a window and introduce related terminology. In

the standard HMM synthesis framework windows are used to specify how the approximate

first and second time derivatives of a trajectory are computed.

Given a trajectory c = [ct]
T
t=1 we may define a new trajectory c̃ = [c̃t]

T
t=1 by taking the

cross-correlation with a window [wk]
KR

k=−KL , that is

c̃t =

KR∑
k=−KL

wkct+k (3.17)

Here wk ∈ R is referred to as a window coefficient, and the left extent KL and right extent

KR are typically non-negative. The function which takes c and returns c̃ is linear, and is

local in the sense that the value of c̃t is only affected by values of cu for u close to t. The

matrix W for this linear function has entries Wst = wt−s, and so is Toeplitz, and is banded

with subdiagonal width at most KL and superdiagonal width at most KR. We refer to the

T ×T matrix W as the window matrix for the given window. The window matrix implicitly

depends on T .

Strictly speaking the value of c̃t for the first few and the last few frames is not defined

by (3.17), since the value of ct is not specified for t < 1 or t > T . One way to specify

these values of c̃t is to say that ct is assumed zero for t < 1 or t > T , which is equivalent

to making the matrix W exactly Toeplitz. We refer to this approach as using zero-input

windows. Another way to specify these values is to say that c̃t is set to zero for the

first few and last few frames for which it would otherwise not be well-defined, and this is

equivalent to setting the first few and last few rows of the matrix W to zero. We refer to

this approach as using zero-output windows. More general choices where entirely different

window coefficients are used for the first few or last few rows of W are also possible. We

will largely ignore such issues, but it will sometimes be useful to consider the effect of such

choices, which we term end effects. Some of the issues surrounding end effects are discussed

in more detail in Appendix B.

The window coefficients can be chosen such that c̃ is a finite-difference approximation

to the first or second derivative with respect to time of a continuous-time function which
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3.2. The standard HMM synthesis framework

window
offset (k)

−1 0 +1

static (d = 0) 1.0
delta (d = 1) −0.5 0.0 0.5

delta-delta (d = 2) 1.0 −2.0 1.0

Table 3.1: Windows often used with the standard HMM synthesis framework. Each entry
specifies a window coefficient wdk for window d, offset k.

has value ct at time t ∈ Z. We refer to the original, approximate first derivative and

approximate second derivative trajectories as the static, delta and delta-delta trajectories,

and the windows used to compute these as the static, delta and delta-delta windows. For

example the windows shown in Table 3.1 are often used with the standard HMM synthesis

framework to compute a static, delta and delta-delta trajectory. We refer to the trajectory

obtained by applying a non-trivial window to the static trajectory as a dynamic trajectory.

We now review some terminology that will be useful below when we have a collection

of D windows. We refer to the maximum left extent of the D windows as the left extent of

the collection, and similarly for the right extent. We refer to a D-tuple of trajectories as a

trajectory tuple. A trajectory tuple is naturally viewed as a D×T matrix, but by taking the

transpose can also be viewed as a T ×D matrix o = [otd]t,d, or by flattening can be viewed

as a (DT )-dimensional vector. The function which takes a trajectory and applies each of

the D windows to obtain a trajectory tuple can thus be seen as a linear map o : RT → RDT .

For typical collections of windows such as the collection in Table 3.1, o is injective, meaning

we can recover the original trajectory from its image under the map, and we will assume

injectivity from now on. However o is typically not surjective, since DT > T if D ≥ 2 and

T ≥ 1. We refer to the image of o as the realizable subspace, and we refer to a trajectory

tuple in the image as realizable. The realizable subspace forms a T -dimensional subspace of

the (DT )-dimensional space of possible trajectory tuples. Thus most trajectory tuples are

not realizable. Saying a trajectory tuple is realizable means that the different trajectories

which make up the trajectory tuple are in some sense compatible with each other. For

example for the windows in Table 3.1 it means that the d = 1 element in the trajectory

tuple is the delta trajectory derived from the d = 0 element in the trajectory tuple, and the

d = 2 element in the trajectory tuple is the delta-delta trajectory derived from the d = 0

element.

3.2.3 Statistical model used during training

In this section we describe the statistical model used by the standard HMM synthesis

framework during training and discuss estimation of its parameters. As mentioned above,
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the procedure used during training is to model the speech parameter sequence after it has

been augmented with “dynamic” information using the approach in §3.2.2. The statist-

ical model is therefore defined over a space containing this augmented speech parameter

sequence rather than over the speech parameter sequence itself.

The statistical model used during training is a conditional probabilistic model P(O |
l, ν, λ) over an observation sequence O = [Otpid]t,p,i,d where time t ranges from 1 to T ,

portion p ranges from 1 to 3, vector component i ranges from 0 to Ip − 1, and window d

ranges from 0 to Dp−1. The statistical model is composed of a duration or state transition

model and an acoustic model. The duration model is the Gaussian duration model. The

acoustic model assumes the trajectory [Otpid]
T
t=1 for each portion p, vector component i

and window d is conditionally independent of the other trajectories, and each trajectory is

modelled using the Gaussian acoustic model. The complete statistical model P(O | l, ν, λ)

used during training by the standard HMM synthesis framework is therefore:

θ | l, ν, qDUR ∼ GSTM

(
l;
[
µDUR
q , (σ2)DUR

q

]QDUR

q=1
, qDUR

)
(3.18)

[Otpid]
T
t=1 | θ, λ ∼ GAM

(
θ; [bpqid, τpqid]

Qp

q=1, qp

)
,


p ∈ {1, 2, 3}
i ∈ {0, . . . , Ip − 1}
d ∈ {0, . . . , Dp − 1}

(3.19)

where ν =
([
µDUR
q , (σ2)DUR

q

]
q
, qDUR

)
(3.20)

λ =
[
[bpqid, τpqid]q,i,d, qp

]
p

(3.21)

Since the Gaussian state transition model is Markovian and the Gaussian acoustic model

used for each trajectory assumes the trajectory values over time are conditionally inde-

pendent, the above statistical model is an HMM. As discussed above, each of the functions

qDUR and [qp]p determines a partition of the set of all possible (label, sublabel) pairs. A

separate partition is assumed for each portion p in the acoustic model and for the duration

model.

The observation sequence O used for each utterance during training is derived from the

speech parameter sequence C. Given a speech parameter sequence C = [Ctpi]t,p,i, define

a corresponding observation sequence O = [Otpid]t,p,i,d by specifying that each trajectory

[Otpid]
T
t=1 is the result of applying the window [wpdk]k to the trajectory [Ctpi]

T
t=1. Here we

have assumed that the same window is used by all vector components i of a given portion

p of the speech parameters, but that different windows may be used for different portions.

Extending the discussion in §3.2.2 slightly, the function O taking a speech parameter se-

quence C to the corresponding observation sequence O is an injective linear map. We refer

to an observation sequence O as realizable if it is in the image of O, that is if O = O(C) for

some speech parameter sequence C, or equivalently if all its trajectory tuples are realizable.
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The parameters of the statistical model P(O | l, ν, λ) may be learned from data using

expectation maximization and decision tree clustering, following the procedure described in

§2.5.2, since P(Ot | θt, λ) is of the form (2.94). The accumulators for the sufficient statistics

in (2.100) and (2.101) are now

b̃pqid =
∑
t

γ̃tpqOtpid (3.22)

τ̃pqid = −1
2

∑
t

γ̃tpqO
2
tpid (3.23)

R̃pq =
∑
t

γ̃tpq (3.24)

where γ̃tpq =
∑

ψ:qp(ψ)=q

γtψ (3.25)

The use of a separate partition for each portion p of the speech parameters is a minor

extension of the model described in §2.5.2. Given the above accumulators, the updated

parameters (bpqid, τpqid) for the Gaussian distribution for each portion p, cluster q, vector

component i and window d may be computed using (2.32) and (2.33). The standard practice

in statistical parametric speech synthesis is to use a separate decision tree for each portion

p and sublabel s (Zen et al., 2009). Conceptually this may be thought of as a tree where

the root node splits s ways according to the sublabel. Accordingly the questions typically

used only involve the label and not the sublabel. As mentioned in §3.2.1 the acoustic model

typically does not use other aspects of the state ψ = (m, j, s, d) such as the number of frames

d remaining in the current sublabel. Expectation maximization and decision tree clustering

can similarly be used to re-estimate the duration model parameters ν, though we omit the

details since it is not the focus of this thesis; full details of expectation maximization for

the Gaussian state transition model are given by Zen (2007).

3.2.4 Standard speech parameter generation

In this section we describe a speech parameter generation method which uses a simple

but effective approach to make use of the information about the dynamics of trajector-

ies encoded in the delta and delta-delta model parameters. We also describe an efficient

algorithm for computing the trajectory generated by this method.

Speech parameter generation involves generating a speech parameter sequence C =

[Ctpi]t,p,i given a state sequence θ = [θt]
T
t=1. For standard speech parameter generation

(Tokuda et al., 2000, case 1) the speech parameter sequence C is chosen to be the one

which maximizes the probability of the corresponding observation sequence O under the

trained acoustic model P(O | θ, λ). This is equivalent to finding the most likely realizable

observation sequence O. It can thus be seen as a constrained form of maximum probability
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speech parameter generation where we restrict the domain over which the maximization is

conducted. Due to the way the acoustic model P(O | θ, λ) factorizes with respect to portion

p and vector component i, we may perform the above constrained maximization separately

for each p and i. We therefore now focus on standard speech parameter generation for a

given portion and vector component.

GivenD windows, D corresponding Gaussian acoustic models with parameters [bqd, τqd]q,d,

and a clustering function q, we wish to find the trajectory tuple [otd]t,d which has the

highest probability subject to the constraint that there is some trajectory c ∈ RT for which

Wdc = [otd]
T
t=1 for all windows d. The distribution over the trajectory [otd]

T
t=1 for window

d is a multivariate Gaussian with b-value bwin
d and diagonal precision matrix Pwin

d given by

using (3.15) and (3.16) for window d. Thus the overall log probability we want to maximize

with respect to c is∑
d

logNNP(Wdc; b
win
d , Pwin

d )
c
=
∑
d

{
−1

2(Wdc)
TPwin

d (Wdc) + bwin
d

T
(Wdc)

}
(3.26)

= A(c) (3.27)

where A(c) = −1
2c

TPc+ bTc (3.28)

b =
∑
d

Wd
Tbwin
d (3.29)

P =
∑
d

Wd
TPwin

d Wd (3.30)

where
c
= denotes equality up to a constant. Note that here we have reused b: it may refer

either to a vector b = [bt]
T
t=1 over time or to a collection b = [bqd]q,d of model parameters.

We hope that the intended meaning will be clear from context. The trajectory c generated

by standard speech parameter generation is therefore P−1b, since this maximizes the above

quadratic function.

There exists an efficient algorithm to compute P−1b. Since the matrices Wd
T, Pwin

d and

Wd are all banded, their product is banded, so P is banded. The subdiagonal width of

P , which is equal to the superdiagonal width since P is symmetric, is at most K, where

K = KL + KR is the sum of the left and right extents of the collection of windows. For

example for the windows shown in Table 3.1 K = 2. If L is the conventional Cholesky factor

of P , so that P = LLT, then P−1b = L−TL−1b. Thus the optimal trajectory P−1b may be

computed in O(TK2) time and O(TK) space by using a banded Cholesky decomposition

followed by two banded triangular matrix solves (Tokuda et al., 2000). There are high

quality implementations of the banded Cholesky decomposition available. For example

LAPACK (Anderson et al., 1999) contains an implementation of the banded Cholesky

decomposition and the subsequent matrix solves. We refer to the above Cholesky-based

algorithm as the standard speech parameter generation algorithm.
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There is an intuitive way to view the standard speech parameter generation method

in terms of soft constraints which we will find helpful later. The Gaussian distribution

specified by model parameters (bqd, τqd) can be seen as encoding a soft constraint on the

trajectory tuple value otd that the model expects to see while in cluster q, i.e. for frames

t where q(θt) = q. On average the model expects to see a value of bqd/τqd for otd while

in cluster q, but also expects to see a certain range of variation controlled by τqd. In

this view the standard speech parameter generation method trades off the conflicting soft

constraints for the various windows d to produce a compromise trajectory. The constraints

are conflicting because it is not possible to make each trajectory in the trajectory tuple

precisely equal to its preferred value for every window d simultaneously. The parameter τqd

controls how important the corresponding soft constraint is: the larger τqd the more harshly

a potential trajectory tuple is penalized for deviating from the preferred value bqd/τqd. The

view of the standard speech parameter generation method as trading off competing soft

constraints is fairly well known (see for example Figure 5 in (Zen et al., 2009)).

3.2.5 Time-recursive speech parameter generation algorithm

The above Cholesky-based algorithm is fast, but requires O(T ) time to compute the first

frame since the Cholesky decomposition for the whole trajectory must first be computed.

This means latency can potentially be high, and both latency and memory usage are not

predictable at design time since utterances vary in length. In practice a time-recursive

algorithm (Koishida et al., 2001) is often used in real-time synthesis systems and other

applications that would otherwise use the standard Cholesky-based speech parameter gen-

eration algorithm and which require low latency (Koishida et al., 2001; Muramatsu et al.,

2008; Han et al., 2012). This time-recursive algorithm is approximate and slower but has

predictable latency, memory and CPU requirements.

3.2.6 Parameter generation considering global variance

There is a commonly used extension to the standard speech parameter generation method

which dramatically improves the quality of synthesized speech. In particular it results in

speech that is clearer and less “muffled” than the standard speech parameter generation

method.

Define the global variance (GV) v(c) of a trajectory c = [ct]
T
t=1 as the variance of the

set {ct : t ∈ {1, . . . , T}}, that is

v(c) =
1

T

∑
t

(ct −m(c))2 (3.31)
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where

m(c) =
1

T

∑
t

ct (3.32)

is the global mean of the trajectory. Trajectories produced by the standard speech para-

meter generation method are found to have global variance that is smaller than trajectories

derived from natural speech. We saw in §3.2.4 that for a given portion p, vector component

i and state sequence θ the standard speech parameter generation method generates the

trajectory c by optimizing the quadratic function A(c) defined in (3.28). Speech parameter

generation considering global variance (Toda and Tokuda, 2007) generates each trajectory

c by optimizing a modified utility function

G(c) = A(c) + ωGV logN
(
v(c);µGV, (σ2)GV

)
(3.33)

Since we have one trajectory for each portion p and vector component i, the extra para-

meters required for parameter generation considering global variance are[
µGV
pi , (σ

2)GV
pi

]
p,i

(3.34)

Typically µGV
pi and (σ2)GV

pi are set to the empirical mean and variance of v([Ctpi]t) over the

training corpus. The trajectories generated by this approach have global variance closer

to the average natural global variance µGV than trajectories generated by the standard

speech parameter generation method. The GV weight ωGV controls the trade-off between

producing a likely trajectory and a trajectory with likely global variance. Typically ωGV =

DT , where D is the number of windows and T is the number of frames in the utterance

(Toda and Tokuda, 2007). The conventional algorithm is to optimize G(c) using a form

of gradient ascent where the step direction is based on both the gradient and the diagonal

of the Hessian matrix at the current point (Toda and Tokuda, 2007). The trajectory used

to initialize gradient ascent is typically obtained by scaling the trajectory µ produced by

standard speech parameter generation to have global variance µGV, that is

cVS
t =

√
µGV

v(µ)
(µt −m(µ)) +m(µ) (3.35)

We refer to cVS as the trajectory produced by variance scaling.

It has been noted that in practice the effect of using the conventional GV weight setting

ωGV = DT with the standard HMM synthesis framework is to restrict the GV of the

generated trajectories to be very close to the mean µGV of the GV pdf (King, 2011; Zen

et al., 2010). We will observe this phenomenon in §6.5.

Speech parameter generation considering global variance does have some drawbacks.

Due to the gradient ascent procedure it is slower than standard speech parameter gener-

ation, and it is not possible to use the low latency time-recursive parameter generation
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algorithm. It is also known to sometimes introduce artifacts into the synthesized speech

(Zen et al., 2006; Yamagishi et al., 2008; Zen et al., 2009; Toda, 2011; King, 2011). Here by

an artifact we mean a short distortion in the audio, such as a click, pop or short high-pitched

whine. Existing implementations of parameter generation considering global variance, such

as that found in HTS, reduce artifacts by carefully tuning the convergence criterion used

during gradient ascent, providing a form of early stopping (Yamagishi et al., 2008; HTS

working group, 2012). We discuss ways to address all of these drawbacks in Chapter 6.

There is an alternative approach to alleviating muffledness which we now describe.

Post-filtering for speech synthesis (Yoshimura et al., 2004, 2005; Ling et al., 2006) involves

increasing the “dynamic range” of the filter power spectrum used during synthesis by raising

it to a power 1 + β, while making adjustments such that the overall energy and optionally

the spectral tilt are not affected. When using mel cepstral coefficients to represent the filter

power spectrum this corresponds to multiplying each coefficient by 1 + β, then making an

energy adjustment to the 0th coefficient and optionally a spectral tilt adjustment to the

1st coefficient. Post-filtering is conventionally applied to the output of the standard speech

parameter generation method. Perceptually it is found that accentuating the peaks and

valleys of the filter power spectrum in this way results in more natural and less muffled

speech. It is generally agreed that parameter generation considering global variance results

in more natural speech than post-filtering, though we are not aware of any literature directly

investigating this, whereas post-filtering is simpler to implement.

3.2.7 Modelling fundamental frequency

The framework presented above cannot be used as is for modelling the fundamental fre-

quency portion of the speech parameters due to the use of the special unvoiced value. We

only discuss the issues surrounding fundamental frequency briefly, since it is not the focus

of this thesis.

The conventional approach to modelling fundamental frequency is to use multi-space

distributions (Zen et al., 2009). A multi-space distribution is simply a mixture distribution

where the mixture components are defined over different dimensionalities of spaces. Note

that this means which mixture component generated a given sample is observed. If the

parameterized distribution for each mixture component is an exponential family and the

parameterized distribution which is responsible for deciding which mixture component to

use is an exponential family then the overall multi-space parameterized distribution is also

an exponential family. The model typically used for each frame of the F0 trajectory in stat-

istical parametric speech synthesis is a Bernoulli mixture of a Gaussian of dimensionality 0

and a Gaussian of dimensionality 1, which is therefore an exponential family. The interac-

tion between multi-space distributions and applying windows complicates both computing
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trajectory tuples during training and speech parameter generation to some extent (HTS

working group, 2012).

There are subtleties in how to deal with unvoiced frames during F0 generation. It is

not possible to generate the most likely F0 trajectory, since there is no concept of a most

likely value for a distribution defined over multiple spaces of differing dimensionalities. One

possibility is to first find the most likely sequence of voiced-or-unvoiced decisions then find

the most likely F0 trajectory given these decisions. Here by “most likely” we really mean

“maximum probability under the model used during training subject to constraints between

static and dynamic quantities”. For the first part of this process an approximate, heuristic

scheme is sometimes used, and for the second part standard speech parameter generation

can be used (HTS working group, 2012).

3.3 Making the standard framework probabilistic

The standard framework has two related conceptual problems. Firstly, in spite of the fact

that the standard HMM synthesis framework uses probabilistic modelling techniques such

as maximum likelihood and expectation maximization to do parameter estimation, and in

spite of the fact that it is viewed an instance of statistical parametric speech synthesis, it

does not in fact define a valid probabilistic model. Secondly the standard framework is

inconsistent in its enforcement of the constraints between static and dynamic trajectories,

ignoring these constraints during training but taking them into account at synthesis time. In

this section we describe these two problems in detail, and discuss one approach to resolving

them using a model known as the trajectory HMM (Zen et al., 2007b). We also touch on

some of the potential advantages of having a valid probabilistic model as a precursor to the

main discussion of this issue in §5.4.1. The issues surrounding the lack of consistency in

the standard framework were explored in a conference paper (Shannon et al., 2011).

3.3.1 Inconsistency in the standard framework

The standard HMM synthesis framework described in §3.2 is inconsistent in its enforcement

of the constraints between static and dynamic trajectories. The acoustic model used during

training ignores the relationship between static and dynamic trajectories, while the methods

used for speech parameter generation take this relationship into account. In this section we

examine some perspectives on this inconsistency. We focus on the case of a single trajectory

c = [Ctpi]
T
t=1 for some fixed portion p and vector component i. We make use of the concept

of a realizable subspace defined in §3.2.2.

The acoustic model used during training in the standard framework is defined as a

probabilistic model over the trajectory tuple o. It could be argued that it is a poor model
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of o, since it assigns significant probability mass away from the realizable subspace, and

does not assign as much probability mass as it should to the realizable subspace. Indeed

strictly speaking the model assigns a probability of zero to the realizable subspace, which

may be viewed as problematic since the realizable subspace is the set of everything that

could possibly happen! Another way to express the fact that this model is a poor model of

o is to note that it would be trivial to beat it in a competition where the goal was to achieve

the highest TSLP score over o. For example any fixed Gaussian distribution defined over

the realizable subspace has a TSLP over o of +∞, and a fixed Gaussian distribution with

probability mass concentrated in a “thin” slice around the realizable subspace can achieve

arbitrarily large TSLP values.

Alternatively the acoustic model used during training in the standard framework may

be viewed as an unnormalized model over the trajectory c. If we consider P(o | θ, λ) as a

function of o, then substitute o = o(c), we obtain a function

“P”(c | θ, λ) = P(o = o(c) | θ, λ) (3.36)

=
∏
d

NNP(Wdc; b
win
d , Pwin

d ) (3.37)

which assigns a weight to each trajectory c, where bwin
d and Pwin

d depend on θ and λ. Here

we have used the suggestive notation “P” to indicate a quantity we would like to treat as a

probability but is in fact just an unnormalized weight function. The integral of this weight

function with respect to c is not necessarily 1: in general if we take a Gaussian pdf and re-

strict to a subspace, the integral over the subspace (using some particular parameterization

of the subspace) may be greater or less than 1.

The above considerations show that the acoustic model used during training in the

standard framework may be viewed either as a probabilistic model over a quantity we do

not directly observe and which places its probability mass on unrealizable possibilities, or

as an unnormalized model over the quantity we (treat as if we) do observe.

The standard speech parameter generation algorithm optimizes a utility function, and

so is not explicitly probabilistic, but it may be interpreted as maximum probability speech

parameter generation in a probabilistic model. For example we may treat the quadratic

function A(c) optimized by the standard speech parameter generation algorithm as the

log probability density function, up to a constant, of a Gaussian distribution over c. This

Gaussian has natural parameters b and P from (3.29) and (3.30). The probabilistic model

P(c | θ, λ) so obtained is the same as that obtained by making (3.36) a valid probability

distribution by adding the appropriate normalization constant. It is known as the trajectory

HMM acoustic model, and is described more explicitly below. While the above is perhaps

the most natural way to interpret standard speech parameter generation as maximum

probability speech parameter generation in some probabilistic model, it is not the only
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way. For example if we apply an overall scale factor k > 0 to both b and P then the

optimum of the utility function A(c) is in the same place, and so the standard speech

parameter generation algorithm may also be interpreted as maximum probability speech

parameter generation in the probabilistic model where the Gaussian distribution over c

has natural parameters kb and kP . Indeed strictly speaking standard speech parameter

generation may be regarded as maximum probability speech parameter generation in any

probabilistic model P(c | θ, λ) which has a maximum at P−1b. Because the trajectory HMM

acoustic model seems in some sense the most natural of these alternatives, we refer to it

as the probabilistic model effectively used by standard speech parameter generation. Since

standard speech parameter generation and parameter generation considering global variance

are the two most commonly used speech parameter generation methods, and both are based

on A(c), we also refer to the trajectory HMM acoustic model as the probabilistic model

effectively used at synthesis time by the standard framework.

The fact that the acoustic model used during training is defined over the wrong quantity,

or alternatively is defined over the correct quantity but unnormalized, means that strictly

speaking the probabilistic justification for the training process described in §3.2.3 does not

apply, i.e. there is no guarantee that the probabilistically-motivated training procedure will

do anything sensible from the point of view of how we use the model for parameter genera-

tion. However it is an interesting question to what extent the standard training procedure

does in fact still do something useful for parameter generation. The practical consequences

of the lack of normalization in the standard training procedure will be examined further

in §5.4.1. As we will see it gets some things right, e.g. the mean trajectory it learns is

reasonable, and some things wrong, e.g. the model is greatly over-confident, with much too

small predictive variance.

3.3.2 Trajectory HMM

The trajectory HMM (Zen et al., 2007b) takes the probabilistic model effectively used at

synthesis time by the standard framework and uses it at both training time and synthesis

time. It is thus a consistent and normalized model, and has been shown to yield more

natural synthesized speech than the standard framework (Zen et al., 2007b). In this section

we outline how the trajectory HMM may be used for statistical parametric speech synthesis.

As discussed in §3.3.1, the trajectory HMM acoustic model is a trajectory-level acoustic

model obtained by normalizing (3.36). For clarity we write out the model explicitly. Given

a state sequence θ = [θt]
T
t=1 we say a trajectory c = [ct]

T
t=1 is distributed according to the
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trajectory HMM acoustic model with parameters λ = ([bqd, τqd]q,d, [wdk]d,k, q) if

c | θ, λ ∼ NNP(b, P ) (3.38)

where b =
∑
d

Wd
Tbwin
d (3.39)

P =
∑
d

Wd
TPwin

d Wd (3.40)

bwin
d =

[
bq(θt)d

]T
t=1

(3.41)

Pwin
d = diag

([
τq(θt)d

]T
t=1

)
(3.42)

(Wd)st = wd(t−s) (3.43)

The model parameters λ consist of the b-value parameter bqd and precision parameter τqd for

each cluster q ∈ {1, . . . , Q} and window d ∈ {0, . . . , D−1}, the window coefficients [wdk]d,k,

and a function q specifying a partition of state space. Note that while the model parameters

are the same as for the standard framework (for a given portion p and vector component

i), they do not have the same meaning, e.g. τqd is not the inverse variance of otd whenever

θt = q. We typically restrict the precision parameter τqd to be non-negative. Some authors

further restrict the precision parameter to have a finite minimum and maximum possible

value (Zhang, 2009). For simplicity we have assumed zero-input windows, but it is possible

to use any type of window with the trajectory HMM acoustic model by replacing (3.43)

with the appropriate definition of the window matrix Wd. The log pdf of the trajectory

HMM acoustic model is, up to a constant, given by A(c) = −1
2c

TPc + bTc, and the log

normalization constant which makes this a valid distribution is given by (2.30). Since the

normalization constant depends ultimately on θ and λ, we often write it as Z(θ, λ). Due

to the log detP and bTP−1b terms in (2.30), the way that logZ(θ, λ) depends on the state

sequence θ and the parameters λ is complicated.

In case it is helpful to the reader, a factor graph (Bishop, 2006) which describes the

trajectory HMM acoustic model is shown in Figure 3.9. In factor graphs such as Figure 3.9,

each large circle represents a random variable and is shaded if the variables is observed or

unshaded if it is latent. Each square represents a multiplicative factor in the density function

describing the probability distribution over all random variables. Each factor is a function

of some subset of the random variables as indicated by the edges emanating from it. A

small black circle represents variables which are conditioned on. Conventionally a factor

graph has no conditioned-on variables and any global normalization factor is not shown.

We have shown Z in Figure 3.9 for clarity since there are conditioned-on variables.

The trajectory HMM is the combination of a Markovian state transition model P(θ |
l, ν), for example the same Gaussian state transition model used by the standard HMM

synthesis framework, with an acoustic model P(C | θ, λ) obtained by using the trajectory
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θ1 θ2 θ3 θ4 θ5

Z

c0 c1 c2 c3 c4 c5 c6

Figure 3.9: A factor graph which describes the trajectory HMM acoustic model with left
extent KL = 1 and right extent KR = 1. Here the state sequence θ = θ1:5 is conditioned
on and the trajectory c = c1:5 is observed. The values c0 and c6 are deterministic acoustic
context, equal to zero when using zero-input windows. The factor Z is a normalization
constant. Each factor also depends on the model parameters λ (not shown).

HMM acoustic model for [Ctpi]
T
t=1 for each portion p and vector component i. Thus the

parameters of the acoustic model are the same as for the acoustic model used during training

by the standard HMM synthesis framework, but it is defined over the speech parameter

sequence C instead of the observation sequence O. Note that the despite the fact we use

the term trajectory HMM for simplicity, it is not in fact an HMM, due to the non-factorized

dependence of P(C | θ, λ) on the state sequence θ.

Parameter estimation for the trajectory HMM is more complicated than for the stand-

ard framework for two reasons. Firstly the posterior distribution P(θ |C, ν, λ) over the state

sequence θ does not factorize across time as a product of the form
∏
t ft(θt−1, θt) as P(θ |

O, ν, λ) did for the standard framework. This is due to the normalization constant Z(θ, λ),

which has a complicated non-factorized dependence on the state sequence. This means

that the conventional forward-backward and Viterbi algorithms are not applicable to the

trajectory HMM. In practice a plausible state sequence θ for each utterance in the training

corpus is typically recovered using a delayed-decision Viterbi algorithm (Zen et al., 2007b)

or using the conventional Viterbi algorithm with a standard framework system. Parameter

estimation given a fixed state sequence is also more complicated for the trajectory HMM

acoustic model than in the standard framework, and again this is because of the normal-

ization constant Z(θ, λ), which depends on the parameters λ in a complicated way. An

analytic solution exists for computing the maximum likelihood b-value parameters [bqd]q,d

given the precision parameters [τqd]q,d (Zen et al., 2007b). This is usually framed in terms of

computing the mean parameters [bqd/τqd]q,d, which is an equivalent problem. The precision

parameters [τqd]q,d are typically optimized using a gradient ascent method such as L-BFGS

or the truncated Newton method (Nocedal and Wright, 2006). The analytic solution for the
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b-value parameters involves constructing and inverting a near-full (QD) × (QD) matrix,

and so for models with many parameters gradient ascent is typically used for both sets

of parameters (Zen et al., 2007b). Computing the gradient of the tricky terms log detP

and bTP−1b with respect to the model parameters may be done efficiently by exploiting the

banded structure of P , allowing the overall gradient to be computed in O(T ) time.

We wish to highlight one aspect of the gradient computation which we believe may not

be widely appreciated. Computing the gradient of the log detP term involves computing

the band of the inverse of the banded matrix P . This can be done by first computing the

inverse and then extracting the band, but this is an expensive operation, and there are a

number of O(T ) approaches. The approach we favour is using the Cholesky decomposition

of P to find an equivalent composite linear Gaussian autoregressive distribution as described

in §2.2.5, then using the simple recursions for the covariance of a composite linear Gaussian

distribution presented by Bishop (2006, section 8.1.4). Hutchinson and de Hoog (1985,

section 3) give explicit recursions for this approach, provide links to other approaches

for solving this problem, and mention how this approach is related to a more general

approach for computing what are sometimes called sparse inverses due to Takahashi. The

band of the inverse of P can also be computed by formulating the problem as a Kalman

smoothing problem. The required submatrices along the band of the covariance matrix are

then computed as part of many smoothing algorithms, for example Rauch-Tung-Striebel

smoothing (Rauch et al., 1965).

We have seen that the normalization constant for the trajectory HMM is the source of

both of the difficulties involved in training. Having a difficult normalization constant is a

general feature of undirected graphical models (Bishop, 2006), which define a probability

distribution by globally normalizing a product of potential functions. The trajectory HMM

is not an undirected graphical model, since the normalization is not global but rather

conditional on θ, but the normalization constant is complicated for the same reason: we are

normalizing a product of potential functions. In contrast, directed graphical models, which

are locally normalized, interact better with parameter estimation methods like expectation

maximization. We will see an example of a directed graphical model with simple and

tractable parameter estimation in Chapter 4.

For speech parameter generation, the trajectory HMM can re-use the approaches de-

scribed above for the standard framework. We can do maximum probability speech para-

meter generation for the trajectory HMM acoustic model by simply using standard speech

parameter generation with the appropriate values of b and P . The most likely trajectory

is the mean trajectory µ = P−1b. Speech parameter generation considering global variance

can also be used with the trajectory HMM by using the appropriate values of b and P in

the definition of A(c) in (3.33).

There is a potential subtlety in applying parameter generation considering global vari-
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ance to normalized models such as the trajectory HMM. This discussion also applies to

the LGLAR HMM, which will be defined in Chapter 4. This turns out not to matter, but

here we explain the potential problem and why it is not an issue in practice. For parameter

generation considering global variance the GV weight ωGV in (3.33) needs to be chosen, and

prima facie the conventional setting ωGV = DT may not be appropriate for the trajectory

HMM or LGLAR HMM. Indeed since the standard HMM synthesis framework underestim-

ates predictive variance by around a factor of D (see §5.4.1), the “strength” or “dynamic

range” of the first term in (3.33) is around D times smaller when using the trajectory

HMM and LGLAR HMM than when using the standard HMM synthesis framework. It

might therefore be thought necessary to reduce the dynamic range of the second term in

(3.33) by using ωGV = T when using the trajectory HMM and LGLAR HMM. However,

as mentioned in §3.2.6, in practice the effect of using the conventional setting ωGV = DT

with the standard HMM synthesis framework is to restrict the GV of generated trajectories

to be very close to the mean µGV of the GV pdf; that is, the second term already has

much greater strength than the first term. Using the conventional setting ωGV = DT with

the LGLAR HMM and trajectory HMM does further increase the relative strength of the

second term, but the result is the same: generated trajectories have GV very close to µGV.

Thus the conventional approach to setting ωGV is appropriate for normalized models such

as the trajectory HMM and LGLAR HMM.

It is sometimes helpful to consider the trajectory HMM acoustic model as a product

of experts (Hinton, 2002; Zen et al., 2012). A product-of-experts model over a set Y is

defined by a collection [Fk]
K
k=1 of experts, where each expert Fk is a parameterized positive

function and the value Fk(y;λk) of expert k at y ∈ Y depends on the parameters λk of that

expert. The experts are combined to form a probabilistic model by taking their product

and normalizing, that is

P(y |λ) =
1

Z(λ)

∏
k

Fk(y;λk) (3.44)

where λ = [λk]k. Often Fk depends only on a low-dimensional projection of y, and thus

can be seen as representing a soft constraint on some aspect of y. The concept of a product

of experts is related to the concept of an exponential family but is more general, since

taking Fk(y;λk) = λkfk(y) recovers an exponential family. The trajectory HMM acoustic

model is a conditional product-of-experts model, where we normalize the product of a set

of parameterized functions of the trajectory c and the state sequence θ, conditional on θ.

Making up each distribution P(c | θ, λ) we have DT experts, one for each time t and window

d, and each expert is a log quadratic function of some low-dimensional projection of the

trajectory c. Note that each factor in Figure 3.9 corresponds to a collection of D experts.

The soft constraints these experts provide in the product-of-experts view of the trajectory

HMM acoustic model are precisely the soft constraints discussed in §3.2.4 in the context of
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standard speech parameter generation.

We mention in passing that the trajectory HMM is not the only valid probabilistic

model that bears a similarity to the standard HMM synthesis framework. It is also possible

to obtain a valid probabilistic model by normalizing at the level of the joint distribution

P(C, θ | l, ν, λ), instead of normalizing at the level of the conditional distribution P(C | θ, λ)

as we did for the trajectory HMM. This model supports efficient alignment, for example

using the Viterbi algorithm, but parameter estimation is even more complicated than for

the trajectory HMM. For speech parameter generation given a fixed state sequence, the

standard speech parameter generation algorithm can be used. This model also supports

an expectation maximization-based parameter generation algorithm which iteratively max-

imizes the marginal P(C | ν, λ) (Tokuda et al., 2000, case 3). A mild generalization of the

jointly normalized model is a conditional exponential family, and this model was derived

within a conditional maximum entropy framework and applied to speech recognition by

van Horn (2002).

3.3.3 Trajectory HMM acoustic model as a conditional exponential

family

The trajectory HMM acoustic model is a conditional exponential family. In this section

we specify this conditional exponential family using the terminology of §2.2.3 and discuss

some of the consequences of this perspective. This view provides a simple way to derive

several facts about the trajectory HMM acoustic model which we believe are not widely

appreciated: the conventional sufficient statistics used in the standard framework are also

sufficient for the trajectory HMM acoustic model when combined with the state sequence;

the log likelihood function is concave in a judiciously chosen parameterization and so has no

non-global local maxima in any parameterization; the trajectory HMM acoustic model has

a strong statistics-matching property; and the mean trajectory generated using a trajectory

HMM acoustic model also has a statistics-matching property.

The trajectory HMM acoustic model is a conditional exponential family with natural

parameters [bqd, τqd]q,d. The feature function corresponding to the b-value parameter bqd is

fqd(θ, c) =

T∑
t=1

I{q(θt) = q}(Wdc)t (3.45)

The feature function corresponding to the precision parameter τqd is

gqd(θ, c) = −1
2

T∑
t=1

I{q(θt) = q}(Wdc)
2
t (3.46)

These feature functions take the form of a window-specific and leaf-specific sum of trajectory

values and sum of squared trajectory values. A few more quantities need to be specified to
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properly define the conditional exponential family. The set in which c takes values (Y in

§2.2.3) is the set of all finite-length real-valued sequences. The set in which θ takes values

(X in §2.2.3) is the set of all finite-length Ψ-valued sequences, where Ψ is the state space.

We can set fqd(θ, c) and gqd(θ, c) to −∞ if θ and c are not the same length as a way to

ensure that the model only assigns positive probability to trajectories of the same length as

the state sequence. As mentioned above, the set of allowed model parameters (Ξ in §2.2.3)

is typically restricted to those model parameters for which all the precision parameters are

non-negative. This set is convex as required for a conditional exponential family.

We note in passing that forcing the precision parameters to be non-negative may be

an unnecessarily severe restriction. It is certainly true that for a given corpus there are

typically model parameters with some negative precision parameters which nevertheless

give rise to a positive definite P for all utterances in the corpus, but we do not know

whether it is possible to enlarge the set of allowed parameters while ensuring P is positive

definite for all, or some useful proper subset of all, state sequences.

The fact that the trajectory HMM acoustic model is a conditional exponential family

has two immediate consequences. Firstly the values (3.22), (3.23) and (3.24) (with O

obtained by applying the windows to C in the usual way) are no longer sufficient statistics

on their own, but are sufficient statistics together with the state sequence θ. This may

conceivably be used to simplify code implementing trajectory HMM training. Exploiting

this fact may also give a small computational speed-up, though the cost of the gradient

evaluations needed for training is likely to be dominated by the cost of computing the

Cholesky decomposition rather than the cost of computing the term involving the data.

Secondly the log likelihood is concave in the parameters [bqd, τqd]q,d. It is conceivable that

this concavity may be useful in performing parameter estimation, for example by allowing

the use of tools from convex optimization. Note that the concavity result depends on using

the natural parameterization. The concavity result also implies that, regardless of the

parameterization used, there are no local, non-global maxima in the log likelihood function

for the trajectory HMM acoustic model, and so we do not have to worry about training

getting stuck in such maxima.

The trajectory HMM acoustic model has a fairly strong statistics-matching property not

shared by the standard framework. Suppose a trajectory HMM acoustic model is trained

using maximum likelihood, and the estimated parameters lie in the interior of the space Ξ

of allowed parameters. The general discussion of statistics-matching for conditional expo-

nential families in §2.2.3 implies that the expected values of the statistics (3.22) and (3.23),

given the training corpus state sequences, will be equal to the values of these statistics

actually observed on the training corpus. Considering the whole training corpus as a single
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Figure 3.10: An example showing how the statistics-matching property can fail for certain
leaves. The log likelihood is shown as a function of the static precision parameter τq0 for
two leaves for a trained trajectory HMM acoustic model. The maximum likelihood value
subject to the constraint τq0 ≥ 0 is indicated by a circle. The statistics-matching property
(3.48) holds for leaf q if and only if the derivative with respect to τq0 is zero. This is the
case for leaf 3 but not for leaf 162.

long utterance with state sequence θ◦ and trajectory c◦, we have

E
∑

t:q(θ◦t )=q

(Wdc)t =
∑

t:q(θ◦t )=q

(Wdc
◦)t (3.47)

E
∑

t:q(θ◦t )=q

(Wdc)
2
t =

∑
t:q(θ◦t )=q

(Wdc
◦)2
t (3.48)

where the expectation is taken assuming the trajectory c is sampled from P(c | θ = θ◦, λ).

Thus, for a trajectory HMM acoustic model trained using maximum likelihood, if we take

the training corpus state sequence θ◦ and sample a corresponding trajectory c from the

trained model, the expected values of the leaf-specific and window-specific first and second

moments of c are equal to the corresponding moments of the actual trajectory c◦. The

above property only holds precisely on the training corpus but, assuming the training

corpus state sequences and speech parameter sequences are reasonably representative of

typical state sequences and speech parameter sequences, we might expect this property to

hold approximately on the test corpus too. This viewpoint helps to make clear the type of

statistical behaviour that is captured by the trajectory HMM acoustic model.

The statistics-matching property (3.48) may fail for certain leaves and windows. To

simplify the discussion here we assume that the likelihood function has a local maximizer,
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and so a global maximizer, though this is not always the case. Since the only constraints

on the parameters are τqd ≥ 0 for all q and d, we know that at a local maximum the partial

derivative of the likelihood function with respect to bqd must be zero, and the partial

derivative with respect to τqd must be zero if τqd > 0 and at most zero if τqd = 0. This

together with (2.45) implies that at a local maximum (3.47) will always hold, but that the

equality in (3.48) may sometimes become an inequality

E
∑

t:q(θ◦t )=q

(Wdc)
2
t <

∑
t:q(θ◦t )=q

(Wdc
◦)2
t (3.49)

if τqd = 0. An example of such a failure is shown in Figure 3.10.

The statistics-matching property described above is expressed in terms of sampled tra-

jectories, but it also tells us something about the mean trajectory. Since expectation is

linear and Ex2 ≥ (Ex)2 for any random variable x, we have∑
t:q(θ◦t )=q

(Wdµ)t =
∑

t:q(θ◦t )=q

(Wdc
◦)t (3.50)

∑
t:q(θ◦t )=q

(Wdµ)2
t ≤

∑
t:q(θ◦t )=q

(Wdc
◦)2
t (3.51)

where µ = Ec is the mean trajectory for state sequence θ◦. These equations always hold

at an exact local optimum in the likelihood function, even if τqd = 0 for some leaves and

windows. Thus the mean trajectory generated from the training corpus state sequence has

the same leaf-specific and window-specific first moments as the training corpus trajectory,

but typically has smaller second moments.

3.3.4 Sampling parameter generation

The use of a valid probabilistic model allows a form of speech parameter generation which

was not possible for the unnormalized standard framework: given a trajectory-level acoustic

model P(c | θ, λ), we can generate a trajectory c by sampling from the distribution over c.

We refer to this as sampling parameter generation. In this section we describe how this

form of speech parameter generation may be implemented efficiently for models with banded

precision matrix such as the trajectory HMM acoustic model. We also briefly discuss some

of the advantages and disadvantages of sampling parameter generation compared to other

forms of speech parameter generation.

Sampling parameter generation involves little extra work over standard parameter gen-

eration. We saw in §3.2.4 that it is possible to compute the mean trajectory µ = P−1b of

a Gaussian distribution with natural parameters b and P by computing L−TL−1b where L

is the conventional Cholesky factor of P . To sample a trajectory from this distribution, we

can first sample a T -dimensional vector z from N (0, I) and then compute L−T(L−1b+ z).
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3.4. Evaluation for statistical speech synthesis

Thus sampling a trajectory has the same computational complexity as computing the mean

trajectory. The trajectory HMM acoustic model P(c | θ, λ) is a Gaussian distribution with

b-value b and banded precision matrix P , and so we can sample a trajectory efficiently using

the above procedure. If we independently sample a trajectory [Ctpi]
T
t=1 for each portion p

and vector component i, then we obtain a sampled speech parameter sequence C from the

overall acoustic model P(C | θ, λ) used by the trajectory HMM.

We note in passing that it is also possible to perform duration generation using sampling.

For typical duration models we can sample a sequence d of durations by sampling the

duration djs of each (label, sublabel) pair (lj , s) independently. If we sample from P(θ |
l, ν) by sampling d in this way, convert this to a state sequence θ, then sample a speech

parameter sequence C given this state sequence, we obtain a sample from the marginal

distribution P(C | l, ν, λ). Sampling interacts well, and extremely tractably, with this type

of marginalization.

Doing generation by sampling is an attractive idea from a theoretical perspective. As

mentioned in §2.1, maximum likelihood estimation assumes that the training corpus was

generated by sampling. In the case of statistical parametric speech synthesis we assume the

human speaker generated the speech parameter sequence C for each utterance by sampling

from some true distribution P(C | l) given the label sequence l. Thus doing generation by

sampling is more consistent with the assumption that our goal is to mimic the original

human speaker than doing generation using the approaches presented previously. We will

discuss some additional desirable properties of sampling parameter generation in §6.5.

Sampling parameter generation is also potentially a useful diagnostic tool. Listening to

what the model expects to hear can shed light on the deficiencies of the model and suggest

ways to improve it. In practice sampling trajectories from current normalized models such

as the trajectory HMM results in poor synthesized speech with a characteristic warbling

effect (Shannon et al., 2011). This points to a major deficiency in the trajectory HMM

acoustic model, or rather in the speech parameter-level acoustic model obtained by using

a separate trajectory HMM acoustic model for each portion and vector component, but we

do not investigate this further in this thesis.

3.4 Evaluation for statistical speech synthesis

Speech synthesis systems can be evaluated in a variety of ways. A subjective evaluation

assesses speech synthesis systems based on the preferences of human listeners, and these

preferences are typically obtained by explicitly eliciting judgements about some aspect

of the quality of the synthesized speech. An objective evaluation assesses speech synthesis

systems using an automated metric. Subjective evaluations are typically the gold standard,

but objective evaluations can be useful for making a large number of comparisons, building

65



3. Speech synthesis

systems, and investigating the strengths and weaknesses of different systems.

For the subjective evaluations in this thesis we use naturalness as judged by human

opinion scores following the methodology of the Blizzard Challenge (Black and Tokuda,

2005). A naturalness opinion score is a judgement of how natural a given segment of

audio is on a Likert scale from 1 (completely unnatural) to 5 (completely natural). Human

judgements for the systems to be compared are elicited as part of a listening test. Each

listener is presented with the audio for one utterance at a time, and the order of utterances

is fixed but the system which a listener hears for a given utterance is based on the group

that listener is assigned to when agreeing to take part in the listening test. The order

of systems presented to the different listener groups is typically determined using a Latin

square design (Bennett and Black, 2006). We used native English-speaking listeners (though

not necessarily British) for all the subjective evaluations reported in this thesis.

In the remainder of this section we describe the two metrics we use for objective eval-

uation: test set log probability (TSLP), as defined in §2.1.4, and mel cepstral distortion

(MCD). The two metrics provide complementary views of a model. TSLP is a natural

measure of how well a model predicts unseen frames, and achieving a high TSLP requires

a model to have both accurate mean trajectories and accurate trajectory covariances. It

also allows us to detect overfitting. MCD, which depends only on the mean trajectories,

provides useful information about the accuracy of the mean trajectories independent of the

trajectory covariances.

3.4.1 Test set log probability

Test set log probability (TSLP) is the log probability a trained model assigns to an unseen

test corpus, as defined in §2.1.4. Since the statistical model P(C | l, ν, λ) used in statistical

parametric speech synthesis is a sequential model, we follow the notational convention

described in §2.5 and assume the test corpus consists of a single utterance. The TSLP is

given by

logP(C∗ | l∗, ν, λ) (3.52)

where C∗ is the test corpus speech parameter sequence, l∗ is the test corpus label sequence,

and ν and λ are collections of model parameters that have been estimated from the training

corpus, typically using maximum likelihood estimation. We quote TSLP values in nats per

frame.

3.4.2 Mel cepstral distortion

Mel cepstral distortion (MCD) (Kubichek, 1993) is a measure of the difference between a

synthesized mel cepstral sequence and the corresponding natural mel cepstral sequence. We
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use a form of MCD based on dynamic time warping (DTW). Define

MCD(Cnat, Csynth) =
1

T nat

10

log 10
min
π∈Π

∑
(s,t)∈π

(
2

I1−1∑
i=1

(
Cnat
t1i − Csynth

t1i

)2
)0.5

(3.53)

where Cnat = [Cnat
tpi ]t,p,i and Csynth = [Csynth

tpi ]t,p,i are the natural and synthesized speech

parameter sequences, [Ct1i]
I1−1
i=0 is the spectral portion of the speech parameter sequence C

at frame t, T nat is the number of frames in the natural speech parameter sequence, π ⊂ N×N
is a relation between frames in the natural and the synthesized speech parameter sequences,

and Π is the set of admissible relations. A relation π ⊂ N × N is admissible if there is a

sequence [sp, tp]
P
p=1 such that (s1, t1) = (1, 1), (sP , tP ) = (T nat, T synth), (sp+1 − sp, tp+1 −

tp) is either (0, 1), (1, 0) or (1, 1) for p = 1, . . . , P − 1, and the sets {(sp, tp) : p} and

π are equal. The minimum over admissible relations may be computed efficiently using

dynamic programming. The unit of the right side of (3.53) is conventionally considered to

be the decibel (dB). Note that it is standard to omit 0th cepstral component from the MCD

computation as is done in (3.53) (Kubichek, 1993). Given a test corpus (l∗, C∗), we compute

the MCD score for a given trained model by taking Cnat to be the test corpus speech

parameter sequence C∗ and taking Csynth to be the speech parameter sequence obtained

by applying standard speech parameter generation to the test corpus label sequence l∗.

3.5 Experimental set-up used in this thesis

In this section we discuss aspects of experimental set-up that are shared by many of the

experiments in the remainder of the thesis. The LGLAR HMM, which is used for some of

the systems below, will be described in Chapter 4.

The systems were trained on the CMU ARCTIC corpus (Kominek and Black, 2003) for

the single speaker “slt” (approximately 1 hour), with 50 held-out utterances.

The original waveforms had a sampling frequency of 16 kHz. The spectral portion of

the speech parameters consisted of 40-dimensional mel cepstra (mcep) (Fukada et al., 1992)

with frequency warping factor α = 0.42, the fundamental frequency portion of the speech

parameters consisted of logF0, and the aperiodicity portion of the speech parameters con-

sisted of 5-band aperiodicity (Zen et al., 2007a). We used STRAIGHT vocoding (Kawahara

et al., 1999). A frame shift of 5 ms was used, and F0 was estimated using STRAIGHT (min

80 Hz, max 350 Hz).

All types of system used a 5-sublabel (by default) left-to-right topology for modelling

at the phoneme level, with Gaussian explicit duration models for each sublabel used during

both parameter estimation and synthesis (Zen et al., 2007c). We made a minor modification

to HTS to ensure explicit duration distributions are properly normalized wherever they are
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used, though the M step re-estimation equations were not modified. In the standard version

of HTS these distributions are not fully normalized due to the fact a Gaussian pdf is being

used for a random variable with range the positive integers.

For the autoregressive systems the spectral and aperiodicity portions of the speech

parameters were modelled using the LGLAR HMM, with a depth of 3 and an MDL tuning

factor of 0.3 by default. These values were chosen based on preliminary experiments and the

effect of these choices is investigated in detail in §4.4. For the standard system these portions

of the speech parameters were modelled using the standard HMM with the conventional

three windows (HTS working group, 2012), a single Gaussian with diagonal covariance

per sublabel, and an MDL tuning factor of 1.0. For all systems the F0 portion of the

speech parameters was modelled using standard multi-space distributions (Tokuda et al.,

2002a) with the conventional three windows (HTS working group, 2012) and an MDL

tuning factor of 1.0. This means that even the autoregressive systems suffer from some

inconsistency between training and synthesis since the F0 portion of the speech parameters

is still modelled using the inconsistent standard approach. It is possible to model F0 using

the autoregressive HMM. Perhaps the most natural approach would be to use a continuous

F0 model such as that used by Yu (2011), though more complicated approaches would also

fit naturally within the autoregressive framework. Investigation of these further departures

from the standard approach is left for future work.

The standard and autoregressive systems were built using HTS 2.1 (HTS working group,

2012). The training regime was adapted from the HTS speaker-dependent training demo

(HTS working group, 2012), with initialization of a monophone model based on initial

phone-level alignments derived from a monophone speech recognition-style system followed

by expectation maximization on the monophone model, decision tree clustering, expectation

maximization on the resulting full-context model, another round of decision tree clustering,

and further expectation maximization. For the standard systems, the band aperiodicity

portion of the speech parameters was ignored during the E step of expectation maximization

following standard practice of the HTS demo, whereas for the autoregressive systems all

portions were taken into account during the E step.

The trajectory HMM system took the trained standard system as a starting point, and

re-estimated the spectral leaf parameters based on a fixed alignment. The trajectory HMM

training was kindly performed by Heiga Zen, then at Toshiba Research Europe.

By default the synthesized trajectories for all systems were produced using parameter

generation considering global variance (Toda and Tokuda, 2007).
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3.6 Summary of contributions

While this chapter is mainly an overview of previous work, there are some novel contri-

butions. Most notable is the realization that the trajectory HMM acoustic model is a

conditional exponential family, implying that the log likelihood function is concave in a

particular parameterization and has no non-global local maxima in any parameterization,

and that both sampled trajectories and the mean trajectory match certain leaf-specific

statistics (§3.3.3).

Minor novel contributions of this chapter include: the realization that the discrete

Gaussian could be used for duration modelling and could re-use the sufficient statistics used

currently (§3.1.4); an appreciation that maximum probability speech parameter generation

is not even defined in the case of multi-space distributions (§3.2.7); the realization that it

is possible to use algorithms which compute the band of the inverse of a banded matrix in

order to compute the gradient of the log likelihood function for the trajectory HMM acoustic

model in linear time (§3.3.2); an explanation of why the GV weight used during parameter

generation considering global variance does not need to be adjusted for normalized models

such as the trajectory HMM and LGLAR HMM (§3.3.2); the realization that the jointly

normalized model considered by van Horn (2002) supports EM-based parameter generation

(§3.3.2); and an appreciation that sampling speech parameter generation is a potentially

useful diagnostic tool (§3.3.4).
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Chapter 4

Autoregressive HMMs

We saw in Chapter 3 that the standard HMM synthesis framework is able to capture aspects

of the dynamic information present in speech parameter sequences in a simple and tractable

way. However this approach is inconsistent, and directly removing this inconsistency using

the trajectory HMM complicates parameter estimation. In this chapter we will see how

an extension of the conventional HMM known as the autoregressive HMM provides an

alternative way to capture aspects of the dynamics of speech parameter sequences.

The layout of this chapter is as follows. We first describe the autoregressive HMM as a

probabilistic model. We then discuss how to use a specific form of autoregressive HMM, the

linear Gaussian linear autoregressive HMM (LGLAR HMM), to model speech parameters.

The LGLAR HMM uses the linear Gaussian linear regression model described in §2.2.4 as a

component in a larger sequential model. We show that the LGLAR HMM: supports efficient

parameter estimation using expectation maximization and decision tree clustering; supports

existing high quality speech parameter generation methods such as parameter generation

considering global variance; and supports a simple and exact time-recursive form of speech

parameter generation that is not available for the standard HMM synthesis framework or

the trajectory HMM and which may be used for low latency parameter generation. We

also discuss a potential pathology with the LGLAR HMM whereby generated trajectories

can diverge far outside the range of values which might be considered reasonable. The

LGLAR HMM, like the standard HMM synthesis framework, has certain parameters such

as MDL tuning factor that are set by the experimenter, and we investigate how to set the

values of these model structure parameters experimentally. Finally we evaluate the LGLAR

HMM for statistical parametric speech synthesis by comparing it to the standard HMM

synthesis framework and the trajectory HMM in subjective and objective evaluations. We

find that the LGLAR HMM is capable of producing speech that is as natural as that of the

standard HMM synthesis framework with its conventional settings, but not as natural as

the trajectory HMM.
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x1 x2 x3 x4 x5 x6

θ0 θ1 θ2 θ3 θ4 θ5 θ6

y1 y2 y3 y4 y5 y6

Figure 4.1: A directed graphical model for an input output HMM where the observed
variables, but not the state variables, depend on the input. Here x = x1:6 is the input
sequence, θ = θ1:6 is the state sequence, and y = y1:6 is the sequence of observations. The
value θ0 is a deterministic initial state. Nodes also depend on the model parameters ν and
λ (not shown). The model is a conditional model of the hidden θt values and the observed
yt values given the xt values.

4.1 Autoregressive probabilistic modelling

In this section we describe the input output HMM and autoregressive HMM, which are

both generalizations of the conventional HMM. The input output HMM serves as a use-

ful conceptual intermediary between the conventional HMM and the autoregressive HMM

since it has similarities to both models. This section reviews the basic properties of the

autoregressive HMM as a probabilistic model. Its application to speech will be described

in §4.3.

4.1.1 Input output HMMs

There is a slight generalization of the HMM where the sequence of observations depends

on an input sequence. Consider a probabilistic model P(y, θ |x, ν, λ) over an observation

sequence y = [yt]
T
t=1 given an input sequence x = [xt]

T
t=1 with a latent state sequence

θ = [θt]
T
t=1 as for the HMM, where

P(y, θ |x, ν, λ) =
T∏
t=1

P(yt | θt, xt, λ)P(θt | θt−1, ν) (4.1)

As for the HMM we assume there is some deterministic initial state θ0. Dependence on

the input sequence x is what distinguishes the input output HMM from the conventional

HMM given by (2.89). The graphical model (4.1) is also shown in Figure 4.1. The class of

probabilistic models given by (4.1), as well as the more general class of models where the

state also depends on the input, is known as the input output HMM (Bengio and Frasconi,

1995; Bishop, 2006). The Viterbi and forward-backward algorithms may be applied to the
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θ0 θ1 θ2 θ3 θ4 θ5 θ6

y−1 y0 y1 y2 y3 y4 y5 y6

Figure 4.2: A directed graphical model for an autoregressive HMM of depth 2. Here
θ = θ1:6 is the state sequence and y = y1:6 is the sequence of observations. The value θ0

is a deterministic initial state, and the values y−1 and y0 constitute a deterministic initial
context for the observation sequence. Nodes also depend on the model parameters ν and λ
(not shown). We consider θt hidden and yt observed.

input output HMM since P(y, θ |x, ν, λ) factorizes with respect to the state sequence θ in

the same way as for the conventional HMM.

A particular form of input output HMM is obtained by taking the distribution P(yt |
θt, xt, λ) to be a linear regression model (described in §2.2.4) with parameters depending

on the cluster index q = q(θt) of the current state θt, where q is a clustering function. Since

the linear regression model is a conditionally additive exponential family it has sufficient

statistics. This means that the above form of input output HMM supports tractable ex-

pectation maximization and decision tree clustering using the same approach used for the

conventional HMM in §2.5.2 but with accumulators appropriate for the linear regression

model instead of those appropriate for an exponential family. This model was perhaps

first described by Goldfeld and Quandt (1973), with the first derivation of expectation

maximization for parameter estimation given by Lindgren (1976, 1978).

4.1.2 Autoregressive HMMs

The autoregressive HMM (Wellekens, 1987; Bilmes, 2004; Bishop, 2006) extends the con-

ventional HMM to explicitly take into account correlations over time in the observation

sequence. It does this by using previous values of the observation sequence yt−K:t−1 as the

input xt for an input output HMM. Thus the autoregressive HMM is a probabilistic model

P(y, θ | ν, λ) =
T∏
t=1

P(yt | yt−K:t−1, θt, λ)P(θt | θt−1, ν) (4.2)

where the non-negative integer K is referred to as the order or depth of the model, and

we assume there is some deterministic initial observation context y−(K−1):0. The graphical

model (4.2) in the case K = 2 is also shown in Figure 4.2. If each factor P(yt | yt−K:t−1, θt, λ)

is linear Gaussian in y then we refer to the model as a linear Gaussian autoregressive HMM.

Note that the conventional HMM is an autoregressive HMM with depth 0.
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By using the observed values in the recent past as context for a regression model pre-

dicting the current observed value, the autoregressive HMM provides a simple way to turn

a sequence modelling problem into a finite-dimensional regression problem. In principle

it is very flexible since almost any regression model can be used for P(yt | yt−K:t−1, θt, λ),

though parameter estimation may be more complicated if this regression model does not

have finite-dimensional sufficient statistics.

As in the case of the input output HMM, the Viterbi and forward-backward algorithms

may be applied to the autoregressive HMM, since P(y, θ | ν, λ) factorizes with respect to

the state sequence θ in the same way as for the conventional HMM. The existence of this

factorization follows from the fact that the extra dependencies in the autoregressive HMM

directed graphical model are on observed, not latent, variables.

In the case where we take the distribution P(yt | θt, xt, λ) to be a linear regression model

with parameters depending on the cluster index q = q(θt), the autoregressive HMM has

sufficient statistics and allows efficient parameter estimation using expectation maximiza-

tion and decision tree clustering in precisely the same way as for the input output HMM.

This model appears to have first been described explicitly in a technical report by Lindgren

(1976), though Goldfeld and Quandt (1973) did consider a restricted form of autoregres-

sion. It was subsequently described to the automatic speech recognition community by

Wellekens (1987) and Brown (1987), and to the econometrics community in an influential

paper by Hamilton (1989). Lindgren (1976), Wellekens (1987) and Brown (1987) describe

the use of expectation maximization for parameter estimation in this model.

The fixed initial context y−(K−1):0, which is shared across all utterances, may in principle

be learned from data using maximum likelihood. However for the experimental systems

described in this thesis we set each value in the initial context either to zero or to the

average of the first observed value in all utterances in the training corpus. Specifying this

initial context is necessary to define P(yt | yt−K:t−1, θt, λ) for t ≤ K.

We note in passing that the restriction to finite depth K is not by itself essential for

tractable inference and learning. For example it would be easy, and require very little

extra computation, to do parameter estimation in a model where one of the basis functions

used by the linear regression model was the average of all past observations in the current

utterance, or the variance of these past values.

4.2 Autoregressive linear filters

In this section we describe some of the theory of time-invariant autoregressive linear filters.

This theory will be related to the autoregressive HMM in §4.3.3 and §4.3.4.

A time-invariant causal autoregressive linear filter is a linear function which takes a

real-valued input signal [xt]
T
t=1 and produces a real-valued output signal [yt]

T
t=1 according
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to the difference equation

yt =
K∑
k=1

akyt−k + xt (4.3)

where a = [ak]
K
k=1 is the set of autoregressive filter coefficients defining the filter, and it

is assumed that the initial context y−(K−1):0 is fixed. The assumption of initial or final

conditions is needed to ensure that (4.3) has a unique solution, and our choice to use initial

conditions means that the filter is causal (Oppenheim and Schafer, 1975).

If the input signal x is identically zero then it possible to analytically solve the difference

equation (4.3). The characteristic polynomial for the autoregressive filter coefficients a is

defined as

zK −
K∑
k=1

akz
K−k (4.4)

The characteristic polynomial has K complex roots [rk]
K
k=1, where non-real roots occur in

complex-conjugate pairs. Let R denote the magnitude of the largest-magnitude root, i.e.

R = maxk |rk|. We say the autoregressive coefficients a are stable if R < 1, i.e. if all the

roots of the characteristic polynomial have magnitude less than 1, and unstable otherwise.

If the K complex roots are all distinct then the general solution of yt =
∑K

k=1 akyt−k is

given by

yt =
K∑
k=1

Ikr
t
k (4.5)

where rtk is the tth power of rk, and the complex-valued vector I = [Ik]
K
k=1 depends on

the initial context y−(K−1):0. The output y is thus a linear combination of exponential-

times-sinusoids: for a real root rk the contribution to the output y is proportional to [rtk]t,

and for a complex-conjugate pair (rk, rl) of roots the contribution to the output y is pro-

portional to [|rk|t sin(ωkt + ϕk)]t for some ωk, ϕk ∈ R. If |rk| < 1 then the corresponding

exponential-times-sinusoid term converges to 0 as t→∞. If |rk| > 1 then the correspond-

ing exponential-times-sinusoid term diverges, i.e. fails to converge, as t → ∞, since the

exponential part of the term tends to∞ while the sinusoid part remains bounded. We refer

loosely to this type of divergence as exponential divergence. In this case Ikr
t
k also diverges

unless the initial conditions are such that Ik happens to be exactly 0. Thus the stability of

the autoregressive coefficients a determines the typical behaviour for large t: if a is stable,

i.e. |rk| < 1 for all k, then it can be shown that yt → 0 as t → ∞; if a is unstable then

typically yt diverges as t → ∞. The limit t → ∞ is never approached in practice since T

is finite, but exponentially diverging trajectories may still lead to inappropriate trajectory

values after a finite amount of time.

If the input x is constant instead of zero, then again yt typically diverges exponentially

if the autoregressive coefficients are unstable and converges to a finite value if the autore-
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gressive coefficients are stable. If the input x is white noise, then again yt typically diverges

exponentially if the autoregressive coefficients are unstable, and it converges to a limiting

distribution if the autoregressive coefficients are stable.

It is sometimes helpful to consider the time constant τ = 1/ logR associated with given

autoregressive coefficients a. The time constant is measured in number of frames, and

is negative for stable autoregressive coefficients. Since the behaviour of yt for large t is

dominated by terms involving roots of magnitude R, and Rt = exp(t/τ), the time constant

determines how many frames it typically takes for yt to converge by a given ratio if a is

stable or to diverge by a given ratio if a is unstable, in the limit of large t.

4.3 Autoregressive models for speech

In this section we describe how the autoregressive HMM may be used to model speech

parameter sequences. The layout of this section is as follows. We first describe the lin-

ear Gaussian linear autoregressive acoustic model (LGLAR acoustic model), which is a

trajectory-level acoustic model based on the linear Gaussian linear regression model de-

scribed in §2.2.4. We then describe an autoregressive HMM based on the LGLAR acoustic

model, which we term the linear Gaussian linear autoregressive HMM (LGLAR HMM),

which can be used to model speech parameter sequences. We then describe speech para-

meter generation for the LGLAR acoustic model, and discuss a potential pathology with

the LGLAR acoustic model which can in some cases lead to divergent trajectories. Fi-

nally we summarize previous work using the LGLAR HMM and related models for speech

processing.

The only autoregressive HMM we consider in detail in this thesis is the LGLAR HMM.

However we would like to note that, as discussed above, the autoregressive HMM approach

is very flexible, and there are many possibilities for applying more general forms of autore-

gressive HMM to modelling speech. For example, instead of modelling ct | ct−K:t−1, θt using

a linear Gaussian linear regression model as we do below, we could imagine using a Gaus-

sian process, a hierarchical mixture of experts, or a neural net where the outputs are the

parameters of a probabilistic model.

4.3.1 Linear Gaussian linear autoregressive acoustic model

In general we refer to a trajectory-level acoustic model P(c | θ, λ) which satisfies P(c | θ, λ) =∏
t P(ct | ct−K:t−1, θt, λ) as an autoregressive acoustic model. If P(ct | ct−K:t−1, θt, λ) is linear

Gaussian in c then we refer to it as a linear Gaussian autoregressive acoustic model. The

linear Gaussian linear autoregressive acoustic model (LGLAR acoustic model) is a simple

linear Gaussian autoregressive acoustic model based on the linear Gaussian linear regression
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model described in §2.2.4. The LGLAR acoustic model assumes

ct | ct−K:t−1, θt, λ ∼ N
(

K∑
k=1

aqkct−k + aq(K+1), σ
2
q

)
, t ∈ {1, . . . , T} (4.6)

where q = q(θt) (4.7)

λ =

([
[aqk]

K+1
k=1 , σ

2
q

]Q
q=1

, q

)
(4.8)

where q is a clustering function, and c−(K−1):0 is some deterministic initial acoustic context.

The [aqk]
K
k=1 are referred to as the autoregressive coefficients, and aq(K+1) is referred to as

the autoregressive bias. If a trajectory c = [ct]
T
t=1 given a state sequence θ = [θt]

T
t=1 is

distributed according to the LGLAR acoustic model we write

c | θ,
[
[aqk]

K+1
k=1 , σ

2
q

]Q
q=1

, q ∼ LGLAR

(
θ;
[
[aqk]

K+1
k=1 , σ

2
q

]Q
q=1

, q

)
(4.9)

The name is chosen because it is a linear Gaussian autoregressive acoustic model with a

linear regression model-style parameterization. In “linear Gaussian linear autoregressive”,

the first “linear” refers to the mean value in (4.6) being linear in the trajectory c, while the

second “linear” refers to it being linear in the autoregressive coefficients a.

4.3.2 Linear Gaussian linear autoregressive HMM

If the LGLAR acoustic model is used for each portion p and vector component i of the

speech parameters, and we use the Gaussian state transition model, then we obtain a

complete statistical model P(C | l, ν, λ) for the speech parameter sequence given the label

sequence:

θ | l, ν, qDUR ∼ GSTM

(
l;
[
µDUR
q , (σ2)DUR

q

]QDUR

q=1
, qDUR

)
(4.10)

[Ctpi]
T
t=1 | θ, λ ∼ LGLAR

(
θ;
[
[apqik]

Kp+1
k=1 , σ2

pqi

]Qp

q=1
, qp

)
,

{
p ∈ {1, 2, 3}
i ∈ {0, . . . , Ip − 1}

(4.11)

where ν =
([
µDUR
q , (σ2)DUR

q

]
q
, qDUR

)
(4.12)

λ =

[[
[apqik]

Kp+1
k=1 , σ2

pqi

]
q,i
, qp

]
p

(4.13)

This model is a linear Gaussian autoregressive HMM, and we refer to it as the linear

Gaussian linear autoregressive HMM (LGLAR HMM).

The LGLAR HMM is an autoregressive HMM with linear regressive distributions P(Ct |
Ct−K:t−1, θt, λ), and so supports efficient parameter estimation using expectation maximiz-

ation and decision tree clustering as described above. In general expectation maximization

and decision tree clustering are conceptually and implementationally quite similar for the
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LGLAR HMM and the standard framework, but we mention two differences in decision tree

clustering which are sometimes important. Firstly, when setting the clustering threshold ξ

using the MDL criterion, the default MDL tuning factor ρ = 1 is found empirically not to

be appropriate for the LGLAR HMM. In preliminary experiments we plotted the difference

between the log probability on the training corpus and the test corpus for an LGLAR HMM

system as the number of leaves was varied. If the penalized maximum likelihood objective

function considered in MDL theory was a good approximation then this might be expected

to give a straight line with slope 1
2K log R̃root. However the actual plot was approximately

a straight line with slope 0.3 times this, suggesting the use of ρ ≈ 0.3. We will see ex-

perimentally that this is indeed roughly the MDL tuning factor which gives the highest

TSLP value, and that using ρ = 1 gives decision trees which are much too small. However

we are not sufficiently familiar with MDL theory to be able to present this discrepancy as

anything other than an empirical finding. Secondly, for the Gaussian exponential family

without variance flooring, the maximum likelihood parameters together with the occupancy

can be used to recover the sufficient statistics, as we can see from (2.32) and (2.33). This is

not possible for the linear Gaussian linear regression model with K > 0, as can be seen by

considering the dimensionality of the sufficient statistics (2.52), (2.53), (2.54) and (2.55).

This is a general feature of a conditionally additive exponential family with non-trivial

interaction terms in the log normalization constant (2.47). This means that the sufficient

statistics themselves, and not re-estimated parameters together with occupancies, must be

used as the input to decision tree clustering for the LGLAR HMM. This is a relevant

consideration when implementing decision tree clustering for the LGLAR HMM in existing

software such as HTS.

We have assumed the trajectories for different portions and vector components are

conditionally independent given the state sequence, so that Ctpi explicitly depends only on

the recent past observations C(t−K:t−1)pi in the same portion p and vector component i. We

refer to this as the diagonal-covariance form of LGLAR HMM, and it is this form that we

will mainly consider in this thesis. However it causes no problem for inference or learning,

other than increasing the risk of overfitting, to allow Ctpi to explicitly depend on the

recent past observations in other portions and vector components or even on the present

observations Ctp(0:i−1) up to the given vector component. Allowing Ctpi to depend on

C(t−K:t−1)p(0:I−1) and on Ctp(0:i−1) is equivalent to using the full-covariance linear regression

model in §2.2.4 to predict the vector Ctp(0:I−1) from previous vectors C(t−K:t−1)p(0:I−1). We

refer to this as the full-covariance form of LGLAR HMM. It is also possible to use the

Gaussian acoustic model described in §3.2.1 for some portions p and vector components i,

and the LGLAR acoustic model for other portions and vector components, and efficient

inference and learning is possible using the same approaches we have described so far.
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4.3. Autoregressive models for speech

4.3.3 Speech parameter generation

In this section we study the form of distribution over trajectories used by the LGLAR

acoustic model in more detail. This view will be useful theoretically when we compare the

LGLAR HMM to existing models, and shows how existing speech parameter generation

algorithms such as parameter generation considering global variance may be applied to the

LGLAR HMM. We also describe how the LGLAR acoustic model supports efficient and

low latency parameter generation algorithms not available for the standard HMM synthesis

framework and the trajectory HMM.

Given a state sequence θ = [θt]
T
t=1, the LGLAR acoustic model defines a distribution

P(c | θ, λ) over the trajectory c = [ct]
T
t=1. Since each of the component distributions P(ct |

ct−K:t−1, θt, λ) is linear Gaussian, the overall distribution P(c | θ, λ) has the form of a com-

posite linear Gaussian autoregressive distribution as defined in §2.2.5. In this case (2.67)

becomes

ct =
K∑
k=1

aqkct−k + aq(K+1) + σqzt (4.14)

where q = q(θt), i.e. the parameters of the linear Gaussian distribution at frame t are the

parameters of the linear regression model for the corresponding leaf q = q(θt). Using the

results in §2.2.5, we can therefore see that c | θ, λ ∼ NNP(b, P ) for b = LTξ and P = LTL,

where the tth component of the vector ξ and the tth row of the banded lower triangular

matrix L are given by the parameters, in the ã parameterization, of the linear regression

model for the leaf q = q(θt). Thus for the LGLAR HMM, as for the standard HMM

synthesis framework and the trajectory HMM, b and P are easy to compute and P is

banded. This means that many existing speech parameter generation algorithms, including

standard parameter generation and parameter generation considering global variance, can

be used directly with the LGLAR HMM simply by passing the appropriate b and P to

these algorithms. As explained in §3.3.2, the conventional GV weight setting ωGV = DT is

appropriate for the LGLAR HMM.

The LGLAR HMM also supports an efficient and low latency form of speech parameter

generation not available for the standard HMM synthesis framework or the trajectory HMM.

Writing µ = Ec for the mean trajectory, we can see from (4.14) that for the LGLAR acoustic

model we have

µt =

K∑
k=1

aqkµt−k + aq(K+1) (4.15)

where q = q(θt). Thus the mean trajectory may be computed by a one-pass recursion for-

wards in time, applying (4.15) at each frame t = 1, 2, . . . , T in turn. We refer to this as the

autoregressive speech parameter generation algorithm. This algorithm has time complexity

O(TK), compared to O(TK2) for the standard Cholesky-based parameter generation al-
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gorithm described in §3.2.4. It is also low latency, since the first frame c1 may be computed

immediately, without having to wait for the result of any trajectory-level computation.

The practical advantages of this exact, low latency speech parameter generation algorithm

compared to the standard speech parameter generation algorithm are discussed in §5.4.3.

A similar one-pass recursion forwards in time can be used to sample a trajectory from P(c |
θ, λ). Specifically we use (4.14) at each frame t = 1, 2, . . . , T in turn, sampling zt ∼ N (0, 1)

as we go.

There is a close connection between the LGLAR acoustic model and time-varying

autoregressive linear filters. Given the definition of a time-invariant autoregressive lin-

ear filter in §4.2, one way to obtain a time-varying filter is to allow the filter coefficients in

(4.3) to vary with time, that is

yt =
K∑
k=1

atkyt−k + xt (4.16)

where the autoregressive filter coefficients at time t are [atk]
K
k=1. From (4.15) we can see

that the mean trajectory is obtained by passing a signal [aq(θt)(K+1)]
T
t=1 through a time-

varying autoregressive linear filter of the form (4.16) with autoregressive filter coefficients

[aq(θt)k]
K
k=1 at time t. Similarly from (4.14) we can see that a sampled trajectory is obtained

by passing a signal [aq(K+1) + σqzt]
T
t=1, where q is q(θt), through the same filter.

The above discussion applies to any linear Gaussian autoregressive HMM, including the

LGLAR HMM; in the case of an autoregressive HMM that is not linear Gaussian, there

are a few choices for speech parameter generation. It is still possible to use the algorithm

described above to exactly sample a trajectory, and this is efficient as long as the individual

component distributions P(ct | ct−K:t−1, θt, λ) support efficient sampling. In general it is

not possible to compute the mean trajectory or the most likely trajectory, which may be

distinct in the non-Gaussian case, analytically. However we can often obtain a reasonable

trajectory by using the same forwards recursion over time, at each frame picking the mean

or mode of P(ct | ct−K:t−1, θt, λ) given the part of the trajectory generated so far.

4.3.4 Divergent trajectories

The LGLAR acoustic model suffers from a potential pathology, whereby the mean trajectory

or sampled trajectories can diverge far outside the range of values which might be considered

reasonable. In this section we describe this potential pathology, outline what could be done

in principle to guarantee divergent trajectories do not occur, and explain why in practice

we do not make any adjustments to avoid divergent trajectories.

The notion of stability for time-invariant autoregressive linear filters described in §4.2

sheds some light on how divergent trajectories can occur for the LGLAR acoustic model.
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4.3. Autoregressive models for speech

As explained in §4.3.3, the mean trajectory or a sampled trajectory can be viewed as an

input signal passed through a time-varying autoregressive linear filter. Since the notion of

stability was defined for time-invariant filters and involved the large-time limit, it is not

directly applicable to the time-varying case where the autoregressive filter coefficients are

not constant. Nevertheless the above analysis indicates what type of behaviour we might

expect to see if the autoregressive coefficients [apqik]
Kp

k=1 for a given portion p, cluster index

q and vector component i are unstable. In this case, if the duration of a given segment of

frames with cluster index q is substantially greater than the time constant associated with

the autoregressive coefficients, then we would expect the mean trajectory or a sampled

trajectory to typically diverge substantially over the course of the segment, possibly to

the point where the trajectory value at the end of the segment is outside the range of

values which are plausible for that portion and vector component. Since the divergence

is exponential with time, the extent of the divergence can depend strongly on the exact

duration of the segment. The extent of divergence for a given segment also depends on the

initial trajectory values at the start of the segment. It should be noted that trajectories

generated by a learned autoregressive model can diverge far outside the range of values

occurring in the training data, even with plenty of training data and when the prediction

is over similar timescales to the training data. This phenomenon will be explored in §5.4.8.

One way to ensure divergent trajectories are unlikely to occur is to ensure that the

autoregressive coefficients for all portions, vector components and leaves are stable. For ex-

ample, in principle (2.56) could be replaced with an equation that estimated the maximum

likelihood solution given the constraint that the re-estimated coefficients must be stable.

This would agree with the unconstrained maximum likelihood solution in cases where it

is stable, and would give a solution right on the limit of stability in cases where the un-

constrained solution is unstable. Alternatively Quillen (2012) has suggested two heuristic

schemes to ensure the re-estimated autoregressive coefficients are stable.

However divergent trajectories of the type described above seem to be rare in practice.

We have only observed them a few times, for some particularly poorly trained systems

which used little training data or poor initial alignments. For example, badly divergent

trajectories do not occur in the training or test sets for any of the autoregressive systems

which will be explored in §4.4, even though some of those systems have a very large number

of parameters that are not robustly estimated. Because we have not encountered serious

problems due to instability, we make no effort to ensure estimated coefficients are stable in

our experiments.
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4.3.5 Related work

In this section we briefly summarize previous work using LGLAR HMM-like models for

speech processing. For clarity we refer to the non-autoregressive model used during training

by the standard HMM synthesis framework, which is defined over the observation sequence,

as the dynamic-augmented Gaussian HMM, and the corresponding model defined over the

speech parameter sequence as the static-only Gaussian HMM.

Previous work using the LGLAR HMM to model speech parameters has mainly focused

on speech recognition. The possibility of using the LGLAR HMM for this purpose was

perhaps first recognized by Wellekens (1987) and Brown (1987), who both described the

full-covariance LGLAR HMM in the depth 1 case and gave the equations for parameter

estimation using expectation maximization. Experimental results have been reported by

a number of authors (Brown, 1987; Kenny et al., 1990; Woodland, 1992; Maxwell and

Woodland, 1993; Chin and Woodland, 2002). However in many cases the LGLAR HMM

was used to model the observation sequence rather than the speech parameter sequence.

This approach suffers from the same lack of consistency as the conventional dynamic-

augmented Gaussian HMM. Kenny et al. (1990), using the full-covariance LGLAR HMM

on a small scale isolated word recognition task, and Chin and Woodland (2002), using the

diagonal-covariance LGLAR HMM on a large vocabulary continuous speech recognition

task, both found that the consistent form of LGLAR HMM had a better word error rate

than an analogous static-only Gaussian HMM, but a worse error rate than an analogous

dynamic-augmented Gaussian HMM. It has also been found that choosing the input to

the linear regression to be the frame at offset −3 or −4 or −5 gave a much better word

error rate than the frame at offset −1 (which corresponds to the depth 1 case in our

treatment) (Kenny et al., 1990; Maxwell and Woodland, 1993). As in the case of the

dynamic-augmented Gaussian HMM, it is possible to improve recognition performance by

converting the LGLAR HMM generative model into a discriminative model (Brown, 1987;

Woodland, 1992; Chin and Woodland, 2002). The qualities of a probabilistic model that

are desirable for speech synthesis are very different to those that are desirable for speech

recognition, so we do not necessarily expect the above observations to generalize to our use

case. A key difference is that for speech recognition a more accurate acoustic model is only

really of interest if it improves discrimination of phonemes or words, whereas for speech

synthesis a more accurate acoustic model is inherently of interest.

The LGLAR HMM can also potentially be used to model the waveform directly (Brown,

1987). In this case it is common to make two slight tweaks: allowing the state to only

transition once every k waveform samples; and resetting the acoustic context to zero every

k samples. This model is sometimes known as the hidden filter HMM (Poritz, 1982; Juang

and Rabiner, 1985; Ephraim et al., 1989), and it can be seen as generalizing the linear
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predictive analysis sometimes used to extract speech parameters, integrating it into the

statistical model. A similar model was used for speech synthesis by Donovan (1996, chapter

5), though in this case it was assumed that the state sequence was observed.

The LGLAR HMM has only recently been used to model speech parameters for speech

synthesis (Shannon and Byrne, 2009a; Quillen, 2012). Quillen investigated the problem of

stability of autoregressive coefficients for speech synthesis using the LGLAR HMM, and in

addition found that using alignments derived from a speech recognition system to estimate

LGLAR HMM parameters led to an improvement in an objective metric compared with

expectation maximization from a flat start (Quillen, 2012).

4.4 Experiments on setting model structure parameters

In this section we experimentally investigate the values of model structure parameters such

as depth, number of sublabels and MDL tuning factor that are appropriate for modelling

speech using the LGLAR HMM. The customary values used for the standard HMM syn-

thesis framework may not be optimal for the LGLAR HMM, and some parameters such

as depth have no direct analogue in the standard framework. Investigating these choices

involves evaluating an extensive set of systems, and so we chose to measure objective per-

formance only. These results have been reported previously (Shannon et al., 2013).

For each of the model structure parameters investigated, we used a 5 sublabel, depth

3 autoregressive system with an MDL tuning factor of 0.3 (system A) and a 5 sublabel,

depth 2 autoregressive system with an MDL tuning factor of 0.18 (system AM) as starting

points, and varied the model structure parameter under investigation. The other details of

the experimental set-up are as described in §3.5.

Ideally for each number of sublabels and depth considered we would choose the optimal

MDL tuning factor. However just choosing the MDL tuning factor which achieves the best

score on the test set would involve substantial re-use of the test set, and conducting a

full 3-dimensional search with a held-out validation set or using cross validation would be

computationally intensive. Preliminary experiments suggested that using an MDL tuning

factor of 0.3 gives good test set log probability for a wide variety of choices of the depth

and the number of sublabels, and using an MDL tuning factor of 0.18 gives good mel

cepstral distortion. Therefore we only considered MDL tuning factors of 0.3 and 0.18 for

all depths, except depth 0 where we used an MDL tuning factor of 1.0. In the depth 0

case the autoregressive HMM is just a conventional HMM, and 1.0 is generally considered

an appropriate choice of MDL tuning factor for the conventional HMM, and experiments

confirmed that using an MDL tuning factor of 1.0 gave better TSLP and MCD than using

an MDL tuning factor of 0.3 or 0.18. We also report the test set log probability and MCD

of the monophone system, since this is not sensitive to the choice of MDL tuning factor.
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4.4.1 Depth

We trained autoregressive systems of various depths. The depth was varied for the spectral

portion of the speech parameters only. We found that local maxima during training were a

problem, with the training set log likelihood for depth 5 monophone models lower than for

depth 4 monophone models in spite of the fact depth 4 models are a special case of depth

5 models. We therefore decided to use a more careful training procedure: after performing

several iterations of EM at depth 0, we increased the depth to 1 and performed several

more iterations of EM, then to 2 and performed several more iterations of EM, etc, until

the desired depth was reached.

The results are shown in Figure 4.3. The best test set log probability is at depth 3

with system A, and depths 3, 4 and 5 all have good TSLP. We can see that increasing the

depth gives decent improvements in TSLP up to depth 3, and thereafter results in minor

degradation. The sudden drop in TSLP for depth 6 system AM is due to overfitting; the

training set log likelihood for the depth 6 system is greater than for the depth 5 system.

The best MCD is at depth 1 with system AM, and depths 1, 2 and 3 all have good MCD.

We can see that increasing the depth gives a decent improvement in MCD up to depth

1, and thereafter results in minor degradation. We therefore suggest 2 or 3 is the most

appropriate choice of depth for the LGLAR HMM.

The gradual training procedure used here was not used in the other experiments.

Without gradual training, depth 3 system A still has the best TSLP, but depth 2 sys-

tem AM now has the best MCD and is −0.10 dB better than depth 1. For the depth 3

system A and depth 2 system AM used elsewhere the difference made by gradual training

was minimal (TSLP within 0.04 nats and MCD within 0.02 dB).

4.4.2 Number of sublabels

We trained autoregressive systems with various numbers of sublabels. The results are shown

in Figure 4.4. We can see a clear peak in TSLP at the conventional value of 5 sublabels for

system A, and 5 and 6 sublabels both have good TSLP. The best MCD is at 5 sublabels

with system AM, and 5, 6 and 7 sublabels all have good MCD. The convention of using 5

sublabels inherited from the standard framework is thus appropriate for the LGLAR HMM.

We noticed an effect where the training set log likelihood was lower for the monophone

models with 6 to 8 sublabels than with 5 sublabels. This might at first seem surprising since

the 5 sublabel model is almost a special case of the 8 sublabel model. However the 5 sublabel

model is not quite a special case of the 8 sublabel model due to the minimum duration

restriction: each instance of a sublabel is restricted to have duration at least one frame.

Thus for the 8 sublabel model each phoneme is restricted to have a minimum duration of

8 frames whereas for the 5 sublabel model each phoneme is restricted to have a minimum
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Figure 4.3: How depth affects (top) test set log probability and (bottom) mel cepstral
distortion. All systems used 5 sublabels. The full context system A used an MDL tuning
factor of 0.3 for all depths except 0 where it used an MDL tuning factor of 1.0. The full
context system AM used an MDL tuning factor of 0.18 for all depths except 0 where it
used an MDL tuning factor of 1.0. The monophone system A and monophone system AM
are identical and so have identical results in this figure.
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Figure 4.4: How number of sublabels affects (top) test set log probability and (bottom) mel
cepstral distortion. System A had depth 3 and system AM had depth 2. The full context
system A used an MDL tuning factor of 0.3 and the full context system AM used an MDL
tuning factor of 0.18.
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duration of 5 frames. Preliminary investigations suggested that the decrease in training set

log likelihood was mainly caused by the minimum duration restriction rather than being a

local maximum effect as in the case of depth. This warrants further investigation.

4.4.3 MDL tuning factor

We trained autoregressive systems with various MDL tuning factors used during decision

tree clustering. The MDL tuning factor was varied for the spectral portion of the speech

parameters only. The results are shown in Figure 4.5. For the TSLP of system A we can see

that there is no clear peak, with MDL tuning factors between 0.20 and 0.35, corresponding

to a total of roughly 600 to 1600 mcep leaves, having good TSLP. For the MCD of system

AM we see a narrower range of good MDL tuning factors, with values between 0.17 and

0.20, corresponding to a total of roughly 2000 to 3500 mcep leaves, having good MCD. We

mention in passing that the number of leaves increases very rapidly as we lower the MDL

tuning factor from 0.18: for example system AM has around 1000 mcep leaves at an MDL

tuning factor of 0.3, 2900 leaves at 0.18, 6400 leaves at 0.15, and 16 000 leaves at 0.13. This

means that the degradation in TSLP and MCD in Figure 4.5 for small MDL tuning factors

would not appear as sudden on a plot with number of leaves instead of MDL tuning factor

as the abscissa. Based on the above results we suggest a value between 0.18 and 0.3 is the

most appropriate choice of MDL tuning factor for the LGLAR HMM.

It is interesting to note that the number of leaves that is best for MCD is greater

than the number of leaves that is best for TSLP. In other words a bit of overfitting is

a good thing from the point of view of MCD. This is presumably because the increase

in modelling flexibility obtained by using more leaves has more positive consequences on

the mean trajectory than the fact that we cannot robustly estimate the parameters of the

additional leaves has negative consequences. We will see in §4.6.4 that this effect also occurs

when looking at MCD for the standard HMM synthesis framework and the trajectory HMM.

We have previously observed a somewhat similar relationship between human naturalness

judgements and TSLP (Shannon and Byrne, 2010). When we evaluated the mean opinion

score of LGLAR HMM systems with varying numbers of leaves, we found that: using the

number of leaves which gave the best TSLP also gave approximately the best naturalness;

slight underfitting due to using fewer leaves resulted in a large degradation in naturalness;

slight overfitting due to using more leaves resulted in no degradation or possibly a small

improvement in naturalness; and fairly severe overfitting resulted in very little degradation

in naturalness. It would be interesting to see whether the relationships between TSLP and

MCD and TSLP and naturalness described above persist when an estimation method is

used that has fewer issues with robustness than maximum likelihood. Alternative estimation

methods for use during decision tree clustering were discussed briefly in §2.3.
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Figure 4.5: How MDL tuning factor affects (top) test set log probability and (bottom) mel
cepstral distortion. All systems used 5 sublabels. System A had depth 3 and system AM
had depth 2.



4.5. Median alignments

4.5 Median alignments

In some of the experiments in this chapter and later chapters we make use of a novel type

of alignment which we refer to as a median alignment. In this section we describe what

median alignments are, how to compute them, and some of their useful properties.

We will first describe label-level median alignments, and then explain how this gener-

alizes to other levels. Consider an utterance with label sequence l = [lj ]
J
j=1 and speech

parameter sequence C. Typical statistical models assume that, for each frame t, precisely

one label jt in the label sequence is “current”, and so the statistical model defines a pos-

terior marginal distribution P(jt | l, C, ν, λ) over the set of label indices {1, . . . , J}. Since

the set of label indices possesses a natural total order, the median ĵt of this marginal dis-

tribution is well-defined. The sequence [ĵt]
T
t=1 of median label indices over time may be

converted to a label index-level alignment by grouping contiguous identical label indices

together. This may then be converted to a label-level alignment by looking up the label

for each label index, and we refer to the alignment obtained in this way as the (label-level)

median alignment. Computationally, median alignments for an autoregressive HMM and

for the model used during training for the standard HMM synthesis framework are easily

obtained using the forward-backward algorithm, since the marginal posterior distribution

over the label index for each frame may be computed by summing state occupancies.

The above definition can be applied to any ordered sequence that is part of our model

as long as precisely one element of the sequence is “current” for each frame t. In particular

we can define the sublabel-level median alignment, since each label sequence l defines a

sequence of (label, sublabel) pairs as described in §3.1.3. Under the standard approach to

encoding the duration model for each sublabel mentioned in §3.1.5 the state is of the form

ψ = (m, j, s, d), and the number of frames d remaining in the current sublabel provides a

natural ordering for the states, so we may even talk about a state-level median alignment.

Median alignments have a number of nice theoretical properties. Firstly they are well-

behaved under a certain type of marginalization. If we take the state-level median alignment

and convert it to a sublabel-level alignment, we get the sublabel-level median alignment.

Similarly if we take the sublabel-level median alignment and convert it to a label-level

alignment, we get the label-level median alignment. Compare this to the situation for

Viterbi alignments: taking the most likely state sequence and converting it to a sequence of

labels over time does not give the most likely sequence of labels over time. We describe this

as a nice theoretical property “under marginalization” since the posterior distribution over

the sublabel-level alignment, for example, is obtained by marginalizing over the duration

part of the state-level alignment.

Median alignments have a second nice theoretical property that is closely related to the

fact they are well-behaved under marginalization, namely that they are indifferent to the
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4. Autoregressive HMMs

representation used for deeper levels of the model. The X-level median alignment depends

only on the probability distribution over the X-level alignment given by the model, and not

on the details of how this probability distribution is encoded. For example the sublabel-

level median alignment depends only on the probability distribution over the sublabel-level

alignment, and not on details of how the duration model for each sublabel is encoded. In

contrast the sublabel-level alignment obtained from the Viterbi state sequence does depend

on the details of how the duration model for each sublabel is encoded. For example if the

duration for a given sublabel was modelled as a geometric distribution, then this may be

represented either as a single state with a self-transition or using the explicit (m, j, s, d)

representation, and the sublabel-level alignment obtained from the Viterbi state sequence

will generally be different for these two representations.

Since median alignments are defined in terms of framewise marginal probabilities, it

might be thought that they would have pathologies when viewed as sequences of (label,

sublabel) pairs over time. For example, perhaps the ordering of (label, sublabel) pairs in

the median alignment could be non-monotonic with respect to the ordering in the original

(label, sublabel) sequence, or (label, sublabel) pairs that appear in the original (label,

sublabel) sequence might not appear, or equivalently might have duration zero, in the

median alignment. These pathologies would not necessarily be a problem for our purposes

if they did occur. However for the form of models we use here, the median alignments

are in fact guaranteed to correspond to valid (label, sublabel) sequences over time, in the

sense that their prior probability is non-zero. In particular they are always monotonic, and

satisfy the constraint that each sublabel must have duration at least 1 frame.

Finally we note in passing that randomly sampled alignments share many of the desir-

able properties of median alignments: they are also well-behaved under marginalization,

they are also indifferent to the representation used for deeper levels of the model, and by

definition they are valid alignments with non-pathological posterior probability. Computa-

tionally it is easy to efficiently sample a state sequence from the posterior distribution P(θ |
l, C, ν, λ) using the values computed by the backward algorithm mentioned in §2.5.1. The

main disadvantage of sampled alignments is that they are not deterministic, though this

may or may not be considered a problem depending on the application.

4.6 Experimental comparison to existing models

To evaluate the LGLAR HMM for statistical parametric speech synthesis we compared a

baseline standard HMM synthesis framework system, a trajectory HMM system and two

LGLAR HMM systems using the subjective and objective metrics described in §3.4. We

also compared a wider range of systems using objective metrics only. Many of these results

were previously presented in a journal paper (Shannon et al., 2013).
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4.6.1 Systems

The systems under comparison are shown in Table 4.1. Systems S and T are the stand-

ard HMM synthesis framework system and the trajectory HMM system described in §3.5.

System A is a “conventional” autoregressive system (5 sublabels, depth 3, MDL tuning

factor of 0.3) which has structure parameters which give good TSLP. System AM is an

autoregressive system with structure parameters tuned to have good MCD (5 sublabels,

depth 2, MDL tuning factor of 0.18). System SB is system S with a uniform variance boost

(see below for details). The other details of the experimental set-up are as described in

§3.5.

4.6.2 Evaluation methodology

The subjective evaluation was conducted with systems N, S, T, A and AM following Blizzard

Challenge-style methodology described in §3.4. The listening test consisted of 10 sections

of 5 utterances each. For all sections listeners were asked to rate the naturalness of each

utterance on a scale of 1 to 5 inclusive. Prompts were the 50 held-out utterances in a fixed

order. The listening test was presented via an interactive website over two weeks. System

SB was not included since it had not been conceived of at the time of the listening test, but

the generated trajectories are extremely similar to those of system S, and so it is anticipated

that the naturalness ratings would also be very similar. The reason for the similarity is

explained in Chapter 6: conventional GV generation is for all intents and purposes equal to

fixed-spread GV generation, and fixed-spread GV generation produces the same trajectories

whether variance-boosted or not.

For the objective evaluation we computed test set log probability and mel cepstral

distortion on the 50 held-out utterances. For this experiment we computed the approximate

mcep-only TSLP logP([Ct1i]t,i | θ∗, λ) where [Ct1i]t,i is the spectral portion of the speech

parameter sequence and θ∗ is the median alignment computed using all portions of the

speech parameter sequence C. Median alignments from system A were used to evaluate

system A, system AM to evaluate system AM, and system S to evaluate systems S, SB

and T. A fixed state sequence was used because the true test set log probability, which is

obtained by marginalizing P(C, θ | l, ν, λ) over θ, is difficult to compute for the trajectory

HMM and the standard HMM synthesis framework. Note that for the standard HMM

synthesis framework the test set log probabilities we compute are for the model effectively

used during synthesis, i.e. the trajectory HMM with the same parameters, not the model

used during training.
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system description

N natural speech
S standard HMM synthesis framework

SB system S with 3× variance boost
T trajectory HMM
A LGLAR HMM (standard structure parameters)

AM LGLAR HMM (modified structure parameters)

Table 4.1: Systems used to compare the LGLAR HMM to existing models.

system
mcep
leaves

opinion score MCD
DTW (dB)

using median alignments

mean median from sys mcep TSLP (nats)

N - 4.7 5 - - -
S 812 2.4 2 5.58 S 29.25

SB 812 - - 5.58 S 46.86
T 812 2.6 3 5.46 S 47.58
A 771 2.1 2 5.86 A 47.88

AM 2879 2.4 2 5.61 AM 47.58

Table 4.2: Comparison of the LGLAR HMM to the standard HMM synthesis framework
and trajectory HMM using subjective and objective evaluations.

N S T A AM

N � � � �
S � � � �
T � � � �
A � � � �

AM � � � �

Table 4.3: Pairwise comparisons of significant differences between naturalness using
Bonferroni-corrected Mann-Whitney U tests (� indicates a significant difference at 1%).
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4. Autoregressive HMMs

4.6.3 Results of comparison to existing models

The listening test was completed by 36 native English speakers. Table 4.2 shows a summary

of the results. Figure 4.6 is an opinion score box plot (Clark et al., 2007), and a matrix

of statistically significant differences between the various systems is shown in Table 4.3.

Figure 4.7 shows a complementary cumulative plot of these results, which displays more in-

formation than the box plot. We can see that the modified autoregressive system (AM) has

extremely similar performance to the standard HMM synthesis framework (S). The traject-

ory system (T) does slightly better than these two systems, and the default autoregressive

system (A) does noticeably worse than these two systems. The statistical significance test

has S, T and AM possibly identical in performance with A statistically different from the

other three. The results also show that MCD was more useful than TSLP as a surrogate

for human judgement when selecting autoregressive model structure parameters.

The objective results are presented in Table 4.2. To provide some intuitive calibration

of the TSLP and MCD scales, the reader may be interested to know that using full-context

instead of monophone models results in a typical improvement of roughly +0.4 nats to

+0.6 nats for approximate mcep-only TSLP, and roughly −1.1 dB to −1.3 dB for MCD.

We can see that the trajectory system (T) and the modified autoregressive system (AM)

are comparable in terms of test set log probability. The default autoregressive system (A)

does notably better than any of the other systems. The standard system (S) has extremely

low test set log probability, due to the fact it systematically underestimates predictive

variance, as will be explained in §5.4.1. We also computed the test set log probability of

the standard system with a multiplier of 3 applied to the covariance of each trajectory. As

will be discussed in §5.4.1, the value of 3 is close to optimal for all mcep components. This

results in a system (SB) that no longer systematically underestimates predictive variance

and has a much greater test set log probability. However there is still a large gap between the

variance-boosted standard system (SB) and the normalized models. These results suggest

that the LGLAR HMM performs favourably compared to existing models as a probabilistic

model of speech.

The MCD results are qualitatively similar to the subjective listening test results. The

modified autoregressive system (AM) and the standard HMM synthesis framework (S) have

very similar MCD, with the trajectory HMM system (T) very slightly better and the default

autoregressive system (A) noticeably worse. Thus the trajectory HMM appears to provide

the best model of the mean trajectory. These results suggest that the LGLAR HMM

inherently provides a slightly poorer model of the mean trajectory than the standard HMM

synthesis framework, but that MCD performance on the level of the standard approach can

be obtained with the LGLAR HMM by using more leaves (system AM).

It should be noted that the MCD results appear to depend strongly on the precise form
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4.6. Experimental comparison to existing models

of MCD used. In preliminary experiments with forms of MCD using a fixed alignment rather

than dynamic time warping, we found that for some methods of computing the alignment

systems S and AM were similar in MCD score, but for other methods of computing the

alignment system S was noticeably better than system AM.

4.6.4 Improved training regimes

Since conducting the subjective evaluation above we have noticed a number of ways to

improve the training regimes, at least in the sense of improving the objective scores. Here

we briefly discuss these improvements and give an updated table of results with objective

scores for the new training regimes.

For autoregressive systems we noticed that the procedure used at the monophone stage

of training, before the first autoregressive decision tree clustering is performed, can have a

reasonably large influence on final system performance. Firstly we found that, when a good

initial alignment is used, performing expectation maximization at the monophone stage

often hurts the final system performance. This is not too surprising given the limitations

of autoregressive HMMs with monophone labels that will be mentioned in §5.1. Secondly

we found that using median alignments derived from the full-context standard system S as

the initial alignments was typically better than using median alignments derived from the

monophone stage of system S, and better than the monophone initialization procedure used

for systems A and AM. For the remaining autoregressive systems described in this chapter

we therefore decided to use the median alignments from system S as the initial alignments,

and began decision tree clustering directly from these alignments rather than performing

expectation maximization at the monophone stage of training. This initialization procedure

is used below for system A2, which has the same model structure parameters as system A

(5 sublabels, depth 3, MDL tuning factor 0.3), and system AM2, which has the same model

structure parameters as system AM (5 sublabels, depth 2, MDL tuning factor 0.18).

Secondly the experimental comparison presented above is not completely fair since for

the LGLAR HMM we chose the MDL tuning factor ρ to give good TSLP (system A) or MCD

(system AM) whereas for the for the standard HMM synthesis framework we used the fixed

conventional value ρ = 1.0. This was done because the standard HMM synthesis framework

is well established, whereas the LGLAR HMM is a new model requiring investigation of an

appropriate MDL tuning factor. However we have since found that using a smaller value

for the MDL tuning factor also improves the performance of the standard HMM synthesis

framework, with a maximum in approximate mcep TSLP at around ρ = 0.6 when using a

variance boost of 3, and a minimum in MCD at around ρ = 0.35. We refer to the ρ = 0.6

and ρ = 0.35 systems as S2 and SM2 respectively, and the corresponding variance-boosted

systems as SB2 and SMB2.
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system
MDL tuning

factor ρ

mcep
leaves

MCD
DTW (dB)

using median alignments

using sys mcep TSLP (nats)

SB2 0.60 1693 5.44 S2 46.94
T2 1.00 812 5.46 S 48.21
A2 0.30 964 5.74 A2 48.02

SMB2 0.35 4866 5.36 SM2 46.72
TM2 0.60 1693 5.39 S2 48.14
AM2 0.18 3410 5.52 AM2 47.59

Table 4.4: Comparison of the LGLAR HMM to the standard HMM synthesis framework
and the trajectory HMM using recommended training regimes for all systems. The MDL
tuning factor ρ controls the size of the decision trees estimated during training. The systems
for the top three lines have structure parameters such as ρ chosen to give good TSLP, while
the systems for the bottom three lines have structure parameters chosen to give good MCD.

Finally, we implemented our own trajectory HMM trainer, and found that it resulted

in a system with substantially higher TSLP than system T. Our procedure used median

alignments from system S as the fixed alignment during trajectory HMM training whereas

system T used Viterbi alignments from system S. Differences in the convergence threshold

or gradient ascent algorithm used may also have been responsible for the difference in

performance. We considered MDL tuning factors of 1.0, 0.6 and 0.35 for the standard system

used to obtain the trees and alignments used for trajectory HMM training, and found that

ρ = 1.0 (system T2 below) gave the best approximate mcep TSLP while ρ = 0.6 (system

TM2 below) gave the best MCD. Ideally more values of the MDL tuning factor would be

considered. It should be noted that we used no variance flooring or regularization in our

trajectory HMM implementation. Extreme values of the delta and delta-delta precision

parameters were observed for some leaves and some vector components for the ρ = 0.60

and ρ = 0.35 systems, and so using regularization might improve the test set performance

of these systems. No extreme precision parameter values were observed for the ρ = 1.0

system.

The results with all the above improvements are shown in Table 4.4. We can see that the

newer systems are all at least as good as the systems in Table 4.2 according to both metrics,

and substantially better by some metrics. In terms of TSLP, the normalized models still

do much better than the unnormalized standard HMM synthesis framework system after a

variance boost (SB2). However the trajectory HMM system (T2) now has better TSLP than

the autoregressive system (A2) by a sizeable margin (0.19 nats), despite the fact that for

evaluating system A2 we use median alignments from itself whereas for evaluating system

T we use median alignments from system S. This result is reassuring since in our limited

experience the trajectory HMM seems like the better probabilistic model of speech.
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In terms of MCD, the autoregressive system here (AM2) does almost as well as the

previous trajectory HMM system (T), which shows the improvement brought by better

training. However the gap between the LGLAR HMM system (AM2) and the other two

models is now wider, with the standard system (SM2) having a better MCD by a reasonable

margin (0.16 dB). Perhaps surprisingly the best system in Table 4.4 in terms of MCD is a

standard system rather than a trajectory system, though the difference is small (0.03 dB).

The ρ = 0.35 trajectory HMM system (not shown), which we would have expected to have

the best MCD score of any of the models considered, has an MCD of 5.43 dB, which is

worse than the ρ = 0.35 standard system (5.36 dB). This could conceivably be an inherent

weakness of the trajectory HMM parameterization, but we think it is most likely due to

overfitting. This could be investigated by using regularization during trajectory training.

Note that both system SMB2 and system TM2 obtain a sizeable improvement in MCD

compared to the previous systems presented in Table 4.2.

It is interesting to note that a modest amount of overfitting appears to improve MCD

scores: for all three models above the number of leaves that is best for MCD is greater

than the number of leaves that is best for TSLP. We observed this effect for the LGLAR

HMM in §4.4.3, and the above results show that the same is true for the standard HMM

synthesis framework and the trajectory HMM.

In terms of both TSLP and MCD, the best number of leaves for the trajectory HMM is

lower than the best number of leaves for the standard framework. Zhang (2009) observed

a similar effect while using the trajectory HMM for articulatory inversion and using root-

mean-squared error as a metric. These results seem to suggest that the trajectory HMM

is more susceptible to overfitting than the standard framework. However care should be

taken before reaching this conclusion, since our standard system was trained using variance

flooring whereas the trajectory system was not, and Zhang used a fixed, manually chosen

value for a variance floor and variance ceiling. Zhang also used early stopping based on a

held out validation set as a simple form of regularization. It would be interesting to see if

this pattern of results persisted with a more fine grained regularization scheme. It should

also be noted that both we and Zhang observe that the trajectory HMM performance with

fewer leaves rivals or beats the standard framework performance with more leaves.

We conclude from the MCD results that the LGLAR HMM is capable of modelling

the mean trajectory better than the standard HMM synthesis framework with default

structure parameters, and from the TSLP results that the LGLAR HMM is much better

as a probabilistic model of speech. However if we choose the MDL tuning factor for the

standard framework judiciously then the standard framework models the mean trajectory

better than the LGLAR HMM. The trajectory HMM provides the best probabilistic model

of speech and amongst the best model of the mean trajectory, despite the fact it uses a

fixed alignment for training.
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4.7 Summary of contributions

The major novel theoretical contributions of this chapter are: the realization that the

LGLAR HMM constitutes a consistent and tractable alternative to existing models used

for statistical parametric speech synthesis (§4.3); the realization that it supports existing

effective speech parameter generation methods (§4.3.3); and the realization that there is

a simple and exact time-recursive speech parameter generation algorithm for the LGLAR

HMM with low latency benefits (§4.3.3). The major novel experimental contributions

of this chapter are: a detailed objective evaluation of how to set the model structure

parameters of the LGLAR HMM for statistical parametric speech synthesis (§4.4); and an

objective and subjective evaluation of the performance of the LGLAR HMM compared to

existing models for statistical parametric speech synthesis, showing that the autoregressive

framework presented here is capable of producing speech that is as natural as that of the

standard HMM synthesis framework with its conventional settings, but not as natural as

the trajectory HMM (§4.6).

Minor novel contributions of this chapter include: an appreciation that the tractabil-

ity of expectation maximization and decision tree clustering for the LGLAR HMM stems

from the fact the linear regression model at its heart is a conditionally additive exponen-

tial family (§4.1.1 and §4.1.2); the realization that the autoregressive HMM is a flexible

framework which supports the use of complicated regression models (§4.1.2); the concept

of a median alignment and recognition of its nice theoretical properties (§4.5); the idea of

using a complementary cumulative plot to summarize the results of a opinion score listening

test (§4.6.3); and the discovery that a bit of overfitting improves MCD scores for both the

LGLAR HMM and existing models (§4.4.3 and §4.6.4).
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Chapter 5

Connections between new and

existing models

In this chapter we examine a variety of theoretical connections between the standard HMM

synthesis framework, the trajectory HMM and the LGLAR HMM. As we will see, there

are both strong similarities and important differences between the three models.

The layout of this chapter is as follows. We first describe a weakness in the autoregressive

HMM, namely that future states cannot influence the present observation. We illustrate

the effects of this future state blindness on a simple synthetic data set in order to help get a

feel for the challenges faced by the autoregressive HMM when modelling speech parameter

sequences. We then present two novel ways to view the three models under consideration

within a unified framework. As well as hopefully being theoretically interesting, these

unified views allow us a certain amount of insight into the strengths and weaknesses of

the three models. Finally we summarize the similarities and differences between the three

models from a theoretical point of view and examine some of the differences in more detail

using a combination of theoretical arguments and experiments.

5.1 Future state blindness

Autoregressive acoustic models and autoregressive HMMs suffer from an obvious weakness,

which we refer to as future state blindness. In this section we illustrate this weakness

using a simple synthetic data set. We also discuss its implications for autoregressive speech

synthesis and how its worst effects might be alleviated or mitigated. The possibility that

we might be able to mitigate the worst effects of future state blindness was part of our

original motivation for considering autoregressive models for parametric speech synthesis.

Future state blindness concerns the effect of future states on the present speech para-

meters. Consider an autoregressive trajectory-level acoustic model P(c | θ, λ), for example
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the LGLAR acoustic model. The marginal distribution P(ct | θ, λ) over the trajectory value

ct at frame t given the state sequence θ does not depend on future states θt+1:T , i.e. P(ct |
θ, λ) = P(ct | θ1:t, λ). We refer to this phenomenon as future state blindness. In contrast

P(ct | θ, λ) typically does depend, at least slightly, on previous states θ1:t−1 going arbitrarily

far back in time. For comparison, the marginal P(ct | θ, λ) for the trajectory HMM acoustic

model typically depends on all elements of the state sequence, and so the trajectory HMM

acoustic model does not suffer from future state blindness. Future state blindness can be

seen as an inability of autoregressive acoustic models to accurately represent certain con-

ditional distributions: if, for the “true” conditional distribution Ptrue(c | θ), the marginal

distribution Ptrue(ct | θ) has a strong dependence on θt+1, say, then an autoregressive acous-

tic model will not be able to accurately represent Ptrue(c | θ). In the context of statistical

speech synthesis, future state blindness means that autoregressive acoustic models are in-

capable of modelling any dependence of the current speech parameters on future phonemic

and linguistic events that are not already encoded in the current state θt. Here by future

phonemic and linguistic events we mean items such as the next phoneme and the ToBI

end tone of the next phrase. We have considered trajectory-level acoustic models above for

simplicity, but the above discussion also applies to speech parameter-level acoustic models,

and indeed to full statistical models such as the autoregressive HMM.

To illustrate the phenomenon of future state blindness we generated a synthetic data set

by adding white noise to an underlying signal and trained trajectory HMM and autoregress-

ive HMM systems. The underlying signal was a sum of logistic sigmoids and was 0.5 s long

at a frame rate of 200 frames per second, and the white noise had standard deviation 0.1.

This signal, with smooth transitions between steady values, is the sort of signal that the

mean trajectory of the trajectory HMM is very good at capturing, making this a good test

case for investigating the weaknesses of the autoregressive HMM. We generated a training

corpus consisting of 100 instances of the noisy signal, and a test corpus of 50 instances

of the noisy signal. We then trained a trajectory HMM system with standard windows

and two autoregressive HMM systems of depth 3 on this data. In all cases we used fixed

manually-chosen alignments.

Before discussing the results of this experiment, it is helpful to establish some termin-

ology that will be used throughout this chapter. A trained trajectory-level acoustic model

P(c | θ, λ) specifies a distribution over the trajectory c for each state sequence θ. We refer

to this distribution as the predictive distribution, refer to its covariance matrix Σ as the

predictive covariance, refer to the diagonal of Σ as the predictive variance, and refer to the

square root of the predictive variance at time t as the predictive standard deviation at time

t. This terminology avoids potential confusion between the predictive variance, which is

the variance of an observed quantity, and variance parameters in the model such as (the

reciprocal of) τqd for the trajectory HMM acoustic model and σ2
q for the LGLAR acoustic
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(c) autoregressive HMM
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(d) autoregressive HMM with additional labels

Figure 5.1: Illustration of the effect of the autoregressive HMM’s future blindness, and
how it can be mitigated to an extent by adding extra labels. Each panel shows the mean
trajectory of a distribution, a shaded area ±1.5 predictive standard deviations around the
mean trajectory, and a trajectory sampled from the distribution.

model, which have only an indirect effect on the variance of an observed quantity.

The fixed alignments, the true distribution and the learned distributions are shown

in Figure 5.1. In each panel the mean trajectory is shown together with a region ±1.5

predictive standard deviations around the mean trajectory. The test set log probabilities

for the four models were: 0.88 nats per frame for the true distribution, 0.77 nats for the

trajectory HMM, 0.58 nats for the autoregressive HMM, and 0.77 nats for the autoregressive

HMM with additional labels. We can see from Figure 5.1(b) that even when the alignment

only has a few labels, the trajectory HMM is able to capture the true distribution reasonably

accurately. We can see from Figure 5.1(c) that the autoregressive HMM with the same

alignment struggles to capture the true distribution, with reasonable transitions into the

steady values but abrupt transitions out of them. This is reflected in the lower test set log

probability of this system compared to the trajectory HMM. The abrupt transitions out
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of the steady values are due to future state blindness: at 0.22 s the model has no way of

knowing that there is about to be a state transition, for example, and even if it did, it still

would not know which trajectory value to aim for. In contrast, for the trajectory HMM the

trajectory value at time t can be seen as the result of a kind of negotiation between values

that are good for the previous few states and values that are good for the next few states,

and so it captures this smooth transition well. However we can see from Figure 5.1(d)

that by adding extra labels in the regions where this future state blindness effect is most

severe, namely just before transitions, the autoregressive HMM is able to capture the true

distribution much better: the learned mean trajectory is closer to the true mean trajectory

with smoother transitions between steady values, the predictive variance is smaller and

closer to the true predictive variance, and the test set log probability suggests that this

model fits the data as well as the trajectory HMM.

Note that none of the models is capable of capturing the true distribution exactly, except

in the limit of using as many labels as there are frames. All the models introduce spurious

correlations over time, and some of the aspects of the true distribution which they cannot

capture they explain as extra noise, which manifests itself as a larger predictive standard

deviation than the true distribution. The imperfectness of the models is also reflected in

the fact that their test set log probabilities are smaller than that of the true distribution.

There a number of ways the autoregressive HMM used in the experiments in Chapter 4

might already be partially compensating for future state blindness. The use of full-context

labels, and in particular quinphones, means that the model does already have some inform-

ation about future phonemic and linguistic events. If the autoregressive HMM is taking

advantage of this extra phonemic context to partially overcome this weakness we might ex-

pect that the decision trees learned for the autoregressive HMM would use more questions

about future phonemes, and fewer questions about past phonemes, than the trees for the

standard HMM synthesis framework. In §5.4.6 we will see that this is indeed the case. For

a similar reason we might expect future state blindness to be a more serious problem when

using monophone labels than when using full-context labels, though we do not investigate

this here. In the toy example above we saw that adding extra labels can sometimes help.

In the case of the models used for speech this would correspond to adding extra sublabels.

However we saw in §4.4.2 that adding extra sublabels does not improve the performance of

the LGLAR HMM. This may be partly because using more sublabels increases the num-

ber of parameters, which will increase the amount of overfitting. Additionally there is a

minimum duration of 1 frame for each instance of a sublabel, and around half of sublabel

instances are already at this minimum value1, and so adding extra sublabels may cause bad

alignments by forcing two or three neighbouring sublabels to together take more frames than

1For median alignments from both the standard HMM synthesis framework system S and the autore-
gressive system A below, the proportion of sublabel instances lasting 1 frame is 45%.
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5.1. Future state blindness

the acoustics warrant. It is therefore possible that adding extra sublabels would improve

performance if the minimum duration constraint were removed to allow sublabels to some-

times have a duration of 0 frames. Finally we might expect that expectation maximization

with full-context autoregressive models would shift label and sublabel boundaries earlier in

time, to effectively allow the model to see into the future a bit further than it otherwise

could. For example it seems likely that if the autoregressive system in Figure 5.1(c) was

allowed to choose its own alignment then it would shift the boundaries further left and that

this would result in a higher TSLP. However in §5.4.6 we will see that for real systems this

only happens to a small extent. This suggests that either expectation maximization finds

a local maximum that it is difficult to move away from, or that for substantial shifts of the

label and sublabel boundaries the positive consequences of knowing more about the future

are outweighed by the negative consequences of knowing less about the present. From the

above discussion we can conclude that the autoregressive HMM used in the experiments in

Chapter 4 does already compensate for future state blindness in a limited way.

It might also be possible to mitigate the effects of future state blindness by extending

the model used while staying within the autoregressive HMM framework. For example we

could add questions about the number of frames remaining in the current sublabel to the

decision tree clustering process. This is a simple example of the general idea of adding

information about future phonemic and linguistic events to the present state as a way to

make the mitigate the effect of future state blindness. We will see in §5.3.2 that in a certain

sense the ability to look at future states is all that distinguishes the trajectory HMM and the

LGLAR HMM. We could also consider using a more advanced regression model than the

decision tree-based linear Gaussian linear regression model used by the LGLAR HMM. As

noted in Chapter 4 the flexibility in the autoregressive HMM framework allows a variety

of regression models to be used. The decision tree-based approach provides a relatively

coarse way to access the information about future phonemic and linguistic events encoded

in the current state. A more advanced or differently parameterized regression model might

conceivably make better use of this information, and so partially mitigate the effects of

future state blindness.

Finally we mention a phenomenon observed in conditional sequential models defined

over discrete spaces which is closely related to future state blindness. A (linear chain)

conditional random field (CRF) (Lafferty et al., 2001) is a conditional model P(l | o, λ) over

a sequence l of labels given a sequence o of observations of the same length T . Typically

the set of possible labels is discrete and the set of possible observations may be discrete

or continuous. A conditional random field builds up the overall conditional pdf by taking

the product of a collection of experts, each of which is local to some subsequence of the

overall (observation, label) sequence, and then normalizing this product conditional on the

observation sequence. It is thus closely related to the trajectory HMM acoustic model, and
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indeed the trajectory HMM acoustic model may be viewed as a CRF with continuous labels

and discrete observations: the CRF label is the trajectory value and the CRF observation

is the state. Conditional random fields have been compared to maximum entropy Markov

models (MEMMs) (McCallum et al., 2000), which are also models over a sequence of labels

given a sequence of observations of the same length, but which are autoregressive and

locally normalized. They are thus analogous to an autoregressive HMM acoustic model.

MEMMs suffer from an analogue of future state blindness often known as the label bias

problem (Lafferty et al., 2001): for an MEMM P(l | o, λ), the marginal distribution P(lt |
o, λ) over the label at index t given all observations does not depend on future observations

ot+1:T . If the true marginal distribution Ptrue(lt | o) does depend strongly on these future

observations, then it is not possible to accurately represent the overall true distribution

Ptrue(l | o) with an MEMM. Conditional random fields have been found to perform better

than maximum entropy Markov models on some tasks (Lafferty et al., 2001; Seigel et al.,

2013).

5.2 A mild generalization of the trajectory HMM

In this section we introduce a very slight generalization of the trajectory HMM acoustic

model presented in §3.3.2. Considering this new model will simplify the discussion in several

places in the remainder of this chapter.

We first recap certain aspects of the trajectory HMM acoustic model defined in §3.3.2.

To fully define the trajectory HMM acoustic model it is necessary to decide how to cope

with end effects, as discussed in detail in Appendix B. One approach, which we favour for

its simplicity, is to condition on the before-the-start trajectory values c1−K:0 and after-the-

end trajectory values cT+1:T+K having fixed, known values. This is referred to as solution

3 in Appendix B, or solution 2 if the conditioned-on values are zero.

The new model may be defined as follows. Consider a trajectory HMM acoustic model

which is defined over a trajectory c1−K:T+K given a corresponding state sequence θ1−K:T+K .

Suppose the window left extent KL and the window right extent KR, as defined in §3.2.2,

are both non-negative, and that K above is equal to KL+KR. If we condition on c1−K:0 and

cT+1:T+K having known values, for example zero, then we obtain a trajectory-level acoustic

model over c1:T which depends on a portion θ1−KR:T+KL of the original state sequence; this

is our new model. A factor graph which describes the new model is shown in Figure 5.2.

The new model is almost identical to the trajectory HMM acoustic model described in

§3.3.2 using solution 2 or solution 3 to cope with end effects, but is slightly more general,

since we now have dependence on additional states just before θ1 and just after θT . These

correspond to additional experts in the product-of-experts view of the trajectory HMM

acoustic model. The model defined in §3.3.2 can be recovered from the new model by
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θ0 θ1 θ2 θ3 θ4 θ5 θ6

Z

c−1 c0 c1 c2 c3 c4 c5 c6 c7

Figure 5.2: A factor graph which describes a mild generalization of the trajectory HMM
acoustic model with left extent KL = 1 and right extent KR = 1. Here the state sequence
θ = θ0:6 is conditioned on and the trajectory c = c1:5 is observed. The values c−1, c0, c6 and
c7 are deterministic acoustic context, equal to zero when using zero-input windows. The
factor Z is a normalization constant. Each factor also depends on the model parameters λ
(not shown).

setting the additional states to some new value in a new leaf q which has bqd = τqd = 0 for

all windows d. It could be argued that the model obtained in this way is conceptually and

mathematically more natural than the original model, and thus that the dependence on

states before θ1 and after θT is in a sense “missing” from the original definition in §3.3.2.

One benefit of the new model is that it helps to clarify the relationship between the

state sequence and time. Throughout the thesis we have associated a given state in the

state sequence, say θt, with a given frame t. However the timing of a given state is not

directly observed; it affects something observable only through its interaction with the

trajectory. Thus which frame we associate a given state in the state sequence with is

essentially arbitrary. This can be expressed by a kind of symmetry the model should obey:

if we shift the state sequence one frame earlier and shift all the window coefficients one

frame later then we should end up with the same model, modulo end effects. The new

model has the advantage that it makes this symmetry precise, and it holds even taking end

effects into account (as long as the original and resulting window left and right extents are

both non-negative). This also means that, by shifting the state sequence appropriately, we

can assume without loss of generality that the window right extent KR is zero. This has the

advantage of removing some superficial differences between the trajectory HMM acoustic

model and the LGLAR acoustic model, simplifying the presentation of various theoretical

arguments below such as those in §5.3.2.

The above discussion can be extended to the trajectory HMM described in §3.3.2, as

opposed to just the trajectory HMM acoustic model, as long as each portion p and vector

component i uses windows with the same left and right extents. In converting a trajectory

HMM of the form in §3.3.2 to a trajectory HMM of the new form, we can if desired use
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the duration model to specify that the duration of the new state at the start of the state

sequence lasts precisely a certain number of frames, and similarly for the (distinct) new

state at the end of the state sequence. The symmetry above also still holds, and means

that for a trajectory HMM of the new form the only possible difference between a trained

model with shifted windows and a trained model with the original windows is in the choice

of initial alignments and initial model parameters, and even these can be chosen in such a

way that the trained models are equivalent.

5.3 Two unified views of the trajectory HMM and

autoregressive HMM

The trajectory HMM acoustic model presented in §3.3.2 and the LGLAR acoustic model

presented in §4.3.1 appear to be very different models at first glance. In this section we

present two ways of viewing the two models within a common framework. As we will see in

§5.4, these theoretical viewpoints highlight both the similarities and the differences between

the two models, and provide new perspectives when comparing them.

5.3.1 Decomposition into local contributions

In this section we show that, for both the trajectory HMM acoustic model and the LGLAR

acoustic model, the b-value and precision matrix may be decomposed as the sum of over-

lapping local contributions, where the difference between the two models is in the form of

the local contributions. As we saw in §3.3.1, the trajectory HMM acoustic model is also the

model effectively used at synthesis time by the standard framework, so this unified view

also applies to the synthesis-time part of the standard framework. This unified view was

first presented in a technical report (Shannon and Byrne, 2009b).

Given a state sequence θ = [θt]
T
t=1, the trajectory HMM acoustic model in §3.3.2 and the

LGLAR acoustic model in §4.3.1 both specify a Gaussian distribution over the trajectory

c = [ct]
T
t=1. We claim that the natural parameters b(θ;λ) and P (θ;λ) for both models can

be written as

bs(θ;λ) =
∑
u

bLC
(s−u) (q(θu);λ) , s ∈ {1, . . . , T} (5.1)

Pst(θ;λ) =
∑
u

PLC
(s−u)(t−u) (q(θu);λ) , s, t ∈ {1, . . . , T} (5.2)

where λ is the collection of model parameters which includes a clustering function q as

defined in §2.3. We refer to bLC(q;λ) and PLC(q;λ) as local contributions. Thus for both

models the overall b-value is the sum of overlapping local contributions, where each local

contribution depends only on the state θu at some time u, and similarly for the precision
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matrix. The decompositions into local contributions given by (5.1) and (5.2) can be shown

schematically as follows:

b =




P =




(5.3)

The elements of the precision matrix and b-value affected by one particular local contribu-

tion, that is by the local contribution for one particular element θu of the state sequence,

are indicated by small black circles with a dark or red background. The outlines of the local

contributions for other elements of the state sequence are shown as thin black rectangles.

The b-value rectangles have a small horizontal offset to enable them to be seen more clearly.

For the trajectory HMM acoustic model in §3.3.2 with parameters λ = ([bqd, τqd]q,d, [wdk]d,k, q)

the local contributions are

bLC
k (q;λ) =

D−1∑
d=0

bqdwdk, k ∈ {−KL, . . . ,KR} (5.4)

PLC
kl (q;λ) =

D−1∑
d=0

τqdwdkwdl, k, l ∈ {−KL, . . . ,KR} (5.5)

where KL and KR are the left and right extents of the collection of windows. We can verify

(5.1), (5.2), (5.4) and (5.5) for the trajectory HMM acoustic model by writing out (3.39)

and (3.40) componentwise. Setting K = KL +KR, bLC(q;λ) is a (K+1)-dimensional vector

and PLC(q;λ) is a (K+ 1)× (K+ 1) matrix. As described in §3.2.2 the window coefficients

used for the first few and last few frames, corresponding to the first few and last few rows

of the window matrix W , are adjusted. This means that none of the local contributions

above extend before the first frame 1 or after the last frame T . Note that PLC(q;λ) is a

leaf-specific linear combination of a set of fixed matrices, where each fixed matrix is the

outer product of a vector of window coefficients with itself. Thus PLC(q;λ) typically has

rank D.

In the paragraph above we assumed the form of trajectory HMM acoustic model in

§3.3.2. For the mild generalization presented in §5.2, there are additional local contributions

corresponding to the additional states. For example in the KL = KR = 1 case, both models

have contributions from frame 1 to frame 3 and from frame 1 to frame 2, but only the model

in §5.2 has a contribution from frame 1 to frame 1.
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For the LGLAR acoustic model with parameters λ = ([[aqk]
K+1
k=1 , σ

2
q ]
Q
q=1, q) the local

contributions are

bLC
k (q) = −ãq(K+1)ãq(−k), k ∈ {−K, . . . , 0} (5.6)

PLC
kl (q) = ãq(−k)ãq(−l), k, l ∈ {−K, . . . , 0} (5.7)

where K is the depth, and the ãqk values are using the ã parameterization described in

§2.2.4 for the linear regression model for leaf q. We can verify (5.1), (5.2), (5.6) and (5.7)

for the LGLAR acoustic model by writing out b = LTξ and P = LTL componentwise and

using the definitions of L and ξ given in §2.2.5 and §4.3.3. For a depth K model, bLC(q;λ)

is a (K + 1)-dimensional vector and PLC(q;λ) is a (K + 1)× (K + 1) matrix. Some of the

local contributions extend before the first frame, and one way to cope with this is to simply

truncate bLC(q;λ) and PLC(q;λ), corresponding to assuming the initial acoustic context is

equal to zero. Note that PLC(q;λ) is the outer product of a leaf-specific vector with itself.

Thus PLC(q;λ) has rank 1.

Given the viewpoint described above, a natural generalization of both the trajectory

HMM acoustic model and the LGLAR acoustic model would be to allow PLC(q;λ) to be

the sum of a small collection of outer products of leaf-specific vectors, or even an arbitrary

positive semi-definite matrix. We do not evaluate this generalization in this thesis.

The view in terms of local contributions presented here is closely related to the view

of the trajectory HMM as a product-of-experts model described in §3.3.2. Any product-of-

experts model where the experts have Gaussian dependence on the trajectory values has

an overall distribution over trajectories whose precision matrix and b-value are built up

additively from contributions. If each expert depends only on a single element θt of the

state sequence, and is local in the sense that it depends only on trajectory values ct−A:t+B

for some fixed non-negative integers A and B, then the precision matrix is banded and

built-up from local contributions in the same way as above.

5.3.2 Viewing the trajectory HMM acoustic model autoregressively

In this section we describe a novel way to view both the trajectory HMM acoustic model

and the LGLAR acoustic model as instances of a certain class of generalized autoregressive

acoustic model. After establishing terminology, we state and prove our main result, then

show how this allows the trajectory HMM to be written as a directed graphical model. For

clarity of presentation we state our results for the trajectory HMM acoustic model with

right extent KR = 0. As discussed in §5.2 this involves no fundamental loss of generality,

though allowing general right extent would necessitate minor changes to the definitions and

results below.
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We first establish some terminology. In §4.3.1 we defined an autoregressive acoustic

model as a trajectory-level acoustic model P(c | θ, λ) which satisfies

P(c | θ, λ) =
T∏
t=1

P(ct | ct−K:t−1, θt, λ) (5.8)

for some fixed initial acoustic context c−(K−1):0 and non-negative integer K. We define a

generalized autoregressive acoustic model as a trajectory-level acoustic model which satisfies

P(c | θ, λ) =

T∏
t=1

P(ct | ct−K:t−1, θt:T+K , λ) (5.9)

The difference between these two definitions is in how much of the state sequence θ is

“available” to the model when predicting ct from ct−K:t−1. Note that it is possible to view

a generalized autoregressive acoustic model as an autoregressive acoustic model defined

on an expanded state space: defining the generalized autoregressive state θ̃t = θt:T+K , the

generalized autoregressive acoustic model with state sequence θ is an autoregressive acoustic

model with state sequence θ̃.

The main result of this section is that the trajectory HMM acoustic model in §5.2 with

right extent 0 is a generalized autoregressive acoustic model where P(ct | ct−K:t−1, θt:T+K , λ)

is linear Gaussian in c. Note that the distribution P(c | θ, λ) over c for a given θ and λ is

Gaussian with banded precision matrix, and so, following the discussion in §2.2.5, it can be

written as a composite linear Gaussian autoregressive distribution. Thus

P(c | θ, λ) =
T∏
t=1

P(ct | ct−K:t−1, θ, λ) (5.10)

where P(ct | ct−K:t−1, θ, λ) is linear Gaussian in c. The remaining part of the claim is that

the parameters of the linear Gaussian distribution P(ct | ct−K:t−1, θ, λ) at time t do not

depend on θ1:t−1. This can be proved in a number of ways. Firstly, the states θ1:t−1

only affect the block P(1:t−1)(1:t−1) of the precision matrix P . For the alternative Cholesky

decomposition P = LTL, changing matrix entries in the block P(1:t−1)(1:t−1) of the original

matrix only affects matrix entries in the block L(1:t−1)(1:t−1) of the Cholesky factor. This

may be verified by writing P = LTL as a block matrix equation. Thus the autoregressive

coefficients and conditional standard deviation at time t, which are given by the tth row of

L, do not depend on θ1:t−1. Similarly, by noting that θ1:t−1 only affects the block b1:t−1 of

the b-value vector and writing b = LTξ as a block matrix equation, it may be verified that

the autoregressive bias at time t does not depend on θ1:t−1. This establishes the desired

result. A second way to see the claimed result uses the language of factor graphs (Bishop,

2006, section 8.4.3). The trajectory HMM acoustic model in §5.2 with right extent 0 is of
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the form

P(c | θ, λ) =
1

Z(θ, λ)

T+K∏
t=1

w(ct−K:t, θt, λ) (5.11)

for some function w : RK × Ψ × Ξ → R, where Ψ is the state space and Ξ is the space

of allowed parameters. This is essentially just the product-of-experts view of the tra-

jectory HMM acoustic model that was presented in §3.3.2, but grouping the DT experts

into T experts. The Markov blanket of ct:T in the factor graph specified by (5.11) is

(ct−K:t−1, θt:T+K , λ), so P(ct:T | c1:t−1, θ, λ) = P(ct:T | ct−K:t−1, θt:T+K , λ). Thus by margin-

alizing over ct+1:T we have P(ct | c1:t−1, θ, λ) = P(ct | ct−K:t−1, θt:T+K , λ) as desired. Finally

it is possible to see the claimed result by explicitly manipulating (5.11) using elementary

rules of probability. Full details of this approach have previously been given in a technical

report (Shannon and Byrne, 2012). The explicit approach shows that

P(ct | ct−K:t−1, θt:T+K , λ) =
w(ct−K:t, θt, λ)β(ct−K+1:t, θt+1:T+K , λ)

β(ct−K:t−1, θt:T+K , λ)
(5.12)

where β is defined by

β(ct−K:t−1, θt:T+K , λ) =

∫ T+K∏
u=t

w(cu−K:u, θu, λ) dct:T (5.13)

and can be computed recursively using

β(ct−K:t−1, θt:T+K , λ) =

∫
w(ct−K:t, θt, λ)β(ct−K+1:t, θt+1:T+K , λ) dct (5.14)

with the initial value given by

β(cT−K+1:T , θT+1:T+K , λ) =

T+K∏
u=T+1

w(cu−K:u, θu, λ) (5.15)

For concreteness we associate β(ct−K:t−1, θt:T+K , λ) with frame t− 1. By a slight abuse of

notation we sometimes write βt−1(ct−K:t−1) instead of β(ct−K:t−1, θt:T+K , λ) when the state

sequence θ and model parameters λ are clear from context. The log quadratic function βt

can be thought of as encoding the collective preferences of future states regarding the value

of the trajectory near frame t. Thus in the autoregressive view of the trajectory HMM

acoustic model, the βt values pass back information about the preferences of future states,

and it is using this information to inform the autoregressive distribution at the current

time that allows the trajectory HMM acoustic model to avoid suffering from future state

blindness. The fact that the claimed result can be viewed either in terms of a Cholesky

decomposition or in terms of a β recursion is not all that surprising: the β recursion

presented above is akin to Kalman filtering backwards in time, and the connection between

Kalman filtering and the Cholesky decomposition is well known (Eubank and Wang, 2002).
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θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

B1 B2 B3 B4 B5 B6

C1 C2 C3 C4 C5 C6C0C−1 C7 C8

Figure 5.3: A directed graphical model equivalent to the trajectory HMM with window left
extent KL = 2 and window right extent KR = 0, so K = KL + KR = 2. Here θ = [θt]

8
t=1

is the state sequence and C = [Ct]
6
t=1 is the speech parameter sequence. For each frame t,

portion p and vector component i, Btpi consists of the parameters of a log quadratic function
R2 → R. Each Bt node is deterministic given its parents. The value θ0 is a deterministic
initial state. The initial acoustic context C−1:0 and the final acoustic context C7:8 are fixed.
The nodes θ1:8 also depend on the label sequence l and the model parameters ν, and the
nodes B1:6 and C1:6 also depend on the model parameters λ (not shown).

The introduction of the β values allows a new view of the trajectory HMM as a directed

graphical model. To see this, first note that the β values can be computed recursively, with

βt−1 computed from (βt, θt, λ) using (5.14). The autoregressive parameters to use at frame t

can be computed from (βt, θt, λ) using (5.12). This means that the trajectory HMM acoustic

model can be viewed as a directed graphical model where: βt−1 is a deterministic node

with parents θt and βt; the node ct has parents θt, βt and ct−K:t−1; and the state sequence

θ is conditioned on. In the case of a trajectory HMM, which consists of a Markovian

state transition model together with a trajectory HMM acoustic model for each portion

p and vector component i of the speech parameter sequence, we have a corresponding log

quadratic β function for each frame t, portion p and vector component i, and we denote

this log quadratic function, or equivalently its parameters, by Btpi. This allows us to write

the trajectory HMM as the directed graphical model shown in Figure 5.3. Note that we

are free to choose the arrows between the state sequence nodes to be directed forwards

or backwards; the procedure in §3.1.5 used to construct the state transition model from

the duration model can be applied in either case. In contrast it is an essential feature of

the model that the arrows between B nodes point in a different direction to the arrows

between C nodes. The graphical model provides a simple way to see how the trajectory

HMM effectively passes information about future states backwards through time.

The LGLAR acoustic model can of course also be written as a generalized autoregressive

acoustic model. In this case the β values that get passed back are degenerate: they have a
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zero vector for the b-value and a zero matrix for the precision. Thus no information about

future elements of the state sequence is passed backwards to the present time, though

it should be noted that the state θt does already encode some information about future

phonemic events due to the use of full-context labels and the fact that the state includes

the number of frames remaining in the current sublabel.

The above view of the trajectory HMM acoustic model as a generalized autoregressive

acoustic model may be used to interpret any model built up from local contributions as a

generalized autoregressive acoustic model, so in a sense the result presented in this section is

more general than the local contribution result presented in §5.3.1. However the two results

provide different insights into the relationship between the trajectory HMM acoustic model

and the LGLAR acoustic model, and so we view them as complementary.

5.4 Investigation of theoretical and experimental

differences

In this section we examine some of the differences between the standard framework, the

trajectory HMM and the LGLAR HMM. Many of the subsections start by summarizing

the theoretical differences between the three models, then investigating certain aspects of

this difference further using a combination of theoretical arguments and experiments.

5.4.1 Consistency

The autoregressive HMM and trajectory HMM are both consistent in the sense that they use

the same normalized model during training and synthesis. As discussed in §3.3.1 the stand-

ard HMM synthesis framework is inconsistent, with an unnormalized model effectively used

during training. The lack of normalization in the standard model used during parameter

estimation means that the probabilistic justification for conventional training procedures in

terms of maximizing the likelihood strictly speaking does not apply. However it is an inter-

esting question to what extent this lack of normalization has practical consequences. In this

section we investigate this question, showing that the standard HMM synthesis framework

greatly underestimates predictive variance. While the trajectory HMM and autoregressive

HMM differ in many ways, the fact they are both consistent means they do not systemat-

ically underestimate predictive variance. Some of the work presented in this section was

previously presented in a conference paper (Shannon et al., 2011).

A representation of the distribution over trajectories for the three models, for part

of one test corpus utterance, is shown in Figure 5.4. For each system we plot the mean

trajectory along with ±1.5 predictive standard deviations, as we did for a synthetic data

set in Figure 5.1. This gives some insight into the distribution over trajectories encoded
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by the various models by showing the range of values each model expects to see at each

time. We can see that the standard approach underestimates the variance: the natural

trajectory is often outside the range predicted by the model, and we see a few events that

are so many standard deviations from the mean that they should only happen extremely

rarely according to the model. The normalized models have much larger variances, and

this looks more reasonable: the natural trajectory is a long way outside the predicted range

much less often.

The extremely low test set log probability of standard systems is mainly due to their

predictive variance being too small. System SB2 in Table 4.4 artificially boosts the pre-

dictive variance by multiplying both the precision matrix P and b-value b by a factor of 1
3 ,

which is equivalent to multiplying the trajectory covariance by a factor of 3 while leaving

the mean trajectory unaltered. This increases the approximate mcep-only test set log prob-

ability from 29.12 nats to 46.94 nats. This is strong evidence that the standard approach

systematically underestimates predictive variance as Figure 5.4 suggests and as we claimed

in §4.6.3.

In fact it is analytically tractable to compute the optimal variance boost, meaning

the variance boost which gives the highest log probability on a given corpus. For each

vector component of the speech parameters the predictive distribution is a Gaussian with

mean trajectory µ and precision matrix P depending on the state sequence θ and model

parameters λ. A system with variance boost 1/k has mean trajectory µ and precision

matrix kP , and so for a trajectory c has log pdf

logP(c | θ, λ) = −T
2 log 2π + 1

2 log det(kP )− 1
2(c− µ)T(kP )(c− µ) (5.16)

= −T
2 log 2π + 1

2 log detP + T
2 log k − 1

2k
(

(c− µ)TP (c− µ)
)

(5.17)

Thus the optimal variance boost is given by

1

k̂
=

1

T
(c− µ)TP (c− µ) (5.18)

The optimal variance boosts for the standard system S2 on the training corpus assuming

fixed median alignments are shown in Figure 5.5. We can see that the optimal variance

boost for all cepstral components is around 3. Using the precise optimal variance boost

rather than the simple heuristic value of 3 as we did for system SB2 makes very little

difference, increasing the median-alignment mcep-only TSLP from 46.94 nats to 46.95 nats.

For a standard system with 4 windows that we trained, the optimal variance boost

was around 4 for all cepstral components, and we hypothesize that the optimal variance

boost for a standard system with n windows is often roughly n. Note that in the simple

case where we take D copies of a trained probabilistic model P(c | θ, λ) which is Gaussian

in c and combine them in a product-of-experts framework, the optimal variance boost is
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(a) standard HMM synthesis framework (system S2)
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0.8 1.0 1.2 1.4 1.6 1.8 2.0
time (s)

−2

−1

0

1

2

3

4

ih b s r ng n f ao y
w l iy t ao ih ah f r uw

mean trajectory
natural trajectory

(c) autoregressive HMM (system A2)

Figure 5.4: Visualization of the distribution over trajectories for a test utterance for the 1st

mel cepstral coefficient for each of the three models, together with the natural trajectory
actually generated by the speaker. A median alignment was used for each system to allow
visual comparison with the natural trajectory.



5.4. Investigation of theoretical and experimental differences

0 5 10 15 20 25 30 35
mcep index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

va
ri

an
ce

m
ul

tip
lie

r

Figure 5.5: The optimal variance boost for the standard system S2 for each component of
the spectral portion of the speech parameters. The values are optimal in the sense of giving
the highest log probability on the training corpus assuming a fixed alignment. The dotted
line is at a value of 3, which is an upper bound on the optimal variance boost.

precisely D. In fact it is possible to prove that if a standard system is trained using a fixed

alignment then the optimal variance boost computed on the training set will always be less

than or equal to the number of windows. We show this in Appendix A.

Note that while the simple variance boost presented above fixes the largest pathology

in the predictive covariance of the standard HMM synthesis framework, the inconsistent

training also has other, subtler deleterious effects, as we can see from the fact that the

approximate mcep-only TSLP of system SB2 is still a long way behind that of system

T2 and system A2. In contrast the inconsistent training used by the standard framework

appears to have a more modest impact on the accuracy of the mean trajectory, as evidenced

by the relatively small difference in MCD between the standard and trajectory systems.
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5.4.2 Computational efficiency of parameter estimation

Parameter estimation for the autoregressive HMM and the standard HMM synthesis frame-

work is more computationally efficient than for the trajectory HMM, and in two distinct

ways. Firstly, for the simplest form of training assuming a fixed state sequence, the autore-

gressive HMM and standard HMM synthesis framework have simple closed form solutions

for the maximum likelihood parameters. Part of the tractability of the maximum likeli-

hood solution for these models comes from the fact that the log likelihood function can

be decomposed as a sum of terms where each term depends only on the parameters for

one leaf, and so the overall maximization problem is separable in the sense that it can be

solved by solving a simpler maximization problem for each leaf. Having a log likelihood

function which decomposes in this way is a common property of directed graphical models.

In contrast the trajectory HMM does not have a closed form solution for the variance para-

meters, and requires a gradient ascent scheme to optimize these (Zen et al., 2007b). The

mean parameters do have a closed form solution, but it is not separable over the parameters

for different states and involves solving a potentially large and dense system of linear equa-

tions. Secondly, for the autoregressive HMM and standard HMM synthesis framework the

distribution P(C, θ | l, ν, λ) factorizes over time with respect to the state sequence θ, which

allows the Viterbi and forward-backward algorithms to be used. In contrast the trajectory

HMM must resort to an approximate delayed decision Viterbi decoder for alignment. The

above two points, together with the existence of sufficient statistics for the Gaussian distri-

bution and the linear regression model, mean that the standard HMM synthesis framework

and the LGLAR HMM both support efficient re-estimation using expectation maximization

and efficient decision tree clustering whereas the trajectory HMM does not.

It should be noted that the LGLAR HMM can be less efficient during training than the

standard HMM synthesis framework if very large depths are used. Accumulation requires

O(K2) memory and the M step of re-estimation requires O(K3) time where K is the depth,

in contrast to the acoustic model used during training by the standard HMM synthesis

framework, which requires O(D) memory and time where D is the number of windows.

However for typical depths of K = 2 or K = 3 this effect is not substantial.

Given that one of the advantages of the autoregressive HMM over the trajectory HMM

is that it supports expectation maximization and decision tree clustering, it is interesting

to ask how much benefit the final trained autoregressive system derives from using these

parameter estimation methods. Indirectly this also tells us something about how much

the trajectory HMM system might be losing by reusing the trees and alignments from the

standard system. To investigate this question experimentally, we trained autoregressive

systems which did not take full advantage of the training procedures available for the

autoregressive HMM. The systems are shown in Table 5.1. System AF used the same
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system
update
trees

update
alignments

description

AF × × LGLAR HMM with fixed trees and alignments
AFC X × AF followed by decision tree clustering
AE × X AF followed by expectation maximization
A2 X X AF followed by multiple rounds of clustering and EM

Table 5.1: Systems used to investigate the benefit gained from using the efficient training
procedures available for the autoregressive HMM.

system
mcep
leaves

MCD
DTW (dB)

using median alignments

using sys mcep TSLP (nats)

AF 812 5.74 S 47.84
AF 47.97

AFC 960 5.73 S 47.83
AFC 48.01

AE 812 5.75 AE 47.98
A2 964 5.74 A2 48.02

Table 5.2: An evaluation of the benefit gained from using the efficient training procedures
available for the autoregressive HMM.

approach used to train the trajectory HMM systems T and T2 in §4.6, namely using the

trees from system S and fixed median alignments from system S. System AFC used fixed

standard alignments but did decision tree clustering, whereas system AE used the tree from

system S but updated the parameters with EM using system AF as an initialization. System

A2 was described in §4.6.4 and uses several rounds of autoregressive clustering and EM. It

can be viewed as system AFC followed by four iterations of EM, clustering, and four more

iterations of EM. The experimental set-up otherwise was the same as used in §4.6, with the

model structure parameters chosen to give good TSLP: 5 sublabels, depth 3 autoregressive

modelling for the spectral and aperiodicity portions of the speech parameters, and an

MDL tuning factor of 0.3 used during autoregressive clustering. The results are shown in

Table 5.2. We can see that:

• The system trained using fixed standard alignments and trees (AF) does very well,

with the same MCD as the fully autoregressive system (A2) and only slightly worse

TSLP (47.97 nats instead of 48.02 nats).

• Expectation maximization on its own (system AE) makes almost no difference by

either of the metrics, while decision tree clustering on its own (system AFC) achieves

a very small gain in TSLP (48.01 nats instead of 47.97 nats).
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• Performing multiple iterations of clustering and expectation maximization (system

A2) makes almost no difference by either metric compared to just doing autoregressive

clustering (system AFC).

We can thus conclude that, when a good initial alignment and good initial trees from a

standard system are used, autoregressive decision tree clustering and expectation maxim-

ization have only a small effect. While it is not possible to directly extrapolate from the

autoregressive HMM case to the trajectory HMM case, this suggests that, for good initial

alignments and trees, the trajectory HMM systems may not lose too much from not being

able to do expectation maximization and decision tree clustering.

Table 5.2 also allows us to investigate the effect of doing re-alignment during evaluation.

For the systems which use a fixed alignment from system S during training (system AF and

system AFC), Table 5.2 shows both the approximate mcep TSLP obtaining using this fixed

alignment and the approximate mcep TSLP obtained using median alignments from the

system being evaluated. We can see that using median alignments from the system being

evaluated gives a sizeable improvement: 0.13 nats for system AF and 0.18 nats for system

AFC. Again, while it is not possible not directly extrapolate from the autoregressive HMM

case to the trajectory HMM case, this suggests that the trajectory HMM systems T2 and

TM2 in Table 4.4 might have had slightly higher mcep TSLP values if we had been able to

use median alignments from those systems rather than from system S during evaluation.

If so, the improvement in true TSLP given by the trajectory HMM system T2 over the

autoregressive HMM system A2 is probably slightly greater than Table 4.4 would suggest.

5.4.3 Low latency synthesis

In this section we compare the standard framework, the trajectory HMM and the LGLAR

HMM in terms of their ability to do low latency speech parameter generation. This is of

interest in many applications. For example for embedded devices with a limited CPU it may

be useful to start emitting the synthesized audio for the first part of an utterance before the

audio for the later parts of the utterance has been computed, and low latency parameter

generation provides one component of such a low latency speech synthesis system.

We first consider implementations of standard speech parameter generation. The stand-

ard speech parameter generation algorithm described in §3.2.4 computes the mean traject-

ory exactly, but requires O(T ) time to compute the first frame. This means latency can

potentially be high, and both latency and memory usage are not predictable at design

time since utterances vary in length. As mentioned in §3.2.5 there is a low latency time-

recursive parameter generation algorithm for the standard HMM synthesis framework and

the trajectory HMM, but it is slower than the standard Cholesky-based algorithm, and

only computes the mean trajectory approximately. In contrast the autoregressive speech
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parameter generation algorithm described in §4.3.3 requires only O(1) time to compute

the first frame, computes the mean trajectory exactly, and has predictably small memory

and CPU requirements. Thus the LGLAR HMM supports an exact and low latency gen-

eration algorithm whereas for the standard framework and the trajectory HMM we must

compromise on one of these aspects.

Conventionally post-filtering is used as the approach to reduce muffledness when low

latency speech parameter generation is desired, since the conventional gradient ascent-based

algorithm for parameter generation considering global variance is inherently high latency.

Post-filtering can be used with any of the approaches described in the previous paragraph.

We will see in Chapter 6 that it is in fact possible to do low latency GV-like parameter

generation for the standard framework and trajectory HMM, though we do not investigate

this possibility experimentally in this thesis.

5.4.4 The form of local contributions

We saw in §5.3.1 that the b-value and precision matrix for both the trajectory HMM acoustic

model and the LGLAR acoustic model can be decomposed into overlapping local contribu-

tions, where the two models differ only in the form of these local contributions. Specifically

we can identify four ways in which the form of the collection of local contributions differs

between the two models:

• Rank of precision contributions. For the trajectory HMM acoustic model, PLC(q;λ)

has rank at most D and typically has rank equal to D, whereas for the LGLAR

acoustic model PLC(q;λ) has rank 1. If we write Pr to denote the set of (K +

1) × (K + 1) real positive semi-definite matrices of rank at most r, then we have

that PLC(q;λ) is in PD for the trajectory HMM acoustic model and is in P1 for the

LGLAR acoustic model.

• Flexibility of precision contributions given rank. We say a matrix P in Pr is attainable

for a given model if there is some choice of parameters for leaf q such that PLC(q;λ)

is equal to P . For the trajectory HMM acoustic model only a convex proper subset

of PD is attainable, whereas for the LGLAR acoustic model any element of P1 is

attainable.

• Relationship between b-value and precision contributions. For the LGLAR acous-

tic model there is a constraint between the local contributions to the b-value and

precision: bLC(q;λ) determines PLC(q;λ) up to a constant and PLC(q;λ) determ-

ines bLC(q;λ) up to a constant. For the trajectory HMM acoustic model the sub-

contribution for each window satisfies the same constraint, but overall there is no

such constraint.
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• Location of final contribution. For the LGLAR acoustic model the final contribution

is the one that extends from time T −K to time T . For the trajectory HMM acoustic

model in §5.2 there are K additional contributions, one from time T −K + 1 to time

T , one from time T −K + 2 to time T , etc.

The first three differences are in the parameterization used for each contribution. The final

difference is in the layout of the collection of contributions over time with respect to the

trajectory. The right extent KR, meaning the number of elements of the trajectory after

frame t which are directly affected by the state at frame t, is also a difference between

the two models, since the LGLAR acoustic model has KR = 0 and the trajectory HMM

acoustic model typically has KR > 0, but as discussed in §5.2 this is essentially only a

superficial difference and so we do not include it above.

5.4.5 Contextual information in the generalized autoregressive state

We saw in §5.3.2 that the trajectory HMM acoustic model and the LGLAR acoustic model

are both generalized autoregressive acoustic models, or equivalently are autoregressive

acoustic models using an expanded state which we termed the generalized autoregress-

ive state. In this section we compare the trajectory HMM acoustic model and the LGLAR

acoustic model from the point of view of how they use the contextual information contained

in this generalized autoregressive state. For clarity of presentation we again restrict to the

case where the trajectory HMM acoustic model has right extent 0.

To recap, as we saw in §5.3.2, the generalized autoregressive state θ̃t consists of both

the conventional current state θt and the conventional future states θt+1:T+K . As we saw

in §3.1.5, the conventional state ψ = (m, j, s, d) consists of a label m, index j of the current

label in the label sequence, sublabel s and the number of frames d remaining in the current

sublabel. As we saw in §3.1.1, the full-context label m may be further decomposed into a

quinphone, which specifies the current, previous two and next two phonemes, and which we

refer to as the phonemic context for brevity, and additional, mostly non-phonemic, context

which we refer to as the linguistic context.

The information about phonemic and linguistic context contained in the generalized

autoregressive state θ̃t = θt:T+K may thus be categorized as follows:

• the current phoneme and sublabel, previous two phonemes, next two phonemes, and

current linguistic context

• the number of frames remaining in the current sublabel

• the durations of all sublabels in the next two phonemes, and of all sublabels remaining

in the current label
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• the identity of, and duration of all sublabels in, phonemes after the next two

• linguistic context for the next phoneme and all subsequent phonemes

Clearly some of these items are likely to be more important than others for modelling speech

well. For example we would guess that the penultimate item has a relatively minor effect,

and the last item probably contains little relevant information that is not already present

in the current linguistic context. In this generalized autoregressive view, the trajectory

HMM acoustic model and the LGLAR acoustic model can thus be seen to differ in the

information about future phonemic and linguistic events that is available to them at a

given time. The first item in the list is information that is already able to be used by

the LGLAR acoustic model during decision tree clustering, whereas the remaining items

consist of information that may conceivably be used by the trajectory HMM acoustic model

but which is not available to the LGLAR acoustic model with conventional decision tree

questions. Note that, as we saw in §5.3.2, the trajectory HMM acoustic model does not

have “direct access” to the additional information in the generalized autoregressive state; it

only has access to a β value encoding the collective preference of future states regarding the

current (and nearby) trajectory values. Nevertheless this β value depends on, and contains

some information about, all future states.

The two models also differ in the way they use the information that both have access

to at the present time, because the two models are parameterized differently. For example

the next two phonemes at a given time are known to both models. For the LGLAR HMM

acoustic model the next two phonemes only affect the choice of leaf, and the autoregressive

parameters for the current time are read directly from that leaf. In contrast, for the traject-

ory HMM acoustic model the next two phonemes also affect the autoregressive parameters

for the current time via their indirect effect on the current β value, which depends on the

parameters for the next few labels and sublabels and these are stored across multiple leaves.

Thus in terms of the generalized autoregressive viewpoint the trajectory HMM acoustic

model and the LGLAR acoustic model differ in two ways: the information about the future

which may in principle affect the autoregressive distribution at the current time; and the

way that the current autoregressive distribution is parameterized.

5.4.6 Compensating for future state blindness

In §5.1 we discussed ways in which the autoregressive systems used in Chapter 4 might

already be mitigating the effects of future state blindness to some extent. Specifically

we hypothesized: that right context, meaning the future phonemes that are included in

a full-context label, might be more important for the autoregressive HMM than for the

standard HMM synthesis framework, and left context less important; and that the autore-
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Figure 5.6: Graph showing the prevalence of decision tree questions about various parts of
the phonemic context for a standard system and an autoregressive system. The ordinate
is the percentage of all questions in the decision tree for a given sublabel that are about a
certain part of the phonemic context. In the legend, L refers to the previous and previous-
previous phoneme, C refers to the current phoneme, and R refers to the next and next-next
phoneme. For example looking at the line labelled “C+R (sys S)”, we can see that for
system S roughly 40% of the questions in the decision tree for sublabel 2 were about the
current, next, or next-next phoneme.

gressive HMM might move label or sublabel boundaries earlier in time during expectation

maximization, effectively allowing the present state to contain more information about fu-

ture phonemic events. In this section we describe the results of some simple experiments

designed to investigate these hypotheses.

As a crude test of our hypothesis about the importance of right and left context, we

examined the prevalence of questions about various parts of the phonemic context in the

learned decision tree for system S and system A2. We decided to compare systems S and

A2 rather than systems S2 and A2 so that the two systems under comparison would use

similar numbers of leaves overall. Since a separate decision tree is grown for each sublabel we

decided to split our analysis by sublabel. For each sublabel and each system, we computed

the percentage of questions in the learned decision tree which were about “left” phonemic

context (part L) consisting of the previous and previous-previous phoneme, the central

phonemic context (part C) consisting of the current phoneme, the “right” phonemic context

122



5.4. Investigation of theoretical and experimental differences

(part R) consisting of the next and next-next phoneme, and the linguistic context (part O)

consisting of everything else. For each sublabel and each system we thus have a kind of

“distribution” over parts (L, C, R, O) where the value for a given part is the probability

that a randomly selected question in the tree would be about that part. Our hypothesis is

that in going from system S to system A2 the probability mass tends to shift away from L

and towards R. Since it is hard to examine such a shift in probability mass by looking at the

raw distribution values, we decided to look at the corresponding cumulative distributions,

i.e. the distribution value for part R, the sum of the values for parts R and C, and the

sum of the values for parts R, C and L. If the values of the cumulative distribution for a

given sublabel are uniformly greater for system A2 than for system S, then we can conclude

that system A2 tends to ask questions about “further right” phonemic context more of the

time. The results are shown in Figure 5.6. From the lines labelled “L+C+R” we can see

that the percentage of questions about any phonemic context, i.e. not about O, is roughly

constant across sublabels and systems. This means little probability mass shifts between

the phonemic and linguistic parts, which simplifies analysis of the results. From the lines

labelled “R” and “C+R” we can see that for most sublabels, the probability mass does

indeed shift right in going from system S to system A2. This supports the hypothesis that

further right context is more important for the autoregressive HMM than for the standard

HMM synthesis framework. Curiously for the last sublabel probability mass appears to shift

left. We can also see that for both systems the probability mass shifts further and further

right with increasing sublabel, as we might expect based on co-articulation considerations:

it seems reasonable that future phonemes would have a stronger influence on the trajectory

value towards the end of the realization of the current phoneme than towards the beginning.

To investigate whether the autoregressive HMM moves label or sublabel boundaries

earlier in time during expectation maximization, we looked at the placement of the bound-

aries between labels, and between sublabels, for system S and system A2. Because align-

ments from system S were used to initialize the training of system A2, comparing these

two systems should allow us to see any systematic label boundary shifts introduced by the

autoregressive training procedure. We treated the utterance-final boundary as a boundary,

but not the initial boundary. We computed median alignments for each utterance for sys-

tem S and system A2, and computed the change or shift in each boundary in going from

system S to system A2. We then computed the average shift over all boundaries in the test

set. The median shift was 0 frames at both the label and sublabel level. The mean shift

was −0.20 frames at the label level and −0.19 frames at the sublabel level. Note that a

negative number corresponds to a shift earlier in time as predicted. Thus we may conclude

that if there is a systematic effect it is in the direction predicted, but the magnitude of

the systematic effect appears to be small at less than 1 frame. This suggests that either

expectation maximization finds a local maximum that it is difficult to move away from, or
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that for substantial shifts of the label and sublabel boundaries the positive consequences

of knowing more about the future are outweighed by the negative consequences of knowing

less about the present.

5.4.7 Visualization of the generalized autoregressive viewpoint

In this section we illustrate graphically the view of the trajectory HMM acoustic model as

a generalized autoregressive acoustic model that was presented in §5.3.2, with the intention

of making the somewhat abstract view presented there more concrete. We also view the

LGLAR acoustic model in the same way for comparison.

In §5.3.2 we saw that the trajectory HMM acoustic model can be viewed as a generalized

autoregressive acoustic model. The autoregressive parameters for a given frame consist of

autoregressive coefficients, an autoregressive bias and a conditional standard deviation. The

result in §5.3.2 shows that the autoregressive parameters at frame t depend not only on the

state θt as they do for the LGLAR acoustic model but also on future states θt+1:T+K and,

in the case of window right extent KR = 1, the previous state θt−1.

The top two panels of Figure 5.7 show the autoregressive parameters for the trajectory

HMM system T2, given a fixed median alignment, for a particular utterance and vector

component. The top two panels of Figure 5.8 show the equivalent figure for the LGLAR

HMM system A2, again given a fixed median alignment. Median alignments are used to

allow comparison between the two figures. We can see that the autoregressive paramet-

ers derived from system T2 vary frame-by-frame due to the dependence on future states,

whereas the autoregressive parameters derived from system A2 are piecewise constant since

they are constant for the duration of each sublabel.

The two composite linear Gaussian autoregressive distributions may also be viewed in

terms of their equilibrium or target values. Suppose we have a composite linear Gaussian

autoregressive distribution with constant and stable autoregressive parameters where the

initial conditions are specified at some time. This stochastic process has some equilibrium

distribution which it settles down to after a while irrespective of the initial conditions, and

the mean trajectory settles down to a constant value, which we refer to as the equilibrium

value. As in §4.2, the difference between the mean trajectory and the equilibrium value is

a sum of exponentially decaying sinusoids, referred to as transients, with amplitudes that

depend on the initial conditions. The equilibrium value can be seen as a kind of “target”

value that the process is heading towards, but which it takes some finite time to get close

to. The two composite linear Gaussian autoregressive distributions above do not have

constant autoregressive parameters, but we can still compute the equilibrium value for the

autoregressive parameters for each frame. The bottom panels in Figure 5.7 and Figure 5.8

show the trajectories of these equilibrium values. These can again be interpreted as “target”
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Figure 5.7: Visualization of a trajectory HMM acoustic model as a generalized autoregress-
ive acoustic model (of depth K = 2, for system T2, mcep 1). The top two panels show the
autoregressive parameters for each frame. The bottom panel shows the equilibrium value
of each frame’s autoregressive parameters, compared to the distribution over trajectories.



0.8 1.0 1.2 1.4 1.6 1.8 2.0
time (s)

−1.0

−0.5

0.0

0.5

1.0

1.5

ih b s r ng n f ao y
w l iy t ao ih ah f r uw

coeff (a1)

coeff (a2)

coeff (a3)

(a) autoregressive coefficients

0.8 1.0 1.2 1.4 1.6 1.8 2.0
time (s)

−2

−1

0

1

2

3

4

ih b s r ng n f ao y
w l iy t ao ih ah f r uw

standard deviation (shown as ±1.5σ )
bias (a4)

(b) autoregressive bias and conditional standard deviation

0.8 1.0 1.2 1.4 1.6 1.8 2.0
time (s)

−2

0

2

4

6

ih b s r ng n f ao y
w l iy t ao ih ah f r uw

mean trajectory
“equilibrium” values

(c) distribution including autoregressive equilibrium values

Figure 5.8: Visualization of an LGLAR acoustic model as a generalized autoregressive
acoustic model (of depth K = 3, for system A2, for mcep 1). Unstable autoregressive
parameters (around 0.9 s and 1.85 s) show as gaps in the line of equilibrium values.
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values: the process at time t “heads towards” the equilibrium value at time t. We can see

that for both models, changes in these target values precede corresponding changes in the

trajectory, for example at the transition into the s phoneme just after 1.0 s. The equilibrium

values for the two models are broadly similar, though the LGLAR acoustic model values

tend to be more extreme. We find this view in terms of equilibrium or target values

somewhat insightful, but care should be taken since the analysis in terms of the limiting

behaviour says nothing about transients, and in the case of time-varying autoregressive

parameters it seems likely that transients may have a large influence.

In Figure 5.8 we can also see the effect of unstable autoregressive parameters, which

occur around 0.9 s and 1.85 s. Unstable autoregressive parameters have no equilibrium

value, and are shown as gaps in the figure. If the autoregressive parameters at time t are

unstable then the process at time t “heads away from” some fixed value. However this

divergence is gradual and is controlled by the learned parameters, so it may have a minimal

effect, or possibly even a beneficial effect, on the distribution over trajectories.

5.4.8 Stability and divergent trajectories

As discussed in §4.3.4, the LGLAR HMM suffers from a potential pathology whereby the

mean trajectory or sampled trajectories can diverge far outside the range of values which

might be considered reasonable, though divergent trajectories appear to be rare in practice.

In this section we discuss further the issue of instability in autoregressive coefficients, provid-

ing a simple example showing that instability can arise even in seemingly non-pathological

situations, and discussing why unstable trajectories are not observed more frequently in

practice. We suspect that this pathology is either impossible or much less likely to occur

for the standard HMM synthesis framework and trajectory HMM with conventional win-

dows. It is certainly the case that, when system T2 is viewed autoregressively using the

approach presented in §5.3.2 and using median alignments, the autoregressive coefficients

are stable for all frames in the test corpus for all vector components.

Divergent trajectories are rare for the LGLAR HMM despite the fact that unstable

autoregressive coefficient vectors are relatively common. For example, for system A2 8.0%

of test corpus frames for mcep 0 are generated using unstable autoregressive coefficients,

and 2.1% for mcep 1.

In the past we have argued (Shannon et al., 2013) that divergent trajectories are unlikely

to occur with standard parameter generation methods and duration models for well trained

systems, since typical durations of a given label and sublabel during parameter generation

will be similar to the durations of that label and sublabel during training, and it seemed

unlikely to us that grossly divergent distributions over trajectories of fixed length would

be learned given sufficient training data from a true distribution which did not display
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Figure 5.9: An artificial example demonstrating that a generated trajectory from a learned
autoregressive model can diverge far outside the range of values occurring in the data the
model was trained on, even when the generated trajectory has the same length as the
training data trajectories and even when unlimited training data is available.

these divergent trajectories. However this assumption is incorrect: for some quite non-

pathological true distributions, even given an arbitrary amount of training data, the learned

mean trajectory diverges far outside the range of values occurring in the training data. We

show this by providing a simple example of such a true distribution. Consider an LGLAR

acoustic model of depth K = 1, where θ is always of length T = 25, the state θt always takes

some fixed value, and the initial acoustic context c0 is 0. Thus the only model parameters are

an autoregressive coefficient, an autoregressive bias and a conditional standard deviation.

Suppose the true distribution has no noise, so the mean trajectory is the entire distribution,

and that the true mean trajectory µtrue consists of T −2 zeros followed by 1 followed by 1.2.

Note that the learned autoregressive coefficient and bias are the same no matter how much

training data from the true distribution is used. The learned autoregressive parameters

give rise to a learned mean trajectory µ shown in Figure 5.9. We can see that the learned

mean trajectory diverges massively outside the values occurring in the true trajectory. This

bad behaviour can be exacerbated by increasing the number of zeros at the start of the true

trajectory. Indeed if we take any true distribution which causes the learned autoregressive

parameters to be unstable, and modify the true distribution by deterministically prepending

zeros to any sampled trajectory, then the learned autoregressive parameters will be the
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same, but the learned mean trajectory will have more time to diverge. In the limit of

prepending enough zeros, we will always get divergence in any situation where the original

learned autoregressive coefficients were unstable. This provides another way to see that

there are true distributions which lead to badly divergent learned mean trajectories.

In fact we observed the above effect, where learned mean trajectories are divergent even

for well-trained models with no durational mismatch, when training the systems for the

illustration of future state blindness in §5.1. When the standard deviation of the noise of

the natural distribution is low, the learned mean trajectory in Figure 5.1(c) diverges before

the end of label 1.

Given that learned mean trajectories can be divergent even for well-trained models with

no durational mismatch, a natural question is why this phenomenon does not occur more

often for typical autoregressive HMM models of speech. The future state blindness example

shows that more noise can sometimes help to prevent divergent trajectories occurring. This

is presumably because the noise is acting as a type of regularization, making the learned

autoregressive coefficients less extreme. Indeed if we were to add white Gaussian noise

to every trajectory in the training corpus, the expected effect on the accumulators (2.52),

(2.53), (2.54) and (2.55) would be to add a constant to ũ and to the non-bias elements of

the diagonal of S̃, which is similar to the effect of using a simple regularizer. Natural mel

cepstral trajectories computed using standard analysis procedures look very “noisy”, as can

be seen for example in Figure 5.4, and it is therefore possible that one reason divergent

trajectories do not occur more often in practice is that this noisiness is having a regularizing

effect. As an aside, it is also possible that this noisiness has a regularizing effect during

parameter estimation in the case of the standard framework. Another contributing factor

may be the fact that segments with unstable coefficients are typically quite short. For

system A2 using median alignments on the test corpus, runs of unstable frames have a

median length of 3 frames for cepstral coefficient 0, or 4 frames for cepstral coefficient 1.

Unstable autoregressive coefficients are not always undesirable. To emphasize this, we

point out that the learned autoregressive parameters for labels 3 and 6 in Figure 5.1(d)

are unstable, yet the distribution over trajectories seems reasonable. It is even possible

that allowing unstable coefficients leads to a better learned distribution over trajectories,

since it makes the probabilistic model slightly more flexible. Indeed for labels 3 and 6 it

seems entirely appropriate that unstable autoregressive coefficients would provide the best

approximation of the true mean trajectory. As discussed in §4.3.4, a useful quantity for

assessing whether unstable autoregressive coefficients are likely to lead to badly divergent

trajectories is the time constant. In Figure 5.1(d) the duration of each of the unstable

segments, which is 5 frames, is substantially less than the time constant of the autoregressive

coefficients for these segments, which is 13.3 frames for label 3 and 13.7 frames for label 6.
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5.5 Summary of contributions

The major novel theoretical contributions of this chapter are two unifying views of the

trajectory HMM acoustic model and the LGLAR acoustic model, one viewing the b-value

and precision matrix as being built-up additively from local contributions (§5.3.1), and

the other viewing both models as generalized autoregressive models (§5.3.2). The second

view also leads to a novel view of the trajectory HMM as a directed graphical model. The

most substantial experimental contribution of this chapter is the fact that the standard

framework systematically underestimates the variance in the distribution over trajectories,

by roughly a factor of 3 for a system with 3 windows (§5.4.1).

Minor novel contributions of this chapter include: identification of future state blind-

ness as a weakness of the autoregressive HMM and an illustration of its effect for a simple

synthetic data set (§5.1); the realization that the trajectory HMM acoustic model can be

described as a conditional random field, and the associated relationship between future state

blindness and the label bias problem (§5.1); an appreciation that the window right extent

is essentially arbitrary (§5.2); a proof that the factor by which the standard framework

systematically underestimates the variance is at most the number of windows (§5.4.1 and

Appendix A); the discovery that the autoregressive HMM tries to compensate for future

state blindness by asking more questions about further right phonemic context compared to

the standard framework (§5.4.6); an example showing that learned autoregressive distribu-

tions with constant coefficients can be very divergent even if learned on a lot of data drawn

from a non-pathological true distribution (§5.4.8); and the idea that noise in the cepstra

might act as a regularizer during parameter estimation for all three models (§5.4.8).
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Chapter 6

Investigation of spread-based

speech parameter generation

We mentioned in §3.2.6 that parameter generation considering global variance often dramat-

ically improves the quality of synthesized speech compared to standard speech parameter

generation. We also saw that it has certain drawbacks: it is slower than standard speech

parameter generation and sometimes introduces artifacts. In this chapter we investigate

parameter generation considering global variance in detail and address these drawbacks.

The layout of this chapter is as follows. We first describe related previous work. We then

describe a slight generalization of parameter generation considering global variance which

we call spread-based generation. In the terminology established in this section, parameter

generation by maximizing a utility function such as (3.33) is referred to as utility GV

generation and is a special case of GV generation. We then show that GV generation

is amenable to an analysis using Lagrange multipliers. This analysis is ultimately made

possible by the fact that global variance and the Gaussian log probability are both quadratic

functions of the trajectory. For the standard framework and the trajectory HMM, this

analysis shows that GV generation is equivalent to standard generation on a modified

model. It also motivates a simple approximation, fixed-multiplier GMSD generation, which

provides GV-like generation at standard generation speeds. Global mean squared deviation

(GMSD) is a metric similar to GV which will be defined below.

We then examine the relationship between normalized models and GV generation. It

is sometimes thought that GV generation is compensating for a defect in the probabilistic

model rather than a defect in the standard parameter generation method, but we show

experimentally that normalized models such as the trajectory HMM and LGLAR HMM

model GV very well. For the trajectory HMM we show that modelling GV reasonably well

is a direct consequence of the feature functions used to define it.

Next we focus on the issue of artifacts. As mentioned in §3.2.6, the conventional way to
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prevent artifacts is to use early stopping during gradient ascent on the GV utility function,

but this is not an option for generation methods based on the analytic results presented

in the first part of the chapter since gradient ascent is not used. We therefore look for

an alternative way to prevent artifacts. We start by examining why GV generation in-

troduces artifacts. We present a simple synthetic example demonstrating a pathology in

GV generation and how this can lead to excursions in the generated trajectory. We then

show that excursions sometimes occur when using GV generation with a trained statistical

parametric speech synthesis system. We argue that these excursions are the cepstral-level

phenomenon responsible for the perceptual-level phenomenon of artifacts. We then discuss

practical ways to reduce excursions. Here the analytic results again prove useful, providing

a simple way to detect which frames are “at risk” of excursions for the standard framework

and the trajectory HMM, and suggesting a way to reduce their occurrence which we refer

to as local static parameter adjustment (LSPA). In an objective and subjective evaluation

we find that LSPA is very effective at reducing excursions and artifacts without degrading

naturalness.

Finally we bring the above threads together. In a subjective evaluation we find that

fixed-multiplier LSPA GMSD generation, which combines the use of fixed-multiplier GMSD

generation for speed and LSPA to reduce artifacts, gives as good naturalness as conventional

parameter generation considering global variance. This makes it a very attractive parameter

generation algorithm when fast, high-quality generation is desired. A particularly nice

aspect of fixed-multiplier LSPA GMSD generation is that it can be implemented as a simple

adjustment to the model, with the standard generation algorithm, or its time recursive

variant, used at synthesis time. We end with a discussion of the questions raised and

conclusions that can be drawn from our investigation of spread-based generation. We

argue that excursions and artifacts are due to an inherent weakness of GV generation,

exacerbated by a deficiency in the probabilistic model, specifically in the decision tree.

6.1 Related work

Previous attempts to make GV generation faster at synthesis time have mainly focused on

incorporating aspects of the GV utility function into training (Wu et al., 2008; Toda and

Young, 2009; Zen et al., 2012). However these approaches result in a significant increase

in the complexity of training, unlike our approach. A very different approach to obtaining

fast GV-like generation is simply to use the variance-scaled trajectory (3.35), which is the

trajectory usually used as the initialization for parameter generation considering global

variance (Silén et al., 2012). This approach has the disadvantage that it does not take into

account which frames are more likely to have trajectory values which deviate substantially

from the global mean, but has the advantage of speed and simplicity. In subjective exper-
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iments variance scaling was preferred to post-filtering and was within measurement error

of parameter generation considering global variance (Silén et al., 2012). An experimental

comparison of variance scaling and our proposed method would be informative but is not

undertaken in this thesis.

There has been very little previous work investigating why artifacts occur. It has been

suggested previously that one of the causes of artifacts is the fact that, as discussed in

§3.2.6, utility GV generation effectively uses µGV as the target GV for all utterances. This

corpus average GV may be too large for certain utterances, particularly short ones, taking

the acoustic model “out of its comfort zone” and leading to artifacts (Toda, 2011; King,

2011). However our experimental results suggest that this is a relatively minor source of

artifacts for our experimental systems.

Previous work attempting to reduce artifacts includes using full-covariance models and

a full-covariance GV distribution (Zen et al., 2006), carefully tuning the stopping criterion

used during gradient ascent (Yamagishi et al., 2008), and using “GV-constrained” traject-

ory HMM training (Toda and Young, 2009). The use of context-dependent GV distributions

(Yamagishi et al., 2008) may also help to reduce artifacts by selecting a more appropriate

amount of GV for each utterance, though the pathology identified in §6.6 and the experi-

mental results in §6.8.2 suggest that selecting an appropriate amount of GV is not sufficient

to prevent artifacts occurring. We take a very different approach to reducing artifacts in

this thesis, informed by our understanding of why they occur.

6.2 Spread-based generation

In this section we introduce a class of speech parameter generation methods which we refer

to as spread-based generation. Parameter generation considering global variance is a form

of spread-based generation. We first define spread functions and spread-based generation,

then specify some commonly used spread functions and specific forms of spread-based gen-

eration. These forms of spread-based generation will be used in our mathematical analysis

of parameter generation considering global variance and our experimental investigations.

To define the concept of a spread function, consider a quadratic function s : RT → R for

T ∈ N. Any such s is of the form s(c) = 1
T (cTWc− 2cTw + w0) for some constant w0 ∈ R,

vector w ∈ RT and matrix W ∈ RT×T . If W is positive semi-definite then we refer to s

as a spread function and refer to W as the spread matrix. The result of applying a spread

function to a trajectory c ∈ RT is referred to as the spread of the trajectory. The spread of

a trajectory is a scalar quantity characterizing some aspect of how spread out it is.

We saw in §3.2.6 that parameter generation considering global variance optimizes a

utility function G given by (3.33). The utility G(c) of a trajectory c depends on both its

log probability A(c) and its global variance v(c). We can generalize this slightly by defining
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a utility function

G(c) = A(c) +B(s(c)) (6.1)

where s is a spread function and the utility-of-spread function B : R → R is an arbit-

rary function. We refer to parameter generation by maximizing (6.1) as spread-based

generation. This is a generalization of parameter generation considering global variance

since using global variance as the spread function and using a quadratic utility-of-spread

function B(v) = ωGV logN
(
v;µGV, (σ2)GV

)
recovers parameter generation considering

global variance. Note that as always the log probability function A, which is defined as

A(c) = −1
2c

TPc+ bTc, depends implicitly on the natural parameters b and P of the distri-

bution over trajectories specified by the model. For spread-based generation we allow the

utility-of-spread function B to depend implicitly on the state sequence and on the model

parameters. For example for parameter generation considering global variance with the

conventional setting of ωGV, B depends on ωGV which in turn depends on the length of the

state sequence. Similarly we allow the spread function s to depend implicitly on the state

sequence and on the model parameters, though for most of the spread functions considered

below s only depends implicitly on the length of the state sequence.

In the remainder of this section we consider various spread functions and forms of spread-

based generation. For later reference, Table 6.1 summarizes the parameter generation

methods described below, as well as some methods described in subsequent sections, for

the case of the GV spread function.

6.2.1 Standard generation

Standard generation is a form of spread-based generation for any spread function, since it

can be obtained by setting B(s) = 0 for s = s(µ) and B(s) = −∞ otherwise, where µ is

the mean trajectory.

6.2.2 GMSD and GV generation

We consider two spread functions in detail in this thesis. Firstly the global mean squared

deviation (GMSD) around a given value k ∈ R is defined as

sk(c) =
1

T

∑
t

(ct − k)2 (6.2)

=
1

T
(c− k1)T(c− k1) (6.3)

where c is a trajectory of length T and 1 is a vector of ones of the same length. For any

k ∈ R, sk is a spread function with spread matrix equal to the identity matrix I. We

refer to spread-based generation using GMSD as the spread function as GMSD generation.
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name description

standard generation maximize A

fixed-multiplier GV
generation

c∗ = (P − λJ)−1b for fixed λ ∈ R

fixed-spread GV
generation

maximize A subject to v(c∗) = v for fixed v ≥ 0

expected-spread GV
generation

maximize A subject to v(c∗) = Ev(c) where c ∼
NNP(b, P )

exact utility GV
generation

globally maximize G

early-stopped utility
GV generation

use gradient ascent with early stopping to approxim-
ately maximize G

Table 6.1: A summary of various forms of GV generation considered in this chapter. Here c∗

is the generated trajectory, A is a function which returns the log probability of a trajectory
(up to a constant), G is the GV utility function, v is the function which returns the global
variance of a trajectory, b and P are the b-value and precision matrix of the Gaussian
distribution over trajectories, and J is a matrix defined in (6.6). See §6.2 for detailed
descriptions. Early-stopped utility GV generation is included for completeness but strictly
speaking is not a GV generation method by our definition. The other methods are all GV
generation methods and differ only in the amount of GV they choose to use for a given
state sequence.

Typically we set k to the mean value of ct over all frames of the training corpus. Secondly

the GV function v defined by (3.31) is a spread function, since (3.32) implies

m(c) =
1

T

∑
t

ct =
1

T
1
Tc (6.4)

so

v(c) =
1

T

∑
t

(ct −m(c))2 =
1

T

∑
t

c2
t − (m(c))2 =

1

T
cTJc (6.5)

where

J = I − 1

T
11

T (6.6)

is the spread matrix. We refer to spread-based generation using GV as the spread function

as GV generation. The main reason that we consider GMSD generation in addition to

GV generation is that GMSD generation is slightly easier to analyze while being similar

conceptually and giving very similar results.
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6.2.3 Fixed-spread and expected-spread generation

We use the term fixed-spread generation to mean maximizing A subject to the constraint

that the generated trajectory has fixed spread s. By setting the utility-of-spread function

B in (6.1) to the function which has value 0 at s and value −∞ elsewhere we see that this

is a form of spread-based generation. Unless stated otherwise we assume that, for a given

portion p and vector component i of the speech parameters, s is chosen to be the mean

spread of training corpus trajectories. In the GV case this is equal to the mean µGV of the

GV pdf used by conventional parameter generation considering global variance.

It is also possible to incorporate the model’s own beliefs about what the spread should

be. Normalized probabilistic models such as the trajectory HMM acoustic model and the

LGLAR acoustic model define a probability distribution over the trajectory c, and so also

over the spread s(c). The implied probability distribution over the spread specifies the

model’s belief about how likely the trajectory for a given state sequence is to have a given

spread. For a spread function with spread matrix W the expected spread can be computed

as

Es(c) =
1

T
tr
(
WP−1

)
+ s(µ) (6.7)

where c ∼ NNP(b, P ) defines the distribution used for the expectation and µ = P−1b is the

mean trajectory. We refer to maximizing A subject to the constraint that the generated

trajectory has spread equal to the expected spread as expected-spread generation. Note that

the expected spread is always at least as big as the spread of the mean trajectory, that is

Es(c) ≥ s(µ) (6.8)

since 1
T tr
(
WP−1

)
≥ 0 since P is positive definite and W is positive semi-definite. This

means that, compared to standard speech parameter generation, the effect of expected-

spread generation will be to boost the spread of the generated trajectory.

We might worry about whether fixed-spread generation is well-defined, i.e. if we denote

the set of trajectories with the given fixed spread by C and the function A restricted to this

set by A|C , we might wonder whether there always exists a unique maximizer of A|C . It is

fairly easy to show that at least one maximizer exists. By working in an eigenbasis of P it

can be shown that A(c) → −∞ as c → ∞. Combined with the fact that C is closed this

implies that A|C attains its supremum somewhere. It is harder to show that the maximizer

is typically unique, but this falls out of the mathematical analysis presented below, and is

shown for fixed-spread GMSD generation in §6.4.1 and for fixed-spread GV generation in

§6.4.2.
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6.2.4 Utility spread-based generation

If the utility-of-spread function B is differentiable then we refer to parameter generation by

maximizing (6.1) as exact utility spread-based generation. In fact for most of this chapter

we assume stronger conditions on B: that it is twice continuously differentiable, strictly

concave, and bounded above. Here by bounded above we mean that there is some K ∈ R
such that B(s) ≤ K for all s ≥ 0, which since B is assumed concave is equivalent to

saying B(s) 6→ ∞ as s→∞. The utility-of-spread function used by parameter generation

considering global variance has these three properties since it is quadratic with a positive

leading coefficient.

We refer to parameter generation using gradient ascent with early stopping to approx-

imately maximize G as early-stopped utility spread-based generation. Early-stopped utility

GV generation is thus another name for conventional speech parameter generation consid-

ering global variance. Strictly speaking early-stopped utility GV generation is not a form

of GV generation since it does not maximize a utility function of the form (6.1) where s is

the GV spread function.

We might worry about whether exact utility spread-based generation is well-defined,

i.e. whether there always exists a unique maximizer of G. Since A(c) → −∞ as c → ∞
and B is bounded above, we have G(c) → −∞ as c → ∞. This implies that G attains its

supremum somewhere. It is harder to show that the maximizer is typically unique, but we

see this in the mathematical analysis presented in §6.4.3.

We also might worry that early-stopped utility spread-based generation would approach

a local rather than a global maximum. This might be a problem since selecting a suboptimal

local maximum might result in a low probability trajectory, which might in turn result in

degraded speech. It would also mean the generated trajectory might depend strongly on

the initialization used for gradient ascent, which may be undesirable. We discuss this issue

in a bit more detail in §6.4.5.

6.2.5 Corpus-level spread-based generation

So far in this section we have assumed that spread-based generation operates at the level

of the utterance. It is also possible to consider spread-based generation at the corpus level.

Here we briefly describe this alternative approach.

Given a state sequence θ, spread-based generation produces the trajectory which max-

imizes the utility function (6.1). If we were instead given a collection Θ = [Θr]r of state

sequences, we could produce a collection C = [Cr]r of trajectories by considering Θ as a

single long state sequence, finding the single long trajectory which maximizes (6.1), then

considering this single long trajectory as a collection of trajectories. We refer to this as

corpus-level spread-based generation. Any form of spread-based generation thus has a corres-
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ponding form of corpus-level spread-based generation. For example fixed-spread generation

produces the most likely trajectory subject to a constraint on the spread of this trajectory,

while corpus-level fixed-spread generation produces the most likely collection of trajectories

subject to a constraint on the overall spread of this collection of trajectories.

In some ways corpus-level spread-based generation is more intuitively appealing than

spread-based generation, since we would not expect the spread for every utterance to be

precisely equal to its expected value. However it also seems slightly undesirable for the

trajectory generated for one state sequence to depend on the corpus of state sequences

that utterance happens to be part of. We further discuss how spread-based generation and

corpus-level spread-based generation compare in §6.4.6 and §6.8.3.

6.3 Method of Lagrange multipliers

The method of Lagrange multipliers (Whittle, 1971) provides a general approach to solving

constrained optimization problems. It does this by converting a constrained optimization

problem into a family of unconstrained optimization problems in such a way that the

solutions of the unconstrained problems tell us something about the solution of the original

constrained problem. This approach is particularly useful if the unconstrained problems

can be solved analytically, as they can be for our application. In this section we present

a brief but self-contained introduction to the aspects of the general theory of Lagrange

multipliers that we will use in this chapter. It should be noted that the sufficiency-based

approach which we use here differs from the necessity-based approach which seems to be

more commonly presented in introductions to the method of Lagrange multipliers (see for

example Bishop (2006)). The relationship between these two approaches is discussed in the

last paragraph.

Suppose we wish to maximize an objective function f : X → R subject to the constraints

gm(x) = gm for m = 1, . . . ,M , where X is an arbitrary set, gm : X → R, and gm ∈ R.

Equivalently we can view the constraints as being specified by g(x) = g where g : X → RM

and g ∈ RM . The method of Lagrange multipliers defines a function

L(x;λ) = f(x)−
M∑
m=1

λmgm(x) (6.9)

for x ∈ X and λ ∈ RM . Here L is referred to as the Lagrangian and λm ∈ R is referred to

as a Lagrange multiplier.

There is a simple, indeed essentially trivial, result known as the Lagrangian sufficiency

theorem (Theorem 1 in (Everett III, 1963), Theorem 3.1 in (Whittle, 1971), Theorem 5

in (Courcoubetis and Weber, 2003)) which forms the basis of our use of the method of

Lagrange multipliers. It states that if x∗ ∈ X maximizes x 7→ L(x;λ) for some λ ∈ RM and
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6.3. Method of Lagrange multipliers

x∗ satisfies the constraints, then x∗ is a solution to the original constrained maximization of

f . We can see the Lagrangian sufficiency theorem as follows. We are given x∗ ∈ X, g ∈ RM

and λ ∈ RM , and have that g(x∗) = g and L(x∗;λ) ≥ L(x;λ) for any x ∈ X. If x ∈ X
satisfies the constraints, i.e. if g(x) = g, then L(x;λ) = f(x)−∑m λmgm. Now we certainly

have L(x∗;λ) ≥ L(x;λ) for any x ∈ X which satisfies the constraints, since this inequality

holds for any x ∈ X at all. Therefore we have f(x∗)−∑m λmgm ≥ f(x)−∑m λmgm for any

x ∈ X which satisfies the constraints, and so f(x∗) ≥ f(x) for any x ∈ X which satisfies the

constraints. This establishes the desired result. A minor extension of this result will also be

useful. If x∗ ∈ X is the unique maximizer of x 7→ L(x;λ) for some λ ∈ RM and x∗ satisfies

the constraints, then x∗ is the unique solution to the original constrained maximization of

f . This can be seen by replacing ≥ with > above.

The Lagrangian sufficiency theorem can sometimes be used to obtain a complete solution

to a constrained maximization problem. Typically this proceeds along lines such as the

following. Let Λ be the set of λ ∈ RM such that x 7→ L(x;λ) has a unique maximizer, and

let x∗ : Λ → X denote the function which returns this maximizer. Now for any λ ∈ Λ,

we know by the Lagrangian sufficiency theorem that x∗(λ) is the unique solution of the

original constrained maximization of f for some choice of g ∈ RM , namely for g = g(x∗(λ)).

Thus we can search over values of λ ∈ Λ to try to find one for which x∗(λ) satisfies the

constraints for our chosen g. Such a λ is not guaranteed to exist, but if it does then we

know that x∗(λ) is the unique solution of the original constrained maximization problem.

Often the function x∗ can be found analytically, and the search over λ can be performed

taking advantage of the form of x∗.

As mentioned above, there is another approach to using the Lagrangian L to learn some-

thing about solutions of the original constrained maximization problem. This necessity-

based approach comes up with conditions on L that any constrained maximum of f must

satisfy; that is, it establishes necessary conditions for a value x ∈ X to be a solution to

the original problem. Typically for this approach it is assumed that X is subset of RN for

some N and f and g are differentiable, and a typical result in this approach is that, under

certain regularity conditions on X, f and g, any constrained maximum x∗ of f satisfies
∂L
∂x (x∗;λ) = 0 for some λ ∈ RM . Thus at best it provides a finite list of candidate solutions,

and if the original constrained maximization problem has a maximizer, then this list is

guaranteed to contain it. However if f , restricted to the set of x ∈ X which satisfy the

constraints, does not attain its supremum anywhere, then the candidate solutions may all

be far from optimal. In contrast the sufficiency-based approach, in cases where it works,

ensures that we have the optimal solution. A fairly comprehensive introduction to the

method of Lagrange multipliers is given by Whittle (1971), and this shows how the above

two approaches fit within the general theory.
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6.4 Analysis of spread-based generation

In this section we present a theoretical analysis of spread-based generation using the method

of Lagrange multipliers. This analysis shows that the trajectory produced by spread-based

generation is always of a particular parametric form, and leads naturally to a new algorithm

for doing spread-based generation. The enabling fact that makes the method of Lagrange

multipliers so fruitful in this case is the similarity in form of the log probability function

A and the spread function s. These are both quadratic functions of the trajectory, and we

will see that this allows the family of unconstrained optimization problems introduced by

the method of Lagrange multipliers to be solved analytically, which will prove useful both

conceptually and computationally.

We start by presenting an analysis of fixed-spread generation. Fixed-spread generation

is a natural fit for the method of Lagrange multipliers since computing the generated

trajectory is a constrained optimization problem. We then show that this analysis is also

useful in the case of general spread-based generation. We only consider GMSD and GV

spread functions below, but much of the analysis holds with minor alterations for general

spread functions. The major results in this section have been previously described in a

technical report (Shannon and Byrne, 2013b) and a conference paper (Shannon and Byrne,

2013a).

6.4.1 Analysis of fixed-spread GMSD generation

In this section we consider the problem of finding the trajectory produced by fixed-spread

GMSD generation. Given s > 0 and a trajectory value k ∈ R around which to measure

the GMSD, we wish to find the trajectory c ∈ RT which maximizes A(c) = −1
2c

TPc + bTc

subject to the constraint sk(c) = s. We first use the approach described in §6.3 to solve

this constrained optimization problem in the case k = 0, then consider the case of general

k, then discuss algorithmic and computational considerations.

In the case k = 0 we have Ts0(c) = cTc. This follows from (6.2). For simplicity of

notation we consider the constraint to be −1
2Ts0(c) = −1

2Ts instead of s0(c) = s. The

Lagrangian is

L(c;λ) = A(c) + 1
2λTs0(c) (6.10)

= −1
2c

TPc+ bTc+ 1
2λc

Tc (6.11)

= −1
2c

T(P − λI)c+ bTc (6.12)

Let λI be the minimum eigenvalue of a matrix P . If λ < λI then P −λI is positive definite,

and so x 7→ L(x;λ) has a unique global maximizer given by

c∗(λ) = (P − λI)−1b (6.13)
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By the Lagrangian sufficiency theorem this means that c∗(λ) is the optimal trajectory for

some s, namely for s = s0(c∗(λ)). For notational convenience we define a function s∗(λ) =

s0(c∗(λ)) with domain (−∞, λI) which computes the GMSD of the optimal trajectory for a

given λ. All that remains is to investigate the range of values of s for which we can obtain

a provably optimal solution using the above approach, i.e. to compute the image of the

function s∗. For λ < λI we have

Ts∗(λ) = Ts0 (c∗(λ)) (6.14)

= (c∗(λ))Tc∗(λ) (6.15)

= bT(P − λI)−2b (6.16)

Differentiating we obtain

T (s∗)′(λ) = 2bT(P − λI)−3b (6.17)

Since P − λI is positive definite, xT(P − λI)x ≥ 0 for any x and in particular for x =

(P −λI)−2b, and so we have (s∗)′(λ) ≥ 0, i.e. s∗ is increasing. If b 6= 0 then (s∗)′(λ) > 0, so

s∗ is strictly increasing. By working in a basis consisting of eigenvectors of P , the following

results can also be shown (Shannon and Byrne, 2013b): s∗(λ) → 0 as λ → −∞; and

s∗(λ)→∞ as λ→ λI as long as

b /∈ im(P − λII) (6.18)

where im(A) is the image of a matrix A. Suppose (6.18) holds. Then we have that the

image of the function s∗ is (0,∞). We already saw that s∗ is injective since it is strictly

increasing, so it has a well-defined inverse λ : (0,∞) → (−∞, λI). Thus for any s > 0

we can find a λ, namely λ = λ(s), such that c∗(λ) is the unique global maximizer of A

amongst trajectories with GMSD s. Note that in a sense it is unlikely for (6.18) not to

hold, since im(P − λII) is a proper subspace of RT , and it seems unlikely that a general b

would happen to lie precisely in this subspace. It turns out that even if b ∈ im(P − λII),

an analysis similar to the above can be performed, with the result that for small values of

s the unique optimal trajectory with GMSD s is of the form (6.13), and for large values

of s there are multiple optimal trajectories with GMSD s, corresponding to the multiple

solutions of (P − λII)c = b with GMSD s (Shannon and Byrne, 2013b).

We can extend the above analysis, which examines the case k = 0, to the case of general

k by considering the transformation c 7→ c − k1, P 7→ P , b 7→ b − kP1. In the case of

general k, (6.13) becomes

c∗(λ) = (P − λI)−1(b− kλ1) (6.19)

For the sake of ease of comparison with methods defined below we rewrite this as

c∗(λ) = (P − λI)−1 (b− ν(λ)1) (6.20)
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where

ν(λ) = kλ (6.21)

The condition (6.18) becomes

b− k1 /∈ im(P − λII) (6.22)

As before, we define s∗(λ) = sk(c
∗(λ)). If (6.22) holds then s∗ is a strictly increasing

function with range (0,∞) and inverse λ, and as before the unique solution of the original

constrained maximization problem is of the form (6.19) for λ = λ(s).

We now consider how to turn the above discussion into an algorithm for fixed-spread

GMSD generation. For a given λ < λI, the optimal trajectory (6.19) can be computed by

the same Cholesky-based algorithm used to compute the most likely trajectory in §3.2.4.

This also allows s∗(λ) to be evaluated. Given s > 0, the appropriate value λ(s) of λ can

be computed using a one-dimensional search algorithm such as simple bisection or Brent’s

method to find the solution of the equation s∗(λ) = s. This parameter generation al-

gorithm therefore involves computing one banded Cholesky decomposition and two banded

triangular matrix solves for each value λ ∈ R at which s∗(λ) is evaluated.

We might be concerned that the one-dimensional search in the above algorithm might

sometimes return solutions to s∗(λ) = s with λ > λI. This would be a problem if it

occurred since these solutions correspond to stationary points of the constrained function

A|C that are not global maxima. However if λ ≥ λI then the Cholesky decomposition of

P − λI fails since this matrix is not positive definite. Thus we can easily ensure λ < λI by

simply making the routine which computes s∗(λ) return ∞ if the Cholesky decomposition

fails. Alternatively we may explicitly compute the smallest eigenvalue of P and restrict the

one-dimensional search over λ to values smaller than this.

6.4.2 Analysis of fixed-spread GV generation

In this section we consider the problem of finding the trajectory produced by fixed-spread

GV generation. Given v > 0, we wish to find the trajectory c ∈ RT which maximizes A(c)

subject to the constraint v(c) = v.

A similar approach can be used here as was used in §6.4.1. Considering the constraint

to be −1
2Tv(c) = −1

2Tv we obtain the Lagrangian

L(c;λ) = A(c) + 1
2λTv(c) (6.23)

= −1
2c

T(P − λJ)c+ bTc (6.24)

Let λJ be the smallest λ for which P − λJ fails to be positive definite. If λ < λJ then

P − λJ is positive definite, and so x 7→ L(x;λ) has a unique global maximizer given by

c∗(λ) = (P − λJ)−1b (6.25)
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By the Lagrangian sufficiency theorem this means that c∗(λ) is the optimal trajectory

for some v, namely for v = v(c∗(λ)). For notational convenience we define a function

v∗(λ) = v(c∗(λ)) with domain (−∞, λJ) which computes the GV of the optimal trajectory

for a given λ. For λ < λJ we have

Tv∗(λ) = (c∗(λ))TJc∗(λ) (6.26)

= bT(P − λJ)−1J(P − λJ)−1b (6.27)

Differentiating we obtain

T (v∗)′(λ) = 2bT(P − λJ)−1J(P − λJ)−1J(P − λJ)−1b (6.28)

Since P − λJ is positive definite, xT(P − λJ)x ≥ 0 for any x and in particular for x =

(P − λJ)−1J(P − λJ)−1b, and so we have (v∗)′(λ) ≥ 0, i.e. v∗ is increasing. The following

results can also be shown (Shannon and Byrne, 2013b): as long as the mean trajectory

µ = P−1b is not constant, i.e. is not equal to k1 for some k, then v∗ is strictly increasing;

v∗(λ)→ 0 as λ→ −∞; and v∗(λ)→∞ as λ→ λJ as long as

b /∈ im(P − λJJ) (6.29)

Suppose (6.29) holds. Then we have that the image of the function v∗ is (0,∞), and so

it has a well-defined inverse λ : (0,∞) → (−∞, λJ). Thus for any v > 0 we can find a λ,

namely λ = λ(v), such that c∗(λ) is the unique global maximizer of A amongst trajectories

with global variance v. As before it is in a sense unlikely for (6.29) not to hold, but even

in this case an analysis similar to the one above can be performed, with the result that for

small values of v the unique optimal trajectory with GV v is of the form (6.25), and for

large values of v there are multiple optimal trajectories with GV v, corresponding to the

multiple solutions of (P − λJJ)c = b with GV v (Shannon and Byrne, 2013b).

There is an alternative expression for c∗(λ) that involves only banded matrix operations

and so is more efficient to compute. The matrix J is full, but it is only a rank-one update

away from the identity matrix, so we can use the matrix inversion lemma to write

(P − λJ)−1 =
(
P − λI + λ

T 11
T
)−1

(6.30)

= (P − λI)−1 − λ(P − λI)−1
11

T(P − λI)−1

T + λ1T(P − λI)−1
1

(6.31)

as long as P − λI is invertible. This implies that the generated trajectory c∗(λ) is of the

form (6.20) with

ν(λ) =
λbT(P − λI)−1

1

T + λ1T(P − λI)−1
1

(6.32)

as long as P − λI is invertible. We have P − λI invertible for all λ < λJ except λ = λI

(Shannon and Byrne, 2013b). This alternative form also helps to highlight the similarity
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between GMSD and GV generation: fixed-spread GMSD generation and fixed-spread GV

generation both satisfy (6.20), but differ in the function ν used.

We now consider how to turn the above discussion into an algorithm for fixed-spread

GV generation. Since P − λI is banded, quantities of the form (P − λI)−1x for various x

can be computed efficiently using a banded LU decomposition. This allows ν(λ), and so

c∗(λ), to be computed in O(T ) time. By structuring the computation sensibly it is possible

to compute c∗(λ) using one banded LU decomposition and four banded triangular matrix

solves. Using the LU decomposition rather than Cholesky decomposition is necessary since

(P − λI) is not positive definite for λI < λ < λJ. There are high quality implementations

of the banded LU decomposition available. For example LAPACK (Anderson et al., 1999)

contains an implementation of the banded LU decomposition and the subsequent matrix

solves required for computing (P − λI)−1x. The above discussion shows how c∗(λ), and so

v∗(λ), can be evaluated. A one-dimensional search can then be used to find the solution of

the equation v∗(λ) = v as in the GMSD case.

Care should be taken to ensure that the one-dimensional search in the above algorithm

only returns solutions to v∗(λ) = v with λ < λJ, since solutions with λ > λJ correspond

to stationary points of the constrained function A|C that are not global maxima. One way

to do this is to explicitly compute λJ ahead of time. This can be done by using the result

that λJ is the unique solution of T +λ1T(P − λI)−1
1 = 0 between the first two eigenvalues

of P (Shannon and Byrne, 2013b).

A typical example of the form of the function v∗ is shown in Figure 6.1. This shows

visually the points discussed earlier in this section: v∗ is a strictly increasing function;

v∗(λ)→ 0 as λ→ −∞; and v∗(λ)→∞ as λ→ λJ.

We can also examine the relationship between the log probability of the optimal tra-

jectory and v. Define A∗(v) = A(c∗(λ(v))), so that A∗(v) gives the maximum value of A(c)

amongst trajectories c with global variance v. We can gain various insights into the form

of A∗ assuming (6.29) holds. By considering A∗ as a function of λ instead of v it can be

verified that (A∗)′(v) = −T
2 λ(v); indeed this sort of relationship is a standard feature of the

method of Lagrange multipliers (Whittle, 1971). This provides a concrete interpretation

of the Lagrange multiplier λ as (proportional to) the slope of the graph of A∗(v) against

v. The unique maximizer of the function A∗ is of course the global variance v(µ) of the

mean trajectory, since the mean trajectory has the highest log probability of any trajectory.

Differentiating and using the inverse function theorem we obtain

(A∗)′′(v) = −T
2

1

(v∗)′
(
λ(v)

) (6.33)

Since (v∗)′(λ) > 0 this shows that (A∗)′′(v) < 0, so A∗ is strictly concave. It is also possible

to show that A∗(v) → −∞ as v → ∞ (Shannon and Byrne, 2013b). A typical example of

the form of the function A∗ is shown in Figure 6.2. We can see that A∗ is indeed concave,
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Figure 6.1: A typical example of the form of the function v∗. For a Lagrange multiplier
value λ ∈ R, v∗(λ) gives the global variance of the optimal trajectory for that λ. Here v(µ)
is the global variance of the mean trajectory, µGV is the mean of the global variance pdf,
and λJ is the critical value of λ at which P −λJ first fails to be positive definite. Points on
the curve chosen by various different speech parameter generation methods are also shown.
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Figure 6.2: A typical example of the form of the function A∗. For a global variance value
v ≥ 0, A∗(v) gives the log probability (up to a constant) of the optimal trajectory with
global variance v. Here v(µ) is the global variance of the mean trajectory and µGV is the
mean of the global variance pdf. Points on the curve chosen by various different speech
parameter generation methods are also shown.
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with its maximum at v = v(µ) where the slope is 0, corresponding to λ = 0, as expected.

6.4.3 Analysis of GV generation

In §6.4.2 we saw that the trajectory produced by fixed-spread GV generation is typically of

the form (6.25) for some λ. Perhaps surprisingly this is also true for general GV generation.

In this section we prove this fact, and use it as the basis of a novel algorithm for performing

exact utility GV generation. For concreteness we focus on GV generation in this section,

but essentially the same results apply to GMSD generation.

Firstly we show that, if (6.29) holds, any global maximizer of the utility function G is

of the form (6.25). Suppose c ∈ RT is a maximizer of the utility function G and has global

variance v > 0. From §6.4.2 we know that there is some λ < λJ such that v(c∗(λ)) = v. But

c∗(λ) is the unique maximizer of A, and so G, amongst trajectories with global variance v.

Thus c = c∗(λ), and so c is of the form (6.25).

The above result also implies that there is typically a unique maximizer of G in the

case of exact utility GV generation. If we define G∗(v) = A∗(v) + B(v), then G∗(v) gives

the maximum value of G(c) amongst trajectories c with global variance v ≥ 0. Since G∗ is

the sum of two strictly concave functions it is also strictly concave, and so has at most one

maximizer. Since A∗(v)→ −∞ as v →∞ and B is bounded above, we have G∗(v)→ −∞
as v → ∞, and this implies that G∗ has a maximizer, and so by strict concavity G∗ has

a unique maximizer. Since there is a unique optimal trajectory with global variance v, it

follows that there is a unique maximizer of the utility function G.

A typical example of the form of the function G∗ is shown in Figure 6.3. The utility-of-

spread function B used here is the conventional one used by parameter generation consider-

ing global variance. This demonstrates visually the result proved in the previous paragraph

that G∗ is concave. The figure also provides an example of the phenomenon that, for the

conventional choice of B, A has almost no influence on the global variance selected by exact

utility GV generation. In the figure we plotted 200A∗ rather than A∗ itself, since otherwise

A∗ would have appeared indistinguishable from a horizontal line. This means the global

variance selected by maximizing G∗ is almost exactly equal to the value µGV preferred by

B. We commented on this phenomenon in §3.2.6, and we will observe it experimentally in

more detail in §6.5.2. This phenomenon is also responsible for the fact that exact utility GV

generation and fixed-spread GV generation produce almost the same result in Figure 6.1

and Figure 6.2.

The fact that the maximizer of G is of the form (6.25) leads naturally to a new algorithm

for doing exact utility GV generation. From this result we know that

max
c∈RT

G(c) = max
λ<λJ

G(c∗(λ)) (6.34)
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Figure 6.3: A typical example of the form of the function G∗. For a given global variance
value v ≥ 0, G∗(v) gives the utility of the optimal trajectory with global variance v. Here
v(µ) is the global variance of the mean trajectory and µGV is the mean of the global
variance pdf. Also shown are the two functions A∗ and B which sum to give G∗, where A∗

is the contribution from the log probability and B is the utility-of-spread function. The log
probability contribution A∗ is given a large scale factor to allow its variation to be seen.

where there exists a unique maximizer for each of the maximum operations. This means

that rather than doing a T -dimensional numerical optimization of G we can instead do a 1-

dimensional numerical optimization of λ 7→ G(c∗(λ)), with c∗(λ) for each potential λ < λJ

computed analytically using the LU decomposition-based algorithm described in §6.4.2.

We refer to this as the partially analytic GV generation algorithm. This algorithm may be

faster to get within a certain tolerance of the exact optimum of G than the conventional

T -dimensional gradient ascent procedure is, but we do not investigate its speed here since

in §6.4.6 we come up with an even faster algorithm that appears to give just as good

naturalness.

6.4.4 View of GMSD and GV generation as modifying static parameters

For the standard HMM synthesis framework and the trajectory HMM it is possible to

interpret GMSD and GV generation as a change to the model rather than a change to the

parameter generation method. In this section we describe this interpretation; we discuss

some of its implications in subsequent sections.

We first recap what static model parameters are and how they contribute to the natural

parameters b and P of the distribution over trajectories. From (3.29) and (3.30) we know
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that b and P consist of a sum of terms, one for each window. For the static window the

vector bwin
0 of b-value parameters over time contributes additively to b and the vector τwin

0 of

precision parameters over time contributes additively to the diagonal of P . The vectors bwin
0

and τwin
0 of static parameters over time are determined from the static model parameters

[bq0, τq0]q based on the sequence [q(θt)]
T
t=1 of leaf indices.

In §6.4 we saw that the trajectory produced by GMSD and GV generation is of the

form (P − λI)−1(b − ν1) for some λ, ν ∈ R. This is of the same form as the expression

P−1b for the standard generation trajectory, but with b − ν1 instead of b and P − λI

instead of P . This means that we can interpret the GMSD and GV generation methods as

standard generation on a model with modified static parameters: subtracting λ from each

static precision model parameter τq0 and ν from each static b-value model parameter bq0

has the effect of subtracting λ from the vector τwin
0 and ν from the vector bwin

0 , and doing

standard generation after this modification gives the same result as the original GMSD or

GV generation method.

There remain two important differences between standard generation on the modified

model and the original GMSD or GV generation. Firstly, except for the fixed-multiplier

GMSD generation method described in §6.4.6, the values of λ and ν vary from utterance

to utterance, so the model modification posited above would have to be done for each

utterance to make the correspondence exact. Secondly, while for the original model we

typically enforce τq0 > 0 during training, for the modified model τq0 may be negative. The

consequences of this will be considered in §6.7.1.

6.4.5 Analysis of local maxima for utility GV generation

We mentioned in §6.2.4 that the GV utility function might have multiple local optima,

potentially leading early-stopped utility GV generation to approach a suboptimal trajectory.

By extending the analysis presented above, it is possible to conduct an analysis of the local

maxima as well as the global maxima of G. For concreteness we focus on GV generation

in this section, but essentially the same results apply to GMSD generation.

For GV generation we maximize the utility function (6.1), and we have seen that the

global maximum of the utility function is of the form (6.25) for some λ < λJ. By extending

the analysis in §6.4.2 it can be shown that for utility GV generation any local, non-global

maximum of the utility function is of the form (6.25) for some λJ < λ < λL, where λL is

the first stationary point of v∗(λ) greater than λJ (Shannon and Byrne, 2013b). A given

λJ < λ < λL corresponds to a local maximum of G if and only if it is a local maximizer of the

function λ 7→ G(c∗(λ)). This makes it possible to evaluate how many local maxima a given

utility function G has by simply counting them on a one-dimensional plot. Furthermore it

can be shown that if the utility-of-spread function B is quadratic then G has at most one
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global, non-local maximum (Shannon and Byrne, 2013b).

Performing the above analysis for the standard system S described in §4.6 shows that for

all cepstral components and all training and test corpus utterances the utility function has

no local, non-global maxima. Thus early-stopped utility GV generation is guaranteed to

approach the global maximum rather than a suboptimal local maximum. For the trajectory

system T roughly 0.2% of (utterance, cepstral component) pairs have a local, non-global

maximum on the training and test corpora, and for the autoregressive system A roughly

5% of (utterance, cepstral component) pairs have a local, non-global maximum on the test

corpus.

6.4.6 Fixed-multiplier generation

In this section we detail a form of GMSD generation which shares many of the advantages of

the other forms of GMSD and GV generation presented above while being as computation-

ally efficient as standard generation. We have seen that trajectories generated by GMSD

and GV generation are of the form (6.20), where λ is an utterance-specific Lagrange multi-

plier and the precise value of λ for a given utterance depends on the form of GMSD or GV

generation used. A natural question is whether quality degrades substantially if we instead

use a fixed value of λ for all utterances. We refer to parameter generation which uses (6.20)

with a fixed value of λ as fixed-multiplier generation. Note that the trajectory produced

by fixed-multiplier generation is optimal (maximizes the log probability) given its spread.

Fixed-multiplier generation is a form of spread-based generation since it can be obtained

by setting B(s) = 0 for s = s(c∗(λ)) and B(s) = −∞ elsewhere.

Using fixed-multiplier GMSD generation with the standard HMM synthesis framework

or the trajectory HMM allows very fast generation, since computation of the modified

static model parameters can be performed off-line and then the standard speech parameter

generation algorithm used at synthesis time. This also makes it possible to use the time-

recursive speech parameter generation algorithm for low latency generation.

For fixed-multiplier GV generation the value of ν = ν(λ) given by (6.32) or (6.48) varies

from utterance to utterance and depends on the whole of b and P , so the tricks presented in

the previous paragraph for the GMSD case are not possible. We could attempt to remedy

this by fixing ν as well as λ, but we would soon realize that this is just GMSD generation

with k set to ν/λ. For simplicity we therefore tend to use GMSD as the spread function

rather than GV when using fixed-multiplier generation.

We propose three methods to train the fixed value of λ used for each portion and

vector component of the speech parameters. Let Θ◦ = [Θr]r∈R◦ denote the training corpus

state sequences and C◦ = [Cr]r∈R◦ denote the training corpus trajectories for the specified

portion and vector component. We will find it helpful to make the dependence of (6.19) on
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the state sequence explicit by writing c∗(λ; θ) to denote the trajectory generated for a given

multiplier λ and state sequence θ. Firstly for each utterance r we can find the multiplier Λr

such that the generated trajectory c∗(Λr; Θr) has GMSD equal to that of the corresponding

natural trajectory Cr. We can then set λ to be the median, or slightly more generally some

percentile, of the set {Λr : r ∈ R◦}. We refer to this as the percentile method of choosing

the multiplier for fixed-multiplier GMSD generation. Secondly we can choose to use the

value of λ which minimizes the mean squared error (MSE)

1

|R◦|
∑
r∈R◦

(sk (c∗(λ; Θr))− sk(Cr))2 (6.35)

in the GMSD of the generated trajectories over the training corpus. We refer to this as

the MSE GMSD method of choosing the multiplier for fixed-multiplier GMSD generation.

Thirdly we can choose the value of λ using the procedure described for expected-spread

GMSD generation in §6.2.3, but working at the level of the whole training corpus instead of

a single utterance. That is, we can choose to use the value of λ for which the GMSD of the

generated whole-training-corpus trajectory is equal to its expected value. We refer to this

as the corpus-level expected-spread method of choosing the multiplier for fixed-multiplier

GMSD generation.

So far we have presented fixed-multiplier generation as a rough approximation to other

forms of spread-based generation, but it can also be viewed as a good approximation to

other forms of corpus-level spread-based generation. Corpus-level expected-spread GMSD

generation and fixed-multiplier GMSD generation using the corpus-level expected-spread

method of choosing the multiplier yield the same collection of trajectories when applied

to the collection Θ◦ of training corpus state sequences. The difference between the two

generation methods is that for a new collection Θ = [Θr]r of state sequences, fixed-multiplier

GMSD generation re-uses the fixed value of λ learned on the training corpus, whereas

corpus-level expected-spread GMSD generation uses a new value of λ specific to Θ. Fixed-

multiplier GMSD generation with the multiplier chosen using the corpus-level expected-

spread method can therefore be seen as an approximation to corpus-level expected-spread

GMSD generation, where Θ◦ is used as a proxy for Θ when deciding what value of λ to use.

It seems reasonable to expect that if Θ◦ and Θ are both large and representative collections

of state sequences, then the value of λ selected for these two collections will be very similar,

and so the trajectories generated by the two methods will be very similar.

6.5 Normalized models and GV generation

Standard generation produces trajectories that have less global variance than natural tra-

jectories. However this does not necessarily imply a deficiency in the probabilistic model,
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since (6.8) shows that even if the probabilistic model was perfect we would expect the mean

trajectory to have too little global variance. In this section we examine how well normalized

models such as the trajectory HMM and autoregressive HMM model the global variance of

trajectories. We approach this question from both a theoretical and empirical standpoint.

We find that the trajectory HMM and autoregressive HMM both model the global variance

fairly well. This suggests that GV generation is perhaps best thought of as compensating

for a weakness in standard generation rather than a weakness in the probabilistic model.

6.5.1 Spread-matching property for the trajectory HMM

In §3.3.3 we described a statistics-matching property of the trajectory HMM acoustic model.

Here we show that this implies a spread-matching property.

Suppose a trajectory HMM acoustic model is trained using maximum likelihood, and

the estimated parameters lie in the interior of the space Ξ of allowed parameters. From

(3.47) and (3.48) applied to the static window we have

E
∑

t:q(θ◦t )=q

ct =
∑

t:q(θ◦t )=q

c◦t (6.36)

E
∑

t:q(θ◦t )=q

c2
t =

∑
t:q(θ◦t )=q

(c◦t )
2 (6.37)

where as before θ◦ is the whole-training-corpus state sequence, c◦ is the whole-training-

corpus trajectory, and the expectation is taken assuming c is sampled from P(c | θ = θ◦, λ).

The above equations imply that

E
∑

t:q(θ◦t )=q

(ct − k)2 =
∑

t:q(θ◦t )=q

(c◦t − k)2 (6.38)

for any k ∈ R, i.e. the expected leaf-specific GMSD under the trained model is equal to the

GMSD observed for that leaf on the training corpus. This in turn implies that

E
∑
t

(ct − k)2 =
∑
t

(c◦t − k)2 (6.39)

Thus a trained trajectory HMM system matches the corpus-level GMSD on the training

corpus.

As discussed in §3.3.3, the statistics-matching property may fail for certain leaves q

with τq0 = 0, and in practice we have found this does often occur for a few leaves. This

implies that (6.39) only holds approximately, since (6.37) only holds for most leaves. Thus

a trained trajectory HMM system approximately matches the corpus-level GMSD. Since

there is little difference between the corpus-level GV and the corpus-level GMSD measured

around the training corpus global mean, we would expect a similar statement to hold for

GV with a further approximation.
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method description

N using the natural trajectory
M standard generation
H HTS implementation of early-stopped utility GV generation,

i.e. conventional speech parameter generation considering
global variance

U exact utility GV generation
E1 expected-spread GV generation
E2 expected-spread GMSD generation
S sampling generation

Table 6.2: Generation methods used in the evaluation of how well trajectory HMM and
autoregressive HMM model global variance.

The property described above does not guarantee everything we might like it to: it ap-

plies to the training corpus state sequences and trajectories not the test corpus; it applies

at the corpus level so it does not guarantee the spread for every utterance will be modelled

well; and it constrains only the expected value of the implied distribution over spread, not

the other moments. Nevertheless it suggests that a trained trajectory HMM system is un-

likely to systematically underestimate or overestimate the amount of GV for a collection of

utterances. Indeed it shows that a trained trajectory HMM system approximately satisfies

the much stronger property of on average matching the amount of spread for each leaf.

6.5.2 Spread-matching evaluation

In this section we present a simple evaluation of how well the trajectory HMM and autore-

gressive HMM model the GV for the unseen utterances in the test corpus. For each of

a range of cepstral components and for each of the generation methods in Table 6.2, we

computed the global variance of the generated trajectory for the 50 test corpus utterances.

We then summarized each set of 50 values by a box-with-whiskers in a box plot. This allows

the implied distribution over GV for different generation methods to be compared. The

results for the trajectory HMM system T are shown in Figure 6.4 and the results for the

autoregressive system A are shown in Figure 6.5. For the trajectory HMM we can see that:

• The mean trajectory (M) has too little GV, as expected. This is most pronounced

for the higher cepstral components.

• Exact utility GV generation (U) and early-stopped utility GV generation (H) both

do a fairly good job of matching the average amount of GV. Note that the GV of

every generated trajectory has almost exactly the same value. This phenomenon was

previously mentioned in §3.2.6 and §6.4.3.
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Figure 6.4: Box plots showing the amount of GV in trajectories generated by various gener-
ation methods for the trajectory HMM system T. Each box-with-whiskers is a summary of
50 GV values, one for each test corpus utterance. Each panel shows one cepstral component.
Since sampling generation (T.S) is a random method it was performed twice.

• Expected-spread GV generation (E1) does a fairly good job of matching the average

amount of GV. This implies that the trajectory HMM does not systematically under-

estimate or overestimate GV, as expected based on the discussion in §6.5.1. There is

no reason that expected-spread GV generation should necessarily match the variance

in GV, though for many cepstral components it seems to.

• Comparing method E2 to E1 shows that the typical amount of GV produced by

expected-spread GMSD generation is similar to the expected GV.

• Sampling generation (S twice) does a fairly good job of matching both the average

amount of GV and the variance in the amount of GV. This shows that the trajectory

HMM models GV fairly well.
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Figure 6.5: Box plots showing the amount of GV in trajectories generated by various gener-
ation methods for the autoregressive system A. Each box-with-whiskers is a summary of 50
GV values, one for each test corpus utterance. Each panel shows one cepstral component.
Since sampling generation (A.S) is a random method it was performed twice.

The results for the autoregressive HMM are qualitatively very similar. The autoregressive

HMM mean trajectories seem to have slightly less GV than the trajectory HMM mean

trajectories, but we were not able to discern any other salient differences. We can therefore

conclude that normalized models such as the trajectory HMM and the autoregressive HMM

model GV fairly well.

For comparison the equivalent results for the standard framework are shown in Fig-

ure 6.6. Again every trajectory produced by exact utility GV generation and early-stopped

utility GV generation has almost exactly the same value. The expected GV is now too

small in many cases. This is unsurprising, since the lack of predictive variance in standard

systems means that we would expect the first term in (6.7) to be smaller than it should be.
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Figure 6.6: Box plots showing the amount of GV in trajectories generated by various
generation methods for the standard system S. Each box-with-whiskers is a summary of 50
GV values, one for each test corpus utterance. Each panel shows one cepstral component.
Since sampling generation (S.S) is a random method it was performed twice.

Note that if the trajectory HMM had a poor implied distribution over GV then, as

discussed in §2.2.3, it would be conceptually easy to fix this by adding powers of GV to

the list of feature functions defining the conditional exponential family. For example by

adding GV and squared GV we can ensure that the first and second moments of the implied

distribution over GV are correct. The simple evaluation above suggests that this extended

model may not provide a much better probabilistic model of speech since the trajectory

HMM already has a reasonable implied distribution over GV. Parameter estimation for the

extended model is very complicated since the squared GV term makes the integral (2.35)

intractable, but remarkably Zen et al. (2012) found that they were able to approximately

train this model by combining contrastive divergence and Markov chain Monte Carlo meth-

ods. Unfortunately they did not compare the trajectory HMM and the extended model. It
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should be noted that in their experiments they used a context-dependent model of log GV

rather than the context-independent model of GV considered here.

6.6 A pathology in GMSD and GV generation

Prima facie expected-spread GMSD generation may seem like an extremely sensible genera-

tion method: we first compute a reasonable GMSD value and then compute the most likely

trajectory with this GMSD. However GMSD and GV generation suffer from a pathology:

for certain seemingly reasonable distributions over trajectories, the generated trajectory

has large excursions where the trajectory value for a given frame is far outside the range

of values that are “reasonable” for that frame according to the distribution over trajector-

ies. We think this pathology is somewhat surprising, and so in this section we present a

simple synthetic example to illustrate it. The pathology is not specific to expected-spread

generation and would also occur for many other forms of GMSD and GV generation.

Consider a random signal, or equivalently a distribution over trajectories, that consists

of amplitude-modulated white Gaussian noise plus a mean signal, where the mean signal

and the envelope of the amplitude modulation are both smooth slowly-varying signals of

small amplitude. A distribution over trajectories of this form with σt ≈ 1 is shown in

Figure 6.7. Despite the lack of any obvious pathologies in this distribution, we can see that

GMSD and GV generation both produce a trajectory with a large excursion.

As a first step towards understanding why this behaviour occurs, consider the case

where the mean trajectory is identically zero, since in this case the trajectory generated by

expected-spread GMSD generation can be found analytically. Let σt denote the standard

deviation at frame t, and assume that the sequence σ = [σt]
T
t=1 has a unique maximum

at t∗. Suppose we measure GMSD around 0 and the expected spread is s. Then the

optimal trajectory c∗ consists of a positive or negative spike of height
√
Ts at t∗ and is zero

everywhere else. To see this, suppose c is a trajectory with s(c) = s. Then

1

σ2
t

≥ 1

σ2
t∗

for all t (6.40)

so
c2
t

σ2
t

≥ c2
t

σ2
t∗

for all t (6.41)

so
∑
t

c2
t

σ2
t

≥ 1

σ2
t∗

∑
t

c2
t =

1

σ2
t∗
Ts (6.42)

so − 1
2

∑
t

c2
t

σ2
t

≤ −1
2

c2
t∗

σ2
t∗

(6.43)

so A(c) ≤ A(c∗) (6.44)

with equality if and only if ct = 0 for all t 6= t∗. For reasonably long utterances the spike
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Figure 6.7: A simple synthetic example showing how GMSD and GV generation can in-
troduce large excursions. The covariance matrix of the distribution over trajectories is
diagonal. The shaded region shows the mean trajectory ±1.5 standard deviations. GMSD
generation is performed with k = 0. The spike occurs where it does because of almost
imperceptible changes in the distribution there, such as a slight increase in standard devi-
ation.

can be quite large: if σt ≈ 1 as in Figure 6.7 then the spike at t∗ has magnitude
√
T , which

for T = 400 is equal to 20, i.e. the spike is 20 standard deviations from the mean.

The slight variation in the mean trajectory in Figure 6.7 mellows the extreme analytic

result just presented, but the same qualitative behaviour can be seen. In general we might

expect similar behaviour whenever the amplitude of the mean trajectory is small relative

to the standard deviation and there are only short-term correlations over time. When an

excursion does occur, we would expect it to more often be in a region of high variance than

in a region of low variance, since large deviations from the mean trajectory are penalized

less severely, in terms of log probability, in high variance regions.

It is quite easy to formulate a statistic which shows how extreme the generated trajectory

is. Consider the maximum absolute z-value maxt |zt| where the z-value zt = (ct − µt)/σt.
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We refer to z = [zt]
T
t=1 as the z-value trajectory. Note that zt ∼ N (0, 1). For T = 400 the

expected value of the maximum absolute z-value statistic is roughly 3.2, and the probability

that its value is greater than 6 is very roughly 2 ·10−6. However for the trajectory produced

by expected-spread GMSD generation the value of this statistic is roughly 20. A value this

large is tremendously unlikely. The relationship between the maximum absolute z-value and

expected-spread GMSD generation is thus similar to the relationship between the GMSD

and standard generation: the trajectory produced by standard generation has the maximum

probability but an extremely unlikely GMSD value; similarly the trajectory produced by

expected-spread GMSD generation is the most likely trajectory with given GMSD but has

an extremely unlikely maximum absolute z-value.

6.7 Artifacts

As mentioned in §3.2.6, GV generation sometimes introduces artifacts. In this section we

investigate the issue of artifacts in some detail. We will argue that excursions of the kind

described in §6.6 are the cepstral-level phenomenon responsible for the perceptual-level

phenomenon of artifacts. We therefore start by discussing excursions in detail, and discuss

how and in what circumstances they are likely to lead to audible artifacts. It can be argued

that operationally the important aspect of whether excursions lead to artifacts is whether

reducing excursions also reduces artifacts. However formulating a simple and efficient gen-

eration method which reduces excursions while maintaining a reasonable amount of GV

is non-trivial. For the standard HMM synthesis framework and the trajectory HMM, we

show that the mathematical analysis presented in §6.4 provides a neat interpretation of

how expected-spread GMSD and GV generation can introduce excursions, and suggests a

simple way to reduce their occurrence. The result is a new efficient generation method

designed to reduce excursions while generating trajectories with an appropriate amount of

spread. In §6.8 we will see that it does indeed reduce excursions and that this leads to a

reduction in artifacts.

In §6.6 we saw that GMSD and GV generation can sometimes introduce large excursions

in the generated trajectory. For certain systems, utterances and cepstral components, ex-

cursions are indeed observed, and an example is shown in Figure 6.8. We chose to plot mcep

32 because it had the largest excursion for this utterance. Excursions are most common in

the higher cepstral components, presumably because the higher cepstral components are

quite noisy, with the amplitude of the mean trajectory being small relative to the standard

deviation, and so they are susceptible to the effect described in §6.6.

For the diagonal-covariance case considered in §6.6, we found that z-values were a useful

concept when discussing excursions, and this is also true in the non-diagonal-covariance

case. For a distribution over trajectories N (µ,Σ) and a trajectory c, we define the z-value
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Figure 6.8: An example of an excursion introduced by GMSD and GV generation for mcep
32 for a test corpus utterance for trajectory HMM system T. In conjunction with similar
excursions in other cepstral components, the excursion around frame 400 gives rise to an
audible artifact.

at frame t by zt = (ct − µt)/
√

Σtt. The function which takes a trajectory c and computes

the z-value trajectory z = [zt]
T
t=1 is a statistic. If c ∼ N (µ,Σ) then each zt has marginal

distribution N (0, 1), though the zt values at different frames are not typically independent.

If |zt| is large for a generated trajectory c then this indicates that the trajectory value ct

is extreme, in the sense that the probability under the model that ct would be so far from

µt is small. Examining absolute z-values thus tells us where excursions are happening and

provides a fairly reasonable way to compare how “severe” two given excursions are. It also

allows us to easily compare excursions in different cepstral components since the absolute

z-values are directly comparable. As before the statistic maxt |zt| gives an indication of

whether an excursion occurs anywhere in a given generated trajectory.

Excursions in different cepstral components often occur simultaneously. The top panel

of Figure 6.9 shows the absolute z-value for expected-spread GMSD generation for all frames

and cepstral components for the same utterance as in Figure 6.8. For comparison the bottom

panel shows the absolute z-values for the method designed to reduce excursions which will

be described in §6.7.2. It is striking that many cepstral components simultaneously have a

fairly large excursion just before frame 400. Anecdotally the occurrence of these “stripes”
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Figure 6.9: Cepstrograms showing absolute z-value trajectories for all cepstral components
for two generation methods for one utterance for trajectory HMM system T. The “stripe”
of large absolute z-values around frame 400 in the top panel corresponds to an audible
artifact.

seems to be strongly correlated with the occurrence of audible artifacts. While even large

stripes do not always give rise to a substantial audible artifact, audible artifacts appear to

almost always arise from a stripe of some sort. This seems reasonable since an excursion in

one cepstral component may not affect the log spectrogram as noticeably as simultaneous

excursions in many components. The top panel of Figure 6.10 shows the log spectrogram for

expected-spread GMSD generation for the same utterance, along with two other generation

methods for comparison. We can see that there is indeed a visible anomaly around 4.7 kHz.

Unsurprisingly this results in a clearly audible high-pitched whine artifact just before frame

400 in the synthesized audio.

If excursions are indeed responsible for artifacts then it should be possible to reduce

the occurrence of artifacts by using generation methods which reduce the occurrence of

excursions. In principle it is possible to define a generation method which does not suffer

from excursions by simply restricting the value of maxt |zt| for the generated trajectory, say

to be at most 3. This would involve computing, for a given spread s > 0, the most likely

trajectory c such that s(c) = s and such that µt− 3
√

Σtt ≤ ct ≤ µt + 3
√

Σtt. It seems likely
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Figure 6.10: Log power spectrograms for three generation methods for one utterance for tra-
jectory HMM system T. The frequency index is linear in frequency with 513 corresponding
to 8 kHz.
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that a reasonably efficient algorithm could be found to solve this constrained optimization

problem, which has a quadratic objective function, a quadratic constraint and 2T linear

constraints. However it seems unlikely this would be as fast as the algorithm in §6.4.1 for

expected-spread GMSD generation, which has the same objective function and only the

quadratic constraint. It is therefore desirable to find a more tractable generation method

which reduces excursions.

In the remainder of this section we describe a simple way to predict which frames are “at

risk” of excursions for the standard HMM synthesis framework and the trajectory HMM,

and show how this can be used as the basis of a simple generation method which reduces

excursions. The results in both sections are made possible by the mathematical analysis

presented in §6.4. Some of the content below was previously presented in a conference

paper (Shannon and Byrne, 2013a).

6.7.1 Negative modified static precision parameters

The analytic results presented in §6.4.4 show that for the standard framework and the

trajectory HMM it is possible to interpret GMSD and GV generation as standard generation

on a modified model. This involves subtracting utterance-specific values λ and ν from the

static model parameters τq0 and bq0 respectively. However whereas for the standard case

we have τq0 > 0, the modified parameter τq0 − λ may be negative. In this section we

explain how such negative modified static precision parameters can lead to excursions in

the generated trajectory. This provides a simple way of detecting which frames are “at

risk” of excursions.

In §3.2.4 we presented a view of standard generation in terms of soft constraints. In this

view, for a frame t with leaf index q(θt) = q, τq0 and bq0 together place a soft constraint on

the trajectory value ct. The preferred trajectory value for this constraint is bq0/τq0, and a

large τq0 means that trajectories deviating from this preferred value are harshly penalized,

while a small positive τq0 means that deviating trajectories are only mildly penalized. In

this view τq0 < 0 corresponds to the counterintuitive soft constraint that the trajectory

value ct should deviate from the value bq0/τq0 as much as possible. The more negative τq0,

the more a potential trajectory is penalized for not deviating substantially from this value.

This means that, for frames where τq0 < 0, the static part of the model is pushing the

trajectory away from finite values and towards ±∞. The non-static parts of the model still

have an influence, so the trajectory does not actually reach ±∞, but the influence of the

static part can lead to excursions.

The correspondence between negative modified static precision parameters and the oc-

currence of excursions is not exact. If the modified static precision parameter is not too

negative, the segment is sufficiently short, or the influence of the non-static parts of the
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Figure 6.11: Cepstrograms showing the correspondence between frames with a negative
modified static precision parameter (dark in top panel) and frames with excursions (dark
in bottom panel) for expected-spread GMSD generation.

model is sufficiently strong, then there may be no excursion. Similarly not all excursions

have negative modified static precision parameter. For the synthetic example shown in

Figure 6.7, all the modified static precision parameters are positive. However the corres-

pondence is often fairly close. In Figure 6.11 we show the correspondence for the utterance

considered previously, and we can see that cepstral components and frames with substantial

excursions almost always have a negative modified static precision parameter.

6.7.2 Local static parameter adjustment

We have seen that the modified static precision parameter effectively used by GMSD and

GV generation can be negative, and that this may lead to excursions. In this section

we describe a simple but effective fix for preventing excursions by soft-thresholding the

modified static precision parameter to ensure it is non-negative. Note that because this

approach involves adjusting the static parameters it is only applicable to the standard

HMM synthesis framework and trajectory HMM, and not to the LGLAR HMM which has

no concept of a static parameter.
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Figure 6.12: Conventional GMSD and GV generation effectively subtract a constant λ
from the static precision parameter τq0 for each leaf q. Local static parameter adjustment
(LSPA) alters this to ensure the new value is never negative. Here ξ = 0.2 and λ = 2 in
(6.45).

We have seen that GMSD and GV generation effectively use a modified static precision

parameter τ̃q0(λ) set to τq0−λ, which may be negative. For local static parameter adjustment

(LSPA) we instead set

τ̃q0(λ) = max(τq0 − λ, ξτq0) (6.45)

where λ may be any real value and 0 ≤ ξ < 1. We refer to a leaf q with τ̃q0(λ) 6= τq0− λ as

having been adjusted. The form of this function is shown in Figure 6.12. LSPA may also

be viewed in terms of an adjustment weight

wq(λ) =

min
(
1, 1

λ(1− ξ)τq0
)

if λ > 0

1 if λ ≤ 0
(6.46)

This definition is chosen so that τ̃q0(λ) = τq0 − λwq(λ). Note that 0 ≤ wq(λ) ≤ 1, with

wq(λ) = 1 for leaves which are not adjusted. LSPA is local in time in the sense that it only

makes an adjustment to the static precision parameter for frames where τq0−λ is negative

or close to negative.

We generalize (6.20) to the LSPA case by setting

c∗(λ) = (P − λ diag(w(λ)))−1(b− ν(λ)w(λ)) (6.47)

where w(λ) is the vector of adjustment weights over time, i.e. the tth entry of w(λ) is

given by wq(λ) for q = q(θt). We recover (6.20) in the case w(λ) = 1. For LSPA GMSD
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generation we set ν(λ) = kλ as before. For LSPA GV generation we set

ν(λ) =
λbT(P − λ diag(w(λ)))−1w(λ)

1Tw(λ) + λw(λ)T(P − λdiag(w(λ)))−1w(λ)
(6.48)

We recover (6.32) in the case w(λ) = 1. There are several choices of ν(λ) which satisfy

the criteria of incorporating w(λ) and of recovering (6.32) in the case w(λ) = 1 and we do

not claim (6.48) is the only or necessarily the best choice. It can be verified that for both

LSPA GMSD generation and LSPA GV generation there is a point after which increasing

λ further makes no difference to the generated trajectory. Specifically if we define

λmax = (1− ξ) max
q
τq0 (6.49)

then for λ ≥ λmax all leaves are adjusted and the generated trajectory does not depend on

λ.

The parameter ξ controls the amount of adjustment done: if ξ = 0 then the modified

static precision parameter is hard-thresholded at zero, and so only leaves which would

otherwise have a negative modified static precision parameter are adjusted; if ξ = 1 then

for all λ > 0 all leaves are adjusted back to their original, unmodified values, and so the

generated trajectory is just the mean trajectory. We set ξ = 0.2 based on small-scale

preliminary experiments.

LSPA can be used with many different types of spread-based generation. It can be

incorporated into fixed-spread, expected-spread and fixed-multiplier GMSD and GV gen-

eration. In the case of expected-spread generation the expectation is taken before any

adjustment is made to the static parameters. For fixed-spread and expected-spread gen-

eration it may occasionally not be possible to attain the desired level of spread even for

large λ, in which case we set λ to λmax to attain a large spread. Fixed-multiplier LSPA

GMSD generation, just like fixed-multiplier GMSD generation, allows very fast generation,

since the modification of the model parameters can be performed off-line and the standard

parameter generation algorithm, or its low latency time-recursive variant, used at synthesis

time. LSPA can also be incorporated into exact utility GMSD and GV generation by

restricting the maximization of G to trajectories of the form (6.47) for some λ ∈ R.

We illustrate the effect of LSPA in Figure 6.13. The bottom two panels demonstrate

visually how expected-spread GV generation effectively subtracts a constant λ from all

static precision parameters and a constant ν from all static b-value parameters. There are

four regions of frames where the modified static precision parameter is negative (middle

panel), including the region just before frame 400 where an excursion (top panel) occurs.

LSPA alters the modified static precision parameter in regions where it is negative or close

to negative (middle panel), and this eliminates the excursion (top panel). It should be

noted that for this figure the value of λ selected by expected-spread GV generation was
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Figure 6.13: An example of the effect of LSPA, for a single utterance for mcep 32 for
trajectory HMM system T. The top panel shows the trajectories produced by standard
generation (mean traj), expected-spread GV generation and a form of LSPA GV gener-
ation. The middle panel shows the corresponding sequences of modified static precision
parameters. The bottom panel shows the corresponding sequences of modified static b-
value parameters.
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re-used for LSPA GV generation. This more clearly illustrates the effect of LSPA. However

since LSPA eliminates the excursion, this results in a trajectory with too small GV, and in

practice expected-spread LSPA GV generation would be used instead.

Strictly speaking the above LSPA GMSD generation methods are not forms of GMSD

generation since they do not maximize a utility function of the form (6.1) where s is a

GMSD spread function. Similarly the above LSPA GV generation methods are not forms

of GV generation. However fixed-multiplier LSPA GMSD generation is closely related to a

form of corpus-level spread-based generation with a different spread function. Given a fixed

multiplier λ and a trajectory value k ∈ R, consider a spread function sk(c) =
∑

twt(ct−k)2

where the weight wt is determined by the leaf q = q(θt) at time t according to (6.46). Since

wt = 1 for frames where no adjustment is made, this spread function is similar to the

GMSD spread function, but deweights frames with a small static precision parameter. It

can be verified that fixed-multiplier LSPA GMSD generation is equivalent to corpus-level

fixed-multiplier spread-based generation with the above spread function. This equivalence

seems interesting but perhaps slightly contrived, especially since it only works for a fixed

value of λ, and we are not sure that it is an illuminating way of thinking about LSPA

generation. It is also interesting to note that generation where we match the corpus-level

GMSD with a restriction on the maximum amount of GMSD any individual leaf can have

results in a trajectory of the form (6.47) for some weight function. This can be verified

using the method of Lagrange multipliers, though we omit the details here.

If excursions due to negative modified static precision parameters are indeed a source

of artifacts as hypothesized in §6.7.1, then we might hope that LSPA would reduce arti-

facts while maintaining the other advantages of GMSD and GV generation. We will see

experimentally that this is indeed the case.

6.8 Experiments

We performed a number of experiments. Firstly we used a range of generation methods

with the trajectory HMM system T described in §4.6 to evaluate the effectiveness of LSPA

at reducing excursions and artifacts. We assessed its ability to reduce excursions using

an objective evaluation based on the maximum absolute z-value statistic. We assessed its

ability to reduce artifacts without degrading naturalness using a subjective evaluation where

listeners judged naturalness and the prevalence of artifacts. Secondly we used a range of

generation methods with the standard system S to evaluate the extent to which fixing the

value of the Lagrange multiplier λ causes a degradation in naturalness. For this we used a

subjective evaluation where listeners judged naturalness. Both subjective evaluations were

conducted as part of a single listening test. Many of these results were previously presented

in a conference paper (Shannon and Byrne, 2013a). In addition, we performed timing
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6. Investigation of spread-based speech parameter generation

experiments to get an idea of how much slower the conventional GV generation algorithm

is than the standard generation algorithm, and we performed a simplistic listening test

designed to investigate the extent to which the trajectory HMM is more susceptible to

artifacts than the standard framework.

6.8.1 Listening test

A listening test following the Blizzard Challenge-style methodology described in §3.4 was

conducted over several weeks. It was completed by 24 native English speakers. The listening

test consisted of three parts containing 48 utterances each.

In the first part of the listening test, the listeners evaluated the naturalness of the

methods in §6.8.2 on a scale of 1 to 5. The second part was similar but used the methods

in §6.8.3. In the third part the listeners heard the methods in §6.8.2 and for each utterance

were asked to judge whether it contained an artifact, described as “a short distortion in the

audio, e.g. a blip, a click, a pop, or a short high-pitched whine, but NOT a short pause in

the incorrect position”. They were told that they should expect roughly 1 in 10 utterances

to contain an artifact, and were presented with two examples, generated by method T.U

described below, of utterances containing an artifact. The third part was conducted after

the first two so that perceived artifacts would not influence naturalness judgements.

6.8.2 LSPA evaluation

A number of different generation methods were used with the trajectory HMM system

T in order to investigate the effectiveness of LSPA for reducing excursions and artifacts.

These methods are summarized in Table 6.3. Exact utility GV generation for method T.U

was implemented using the partially analytic GV generation algorithm, but we checked

that running conventional HTS gradient ascent for millions of iterations gave nearly in-

distinguishable trajectories. Method T.E allows us to investigate the previously suggested

hypothesis, mentioned in §6.7, that artifacts are partly caused by µGV being an inappro-

priate GV value for some utterances. In contrast to T.U, T.E allows the model to decide

how much global variance it expects for each utterance. The spread-matching property

of the trajectory HMM is useful here, since it ensures that any decrease in the number of

artifacts for method T.E compared to method T.U is not due to method T.E systematically

using less GV. Sampling generation was not used for the subjective evaluation since it is

known to give very poor naturalness (Shannon et al., 2011). We used the trajectory HMM

system T for assessing LSPA since exact utility GV generation with this model produced

more artifacts than with the standard system S, providing a more robust test of LSPA’s

effectiveness at reducing artifacts.
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method description

N natural speech
T.H HTS implementation of early-stopped utility GV generation,

i.e. conventional speech parameter generation considering
global variance

T.U exact utility GV generation
T.E expected-spread GV generation
T.L1 expected-spread LSPA GV generation
T.L2 expected-spread LSPA GMSD generation
T.S sampling generation (objective evaluation only)

Table 6.3: Generation methods used for the LSPA evaluation. All synthetic methods use
the trajectory HMM system T.

To assess the ability of LSPA to reduce excursions, we computed the maximum absolute

z-value on unseen test corpus utterances and summarized these values in a box plot. This

is similar to the approach used above for the spread-matching evaluation. We used median

alignments since otherwise it would not have been possible to compute the z-value of the

natural trajectory. We considered only the higher cepstral components since this is where

excursions are most prevalent.

The results of the objective evaluation are shown in Figure 6.14. We can see that:

• As expected, exact utility GV generation (T.U) and expected-spread GV generation

(T.E) sometimes introduce excursions, particularly for the highest cepstral compon-

ents.

• Early stopping (T.H) and LSPA (T.L1 and T.L2) are both effective at reducing the

occurrence of excursions. In fact they are both overly conservative, and generate

trajectories with fewer excursions than natural or sampled trajectories.

We can also see (N versus T.S) that natural trajectories tend to have slightly more excur-

sions than expected by the model. This is of course an indication of a (slight) deficiency

in the model. We defined excursions as trajectory values that are very unlikely under the

model’s probability distribution, but it is also possible to define them as trajectory values

that are very unlikely under the “true” distribution, and by definition the natural traject-

ories do not have many excursions in the second sense. These results show that LSPA is

very effective, and indeed is overly conservative, at reducing the occurrence of excursions.

The results of the subjective evaluation are shown in Table 6.4, Figure 6.15 and Fig-

ure 6.16. In a Mann-Whitney U test none of the synthetic methods had significantly

different naturalness to any other. We can see that:
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Figure 6.14: Box plots showing the maximum absolute z-value for trajectories generated
by various generation methods for the trajectory HMM system T using median align-
ments. The maximum absolute z-value statistic is used to detect excursions. Each box-
with-whiskers is a summary of 50 statistic values, one for each test corpus utterance. Each
panel shows one cepstral component. Since sampling generation (T.S) is a random method
it was performed twice.

method mean OS median OS artifacts

N 4.6 5 5%
T.H 2.6 3 15%
T.U 2.5 3 66%
T.E 2.7 3 60%
T.L1 2.7 3 18%
T.L2 2.6 3 17%

Table 6.4: Results of the subjective LSPA evaluation. OS stands for opinion score and the
artifacts column lists the proportion of utterances judged to contain an artifact.
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• Exactly optimizing the global variance utility function introduces many artifacts

(T.U).

• Early stopping is very effective at reducing artifacts (T.U versus T.H).

• Few of the artifacts introduced by exact utility GV generation are due to the probab-

ilistic model being asked to generate trajectories with global variance values it views

as unreasonable (T.U versus T.E).

• Most artifacts occur for frames with small or negative modified static precision para-

meters (T.E versus T.L1). This can be seen by noting that LSPA does not adjust

the modified static precision parameter when this is large and positive and that T.L1

suffers from far fewer artifacts than T.E.

• LSPA is almost as effective as early stopping at preventing artifacts and equally as

natural (T.H versus T.L1 and T.L2).

• The relationship between excursions and artifacts appears to be fairly direct for the

methods we consider. The methods T.U and T.E, which often introduce excursions

for some of the higher cepstral components in Figure 6.14, suffer from many artifacts.

The methods T.H, T.L1 and T.L2, which prevent excursions, suffer from far fewer

artifacts.

We perceived almost no “GV-like” artifacts for methods T.H, T.L1 or T.L2, so listeners

may be identifying artifacts not due to GV generation. In retrospect it would have been

beneficial to include standard generation amongst the methods investigated in order to

allow the rate of artifacts not due to GV generation to be established. Perhaps surprisingly

the presence of artifacts had very little effect on naturalness judgements, with T.U and

T.E rated as natural as T.H, T.L1 and T.L2 despite having many more artifacts. These

results show that LSPA is very effective at reducing the occurrence of artifacts. They also

provide some evidence that excursions are the cepstral-level phenomenon responsible for

the perceptual-level phenomenon of artifacts, as the example in §6.7 suggested.

6.8.3 Fixed-multiplier LSPA evaluation

A number of different generation methods were used with the standard framework system S

in order to investigate the effectiveness of fixed-multiplier LSPA GMSD generation. These

methods are summarized in Table 6.5. We did not investigate the corpus-level expected-

spread method of choosing the multiplier for fixed-multiplier LSPA GMSD generation here

because we were not aware of this possibility at the time the experiments were conducted.
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method description

N natural speech
S.M standard generation
S.H HTS implementation of early-stopped utility GV generation,

i.e. conventional speech parameter generation considering
global variance

S.FL1 fixed-multiplier LSPA GMSD generation with λ set using
percentile method at 50%

S.FL2 fixed-multiplier LSPA GMSD generation with λ set using
percentile method at 85%

S.FL3 fixed-multiplier LSPA GMSD generation with λ set using
MSE GMSD method

Table 6.5: Generation methods for the fixed-multiplier LSPA evaluation. All synthetic
methods use the standard system S.

method mean OS median OS

N 4.8 5
S.M 2.0 2
S.H 2.5 2

S.FL1 2.5 3
S.FL2 2.5 2
S.FL3 2.5 2

Table 6.6: Results of the subjective fixed-multiplier LSPA evaluation. OS stands for opinion
score.

Preliminary listening by the authors suggested no “GV-like” artifacts were present for any

of the above methods so only naturalness was formally evaluated.

The results are shown in Table 6.6, Figure 6.17 and Figure 6.18. In a Mann-Whitney

U test, S.M was significantly different to all other methods, but none of the spread-based

methods (S.H, S.FL1, S.FL2, S.FL3) was significantly different to any other. We can see

that:

• As expected, conventional early-stopped utility GV generation gives substantial gains

in naturalness over standard generation (S.M versus S.H).

• Fixed-multiplier LSPA GMSD generation appears to give at least as good naturalness

as conventional early-stopped utility GV generation (S.H versus S.FL1/2/3).

• The three methods for choosing the fixed value of λ give very similar results (S.FL1,

S.FL2 and S.FL3). This seems to suggest that the naturalness of trajectories gen-

erated using fixed-multiplier LSPA GMSD generation does not depend too strongly
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Figure 6.17: Box plot showing results for the subjective fixed-multiplier LSPA evaluation.
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Figure 6.18: Complementary cumulative plot showing results for the subjective fixed-
multiplier LSPA evaluation. For an opinion score s, the ordinate gives the proportion
of participant responses that were s or greater. For any given opinion score larger ordinate
values are better.



6.8. Experiments

on the details of how the fixed multipliers are chosen, and we would conjecture that

using the corpus-level expected-spread method to choose the fixed multipliers would

also give similar naturalness.

These results show that fixing the multipliers, which has substantial computational advant-

ages, leads to no degradation in performance. This makes fixed-multiplier LSPA GMSD

generation an attractive parameter generation algorithm, since it is as fast as standard

generation while improving naturalness as effectively as conventional parameter generation

considering global variance.

6.8.4 Speed of generation methods

In this section we attempt to quantify precisely how much slower the conventional gradient

ascent-based algorithm for GV generation is than the standard speech parameter generation

algorithm. We measure the time taken to compute the generated trajectory starting from

the b-value vector b and banded precision matrix P since this is where the two approaches

differ, though it should be noted that this step is only one small part of the overall synthesis

pipeline. Since fixed-multiplier LSPA GMSD generation can be implemented using the

standard generation algorithm at synthesis time, our results also apply to this method.

An experimental investigation is particularly valuable because the GV algorithm is iter-

ative, and so its complexity depends when it typically terminates. The standard algorithm

has time complexity O(TK2), where T is the number of frames and K is the upper and lower

bandwidth of P , whereas the GV algorithm has time complexity O(TK2) for initialization

and O(TKN) for gradient ascent, where N is the number of iterations performed.

Our experimental procedure was as follows. We used the profiler included in gperftools

2.2.1 (Google, 2014), which samples the current call stack once every 10 ms. By looking

at the number of such samples taken within the relevant computational routines, it is

possible to measure the speed of each algorithm. We evaluated the implementations in

HTS 2.1, which is designed mainly for research use, and hts engine 1.01 (HTS working

group, 2014), which is designed to be faster and more lightweight. We used the standard

system S to generate speech parameters for the label sequences in the training and test

corpora, producing 679 717 frames. Whereas HTS has a carefully tuned stopped criterion

for GV generation, hts engine uses a fixed number of iterations, and we chose 13 since this

is similar to the average number used by HTS. We ran the measurements on a system with

a 3.2 GHz Intel dual-core CPU with 4 GB RAM. For all timings we took the median of 5

runs of the measurement procedure.

The speed comparison results are shown in Table 6.7. In all cases we can see that

conventional GV generation is substantially slower than standard generation. We can also
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software
time (s) GV iterations

per traj
speed
factorstandard gen GV gen

HTS 1.63 24.67 12.9 15.1×
hts engine 0.92 7.63 13 8.3×

Table 6.7: Results of a speed comparison between the standard generation algorithm and
the conventional GV generation algorithm. The time measured is the total time spent in
the computational routines which take (b, P ) and return the generated trajectory.

see that hts engine is faster than HTS, though note that hts engine omits band aperiodicity

parameters and so generates 41 trajectories per utterance compared to 46 for HTS.

6.8.5 Susceptibility of trajectory HMM systems to artifacts

We mentioned above that artifacts seemed to be more prevalent with the trajectory HMM

than with the standard framework. To quantify this difference we performed a very rudi-

mentary one-listener listening test comparing S.U to T.U. For each of the test corpus

utterances, the audio for the two systems was presented in a randomized order, and we

judged whether each presentation contained an artifact or not. Afterwards the responses

were collated. We judged that 1 of the 50 utterances for S.U and 31 of the 50 utterances

for T.U contained an artifact. Thus the difference is quite large. We are not sure why

the trajectory HMM is more susceptible to artifacts than the standard framework. The

fact that the standard framework systematically underestimates predictive variance is not

responsible, since it is easy to show that variance boosting makes no difference to the tra-

jectories produced by fixed-spread GV generation, and Figure 6.6 and Figure 6.4 show that

exact utility GV generation produces essentially the same trajectories as fixed-spread GV

generation.

6.9 Discussion

In this section we discuss some remaining questions about spread-based generation and

summarize our views on why GMSD and GV generation sometimes introduce artifacts.

6.9.1 Why does early stopping reduce excursions?

We saw experimentally that early stopping is very effective at reducing excursions and

artifacts, but so far we have not considered why. In this section we outline a simplistic

analysis of the effect of early stopping by working in an eigenbasis of the precision matrix.

This sheds some light on why early stopping reduces excursions.
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Consider a distribution over trajectories with natural parameters b and P . Instead of

working in the conventional frame basis of RT where the basis vectors are the discrete

delta spikes at each frame t, we can instead work in the eigenbasis where the basis vectors

are eigenvectors. We sort the eigenvalues [p̃i]
T
i=1 in increasing order and refer to i as the

eigenindex. For a trajectory c we denote the corresponding vector in the eigenbasis by c̃.

The precision matrix is diagonal in the eigenbasis, so sampling generation samples each c̃i

independently. The GMSD computed in the eigenbasis is the same as the GMSD computed

in the frame basis, so it does not matter which basis we do GMSD generation in. As would

be expected, excursions also occur for expected-spread GMSD generation in the eigenbasis,

and these are almost always in the smallest two or three eigenindices. The excursions in

the eigenbasis correspond to the excursions in the frame basis since the eigenvectors for

the smallest eigenindices are typically smooth “bumps” localized to a particular segment

of frames.

Early-stopped utility GV generation works by doing gradient ascent on the utility func-

tion G(c) = A(c) +B(v(c)). This involves taking a series of discrete steps in RT , where the

direction of each step is proportional to the gradient of G at the current point. It can be

shown that the gradient of G at c is of the form −(P − λI)c+ (b− ν1) where λ, ν ∈ R de-

pend on c. We make two approximations to simplify analysis. Firstly we consider gradient

ascent where the path in RT is continuous instead of discrete. If we parameterize the path

by α then dc
dα(α) is equal to the gradient of G at c(α). Secondly we assume that λ, ν ∈ R

above are constant in α. If we choose the values of λ and ν appropriately then the final

trajectory c(∞) is the same as in the non-approximate case, but the path taken to this

final trajectory will be different in general. With these two approximations the function c

can be computed analytically by solving

dc

dα
(α) = −(P − λI)c(α) + (b− ν1) (6.50)

This involves a matrix exponential, and working in the eigenbasis this turns into a scalar

exponential for each eigenindex, with

c̃i(α) = K̃ie
−(p̃i−λ)α +

b̃i − ν1̃i
p̃i − λ

(6.51)

for some constant K̃i ∈ R depending on the initial conditions. The second term on the right

side is the optimal value which would be chosen by exact utility GMSD generation. Thus

the coefficient of eigenindex i decays exponentially from its initial value towards the optimal

value, and the time constant for this decay is 1/(p̃i− λ). The decay is therefore slowest for

the smallest eigenindices, where the optimal value sometimes constitutes an excursion. By

carefully tuning the stopping criterion it is therefore possible to avoid potential excursions

caused by getting too close to the optimal value in the lowest eigenindices while gaining the

benefit of increased spread from getting close to the optimal value for the other eigenindices.

177



6. Investigation of spread-based speech parameter generation

6.9.2 Why do excursions occur in stripes?

We mentioned in §6.7 that excursions in different cepstral components often occur simul-

taneously. This seems surprising since the statistical model assumes that the trajectories

for different cepstral components are conditionally independent and speech parameter gen-

eration operates separately on each component. In this section we describe a possible

explanation for this phenomenon.

Since parameter estimation and speech parameter estimation operate largely separately

for each cepstral component, a stripe of excursions at a given time suggests that there is

some property of the state at that time, or rather the leaf at that time, that results in

many of the cepstral components for that state being susceptible to excursions. As a crude

way to investigate this we performed a simple experiment using trajectory HMM system

T. Let Zt1i be the z-value corresponding to the speech parameter value Ct1i for frame t

and cepstral component i. For each utterance in the test corpus, we computed the frame

arg max
t

(
1

40

39∑
i=0

Z2
t1i

)1
2

(6.52)

for which the root-mean-square z-value was greatest, as a proxy for the position of the most

substantial stripe, and recorded the leaf index for this frame. We thus obtained a list of 50

leaf indices which may be susceptible to excursions. Just two “bad leaves” made up around

40% of this list, and these leaves had an average root-mean-square z-value of more than

5. Just four bad leaves made up around 60% of the list. Spot checks for a few utterances

suggested that these leaves did indeed often lead to stripes. We mention in passing that for

around 60% of the utterances the current phoneme at the maximum was n, so this nasal

appears to be far more susceptible to excursions than other phonemes, though we are not

sure why this is the case.

There were a few exceptional aspects that these four “bad leaves” had in common. A

summary of where these four leaves ranked amongst all leaves according to several metrics

is shown in Table 6.8. We can see that all four leaves had very high occupancy. A leaf

having a high occupancy means that, if it is susceptible to excursions, then these excursions

will tend to occur in many utterances. The high occupancy of these leaves also shows that

robust estimation was not an issue. The four bad leaves all had very large variance for some

cepstral components, for example mcep 32, and large variance across many of the higher

cepstral components. We commented in §6.6 that we might expect regions with large

variance to be more susceptible to excursions. The combination of a very large occupancy

and a large variance across many cepstral components was rare in general; there was only

one other leaf that had both as extreme an occupancy percentile and as extreme an average

variance percentile as any of these four leaves. The four bad leaves also all had very small
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description leaf 1 leaf 2 leaf 3 leaf 4

occupancy percentile 98% 96% 97% 95%
variance percentile, mcep 32 98% 99% 96% 97%
variance percentile, mean for mcep 25 to 34 93% 87% 88% 93%
τq0 percentile, mcep 32 98% 98% 96% 93%
τq0 percentile, mean for mcep 25 to 34 97% 93% 95% 88%
“no” proportion percentile 99% 86% 96% 76%

Table 6.8: Various percentiles computed for four “bad leaves” which we identified as being
susceptible to excursions for system T. The percentile value shows where the given leaf
ranks amongst all leaves, e.g. 98% of leaves had an occupancy smaller than leaf 1. The
results are computed on the training corpus. Here variance means the variance of trajectory
values for frames assigned to a given leaf, τq0 refers to the static precision parameter for a
given leaf, and “no proportion” is the proportion of “no” answers encountered on the path
from the root node to a given leaf node in the decision tree.

static precision parameter for mcep 32, and small static precision parameter across many

of the higher cepstral components. We saw in §6.7.1 and §6.8.2 that excursions tend to

occur where the static precision parameter is small. The above discussion suggests that the

reason excursions are often observed in many cepstral components simultaneously for these

four leaves is that the leaves are both commonly occurring and have a large variance, or a

small static precision parameter, across many cepstral components.

Why do certain leaves have both a large occupancy and a large variance across many

cepstral components? Is it an inherent feature of the data, or something to do with the

estimation procedure? Examining the list of question answers for the four leaves, we noticed

that they contained a lot of “no” answers. This is quantified in the last row of Table 6.8.

It has previously been suggested that, because of the style of question typically used for

decision tree clustering, the states which are clustered together for such a leaf may be

heterogeneous, sharing few phonemic and linguistic properties other than not belonging

to certain relatively small sets.1 This heterogeneity may be responsible for the four leaves

having large variances. Since decision tree clustering does not treat each cepstral component

separately, but rather chooses the question at a given node based on all components at once,

this would explain why these leaves have large variances across many components.

1Personal communication, Simon King, 2014.

179



6. Investigation of spread-based speech parameter generation

6.10 Fixed-multiplier LSPA GMSD generation recipe

For convenience we now specify the steps involved in implementing fixed-multiplier LSPA

GMSD generation starting from a trained standard system or trajectory HMM system.

This is done separately for each cepstral component. We choose the multiplier λ using

the corpus-level expected-spread method. We assume that we have a function f which

implements standard generation. The input to f is a collection [bqd]q,d of b-value model

parameters for each leaf q and window d, a collection [τqd]q,d of precision model parameters,

and a state sequence θ = [θt]
T
t=1. The output of f is the mean trajectory µ = [µt]

T
t=1. The

function also needs to know the windows used and the mapping q from states to leaves, but

we leave these implicit in our notation. The steps involved are as follows:

• Implement a function g which takes a value λ ∈ R and a static precision parameter

τq0, or a vector of such values, and returns the value g(λ, τq0) = max(λ, (1 − ξ)τq0),

or a vector of such values. Here ξ = 0.2.

• Implement a function h which takes values k, λ ∈ R and a collection [bqd, τqd]q,d

of model parameters and returns a new collection of model parameters with altered

static b-value parameters b̃q0 = bq0−kg(λ, τq0) and altered static precision parameters

τ̃q0 = τq0 − g(λ, τq0).

• Implement a function j which takes a value of λ ∈ R and computes the overall GMSD

of the generated trajectories for the whole training corpus. Computing j(λ) involves

first altering the original model parameters using h, then generating trajectories on

the whole training corpus for this altered model using f , then computing the overall

GMSD of the generated trajectories.

• Compute the average trajectory value k ∈ R over the whole training corpus. This is

the value around which we will measure GMSD.

• Compute the overall GMSD s > 0 of all the training corpus trajectories (as if the

training corpus trajectories were one long trajectory).

• Use Brent search or simply bisection to find the value λ ∈ R for which j(λ) is equal

to s.

• Use this value of λ to alter the original model parameters using h.

• Use the altered model instead of the original one during standard generation. This

provides GV generation-like naturalness without artifacts but using the fast and

simple standard generation algorithm.
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6.11 Summary of contributions

The major novel contributions of this chapter are: a theoretical analysis of GV generation

based on Lagrange multipliers showing that, for the standard framework and trajectory

HMM, GV generation is equivalent to standard generation on a modified model (§6.4); the

discovery that, both theoretically and in practice, normalized models such as the trajectory

HMM and autoregressive HMM model GV very well (§6.5); the hypothesis that excursions

are the cepstral-level phenomenon responsible for audible artifacts (§6.7) and experimental

evidence supporting this hypothesis (§6.8.2); and a new generation method (fixed-multiplier

LSPA GMSD generation) which is as fast as standard generation but improves naturalness

as much as conventional GV generation, without introducing artifacts (§6.7.2 and §6.8.3).

Minor novel contributions of this chapter include: the concept of spread-based gener-

ation (§6.2); the idea of using GMSD generation as an easy-to-analyze alternative to GV

generation (§6.2.2); the idea of using the expected GV under the model as a way of selecting

an appropriate GV value for generation (§6.2.3); the discovery that the conventional GV

utility function has a unique global maximum (§6.4.3) and at most one local, non-global

maximum (§6.4.5); the idea of matching GV at the corpus level instead of the utterance

level (§6.2.5); an efficient algorithm for expected-spread GV generation (§6.4.2); a partially

analytic algorithm for exact utility GV generation, involving a one-dimensional numerical

optimization instead of the T -dimensional numerical optimization typically used (§6.4.3);

the concept of fixed-multiplier generation, its relationship to corpus-level generation, and

its computational advantages (§6.4.6); the realization that the trajectory HMM matches

GMSD, and in fact leaf-specific GMSD, on the training corpus (§6.5.1); the realization

that GV generation suffers from a pathology (§6.6); the realization that, for the standard

framework and trajectory HMM, negative modified static precision parameters can result

in frames that are “at risk” of excursions (§6.7.1); experimental verification that most arti-

facts occur for frames with small or negative modified static precision parameters (§6.8.2);

a GV-like generation method (LSPA GV generation) which improves naturalness and re-

duces artifacts like conventional GV generation does, but which is more amenable to being

used with the partially analytic generation algorithms (§6.7.2 and §6.8.2); the notion of a

z-value as a convenient way of measuring excursions (§6.7); the discovery that excursions in

different cepstral components often occur simultaneously (§6.7) and a plausible explanation

as to why this occurs (§6.9.2); the discovery that, for normalized models, sampling gen-

eration results in appropriate levels of spread without introducing excursions (§6.5.2 and

§6.8.2); experimental investigation of a previously suggested hypothesis on why artifacts

occur (§6.8.2); and a partial explanation of why early stopping reduces excursions (§6.9.1).
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Chapter 7

Conclusion

In this thesis we have investigated various aspects of the challenge of specifying and using

probabilistic acoustic models for parametric speech synthesis. We have proposed the LG-

LAR HMM as a consistent yet highly tractable alternative to the standard HMM synthesis

framework and the trajectory HMM. We have proposed fixed-multiplier LSPA GMSD gen-

eration as a faster alternative to parameter generation considering global variance. We

have also provided insight into various facets of existing and new models and generation

methods.

The LGLAR HMM addresses the inconsistency in the treatment of the dynamics of

speech parameter sequences present in the standard framework. Compared to the traject-

ory HMM, it has the advantage of supporting efficient parameter estimation using expect-

ation maximization and decision tree clustering. Ultimately this tractability is due to the

fact that the linear regression model at the heart of the LGLAR HMM is a conditionally

additive exponential family. The LGLAR HMM supports existing effective speech para-

meter generation methods such as parameter generation considering global variance, as well

as supporting a simple and exact low latency parameter generation algorithm not available

for the standard framework or the trajectory HMM. Experimentally we have investigated

the best way to set model structure parameters such as depth for the LGLAR HMM and

made recommendations for how to set the model structure parameters to achieve good

TSLP, MCD and naturalness. We found that a moderate amount of overfitting improved

MCD scores and naturalness. In a subjective evaluation we found that the LGLAR HMM

is capable of producing speech that is as natural as that of the standard framework with

its conventional settings, but not as natural as the trajectory HMM.

Fixed-multiplier LSPA GMSD generation is the culmination of two separate threads of

investigation. Firstly it builds on a mathematical analysis of GMSD and GV generation,

showing that fixed-multiplier GMSD generation is a very fast approximation to corpus-level

expected-spread GMSD generation. Secondly it builds on an investigation into why GV
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generation sometimes introduces artifacts, showing that LSPA is an effective way to prevent

their occurrence. The combination, fixed-multiplier LSPA GMSD generation, is as fast as

standard speech parameter generation but improves naturalness as much as parameter

generation considering global variance, without introducing artifacts.

We have also investigated and hopefully developed a better understanding of several

aspects of existing and new models. We have seen that the standard framework, due its

lack of consistency, greatly underestimates predictive variance. We have observed that the

trajectory HMM acoustic model is a conditional exponential family, implying that the log

likelihood function is concave in a particular parameterization and has no non-global local

maxima in any parameterization, and that both sampled trajectories and the mean tra-

jectory match certain leaf-specific statistics. We have identified future state blindness as

a weakness in the autoregressive HMM and investigated ways in which the LGLAR HMM

might be compensating for this weakness. We have described two ways to view the tra-

jectory HMM and the LGLAR HMM within a common framework, including a view of

the trajectory HMM as a directed graphical model which shows explicitly how the traject-

ory HMM avoids suffering from future state blindness by passing information about future

states backwards in time. We have shown that GMSD and GV generation are equivalent to

standard generation on a modified model. We have shown theoretically and experimentally

that consistent models such as the trajectory HMM and autoregressive HMM model global

variance very well. This implies that, for consistent models, parameter generation consid-

ering global variance is perhaps best viewed as compensating for a deficiency in standard

generation, not a deficiency in the model. Finally we have investigated the causes of arti-

facts in some detail. We have shown that GV generation suffers from a pathology which

can result in excursions in the generated trajectory, and found that excursions in different

cepstral components often occur simultaneously. We have provided evidence that these ex-

cursions are the cepstral-level phenomenon responsible for the perceptual-level phenomenon

of artifacts. We have also provided a partial explanation of why early stopping helps to

prevent artifacts, and shown that a previously suggested hypothesis about the causes of

artifacts has only a small effect for our experimental systems. We have presented our hy-

pothesis about the causes of artifacts, suggesting that they are due to a pathology in GV

generation exacerbated by a deficiency in the decision tree clustering process.
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Appendix A

Proof of the variance boost bound

We mentioned in §5.4.1 that the optimal variance boost for a standard HMM synthesis

framework system trained on a fixed alignment is always less than or equal to the number

of windows used for that system. Here we give a proof of this fact. We assume a fixed state

sequence θ throughout.

First we review notation. For each vector component of the speech parameters the

probability distribution used by the trajectory HMM is a Gaussian with b-value b and

precision matrix P given by (3.39) and (3.40), where these values depend on the state

sequence θ and model parameters λ. The mean trajectory µ satisfies b = Pµ. Applying a

collection of D windows to trajectory c = [ct]
T
t=1 results in a trajectory tuple. As discussed

in §3.2.2 we may view a trajectory tuple as a (DT )-dimensional vector o, rather than a

T ×D matrix as we have in the majority of the thesis. The process of computing o from c

is linear, so o = Wc for a DT × T matrix W . In terms of these quantities P and b may be

expressed as

P = WTP̃W (A.1)

b = WTP̃ µ̃ (A.2)

where µ̃ is the result of flattening a T ×D matrix of mean parameters to obtain a vector of

length DT , and P̃ is a diagonal matrix whose diagonal is the result of flattening a T ×D
matrix of precision parameters to obtain a vector of length DT (Tokuda et al., 2000). The

above formulae, rather than (3.39) and (3.40), are in fact the standard way to describe the

standard speech parameter generation method and the trajectory HMM in the literature

(see for example (Zen et al., 2009)).

We saw in §5.4.1 that amongst the family of variance boost transformations (b, P ) 7→
(kb, kP ) for k > 0, the optimal k is given by

1

k̂
=

1

T
(c− µ)TP (c− µ) (A.3)
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A. Proof of the variance boost bound

This is optimal in the sense of maximizing the log probability of the natural trajectory c.

Our claim is that for a trained standard HMM synthesis framework system 1/k̂ ≤ D, that

is

(c− µ)TP (c− µ) ≤ DT (A.4)

Now (A.3) applies to any Gaussian distribution, and in particular to the Gaussian acoustic

model used by the standard HMM synthesis framework during training. Thus the optimal

variance boost for this model is given by

1

DT
(o− µ̃)TP̃ (o− µ̃) (A.5)

where o = Wc for the natural trajectory c. However if the model has been trained using o as

its training data (where we are following the convention of only considering a single training

example for sequential models as discussed in §2.5.1) then the optimal variance boost for

this trajectory must be 1, since otherwise we could obtain a better log likelihood by using

the variance-boosted model. This variance-boosted model, say with variance boost 1/k, is

an instance of the Gaussian acoustic model defined by (3.10) since it may be obtained by

multiplying all b-value and precision parameters in the model by k. Therefore for a trained

Gaussian acoustic model we have

DT = (o− µ̃)TP̃ (o− µ̃) (A.6)

= (Wc− µ̃)TP̃ (Wc− µ̃) (A.7)

= cTPc− 2bTc+ µ̃TP̃ µ̃ (A.8)

= (c− µ)TP (c− µ) + µ̃TP̃ µ̃− µTPµ (A.9)

Thus our claim is equivalent to µ̃TP̃ µ̃− µTPµ ≥ 0.

As discussed in §3.2.2 the set of all realizable o forms a T -dimensional subspace of the

(DT )-dimensional vector space of all possible o. This realizable subspace is the image of

W . Thinking geometrically, P̃ defines an inner product on RDT , so we may consider the

orthogonal projection operator Q on to the realizable subspace with respect to this inner

product. The explicit formula for Q is

Q = W (WTP̃W )
−1
WTP̃ (A.10)

It it easy to verify that Q2 = Q and that the image of Q is equal to the image of W , so Q

is a projection on to the realizable subspace. To verify that it is orthogonal with respect to

the inner product defined by P̃ requires checking that QTP̃ = P̃Q. Geometrically Q takes

a trajectory tuple o and computes the nearest realizable trajectory tuple, where “nearest”

means with respect to the Mahalanobis distance defined by P̃ .
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It is interesting to note that the standard parameter generation method may be ex-

pressed very simply in this geometric view: it finds the member Qµ̃ of the realizable sub-

space which is closest to the vector µ̃ of mean parameters. This can be seen by noting

that Qµ̃ = Wµ, where Wµ is the result of taking the mean trajectory µ and embedding

it in o-space by computing the corresponding trajectory tuple. The distance between the

vector µ̃ of mean parameters and its realizable projection Wµ is a measure of how much

the standard speech parameter generation algorithm has to compromise when trading-off

the conflicting soft constraints imposed by the different windows.

Returning to our proof, we have that

µ̃TP̃ µ̃ = ‖µ̃‖2
P̃

(A.11)

where ‖·‖P̃ is the norm defined by P̃ , and since Wµ = Qµ̃ we have

µTPµ = µ̃TQTP̃Qµ̃ = ‖Qµ̃‖2
P̃

(A.12)

Since Q is an orthogonal projection we have ‖Qµ̃‖2
P̃
≤ ‖µ̃‖2

P̃
. This establishes our claim.

We can go slightly further and obtain a limited amount of insight into when the optimal

variance boost is likely to be close to D. The slack

‖µ̃‖2
P̃
− ‖Qµ̃‖2

P̃
(A.13)

in the inequality (A.4) is precisely the squared distance that µ̃ moves when projected on

to the realizable subspace. If we normalize this per frame by dividing by T then we obtain

the amount D − 1/k̂ by which the optimal variance boost 1/k̂ differs from the number

of windows D. Thus the amount by which the optimal variance boost is less than D

depends on how far the vector of trained mean parameters is from the realizable subspace.

This distance is also the quantity minimized by the standard speech parameter generation

method, and so the optimal variance boost will be close to D when the standard parameter

generation method (operating on the training corpus) does not have to compromise too

greatly when balancing the conflicting soft constraints imposed by the different windows.
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Appendix B

End effects for trajectory-level

acoustic models

For many sequential probabilistic models, care is needed to define precisely what happens

at the beginning and end of a sequence. We use end effects as a catch-all term for this

sort of consideration. The issue of how to cope with end effects for trajectory-level acoustic

models is a subtle one, and it is hard to find a completely satisfying solution. In this

appendix we briefly discuss the issue and mention a number of possible solutions for the

trajectory HMM acoustic model and the LGLAR acoustic model.

That end effects are an issue for the trajectory HMM acoustic model and LGLAR

acoustic model can be seen in their definitions. In §3.2.2 we saw that there is an issue with

how to choose the window coefficients to use while computing the first few and last few

frames of dynamic trajectories, i.e. how to choose the first few and last few rows of the

window matrix. The trajectory HMM acoustic model defined in §3.3.2 uses this window

matrix to specify the b-value b and precision matrix P . For the LGLAR acoustic model,

P(c | θ, λ) is mostly specified by P(ct | ct−K:t−1, θt, λ) in (4.6), but to fully define the model it

is necessary to specify the initial acoustic context c−(K−1):0. In fact, as we outline below, for

trajectory-level acoustic models with banded precision matrices the end effect issue centres

on how to choose the top-left and bottom-right corners of the precision matrix P and the

first few and last few elements of the b-value vector b. In terms of the decomposition

into local contributions presented in §5.3.1, this corresponds to how to choose the first

few and last few local contributions to the precision matrix and b-value vector. Note that

the influence of the first and last few frames of b and P can in principle extend over much

longer timescales than just a few frames. For example, for a degenerate case of the trajectory

HMM acoustic model where the delta expert at every time says that the derivative should

be exactly zero, end effects determine the entire trajectory.

The following are some potential solutions to coping with the issue of end effects for the
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B. End effects for trajectory-level acoustic models

trajectory HMM acoustic model:

1. Ignore, i.e. evaluate as a constant value 1, any experts which we cannot evaluate

properly. This corresponds to using zero-output windows.

2. Condition on the trajectory values before the start and after the end of the observed

values being zero. This corresponds to using zero-input windows.

3. Condition on the trajectory values before c1 being some fixed value, not necessarily

zero, and similarly for the trajectory values after cT . In principle these fixed values

could be treated as model parameters and learned.

4. Use alternative finite difference window coefficients. The conventional windows are

motivated as finite difference approximations to the derivative and second derivative,

so alternative finite difference approximations could be used for the first few and last

few frames. For example the first frame could use a delta window of (0.0,−1.0, 1.0)

instead of (−0.5, 0.0, 0.5). Note that further additional windows are needed if we wish

to cope with the case of short utterances (those with T < K).

5. Assume that what we actually observe is a snapshot of a longer process. Extend the

state sequence to start earlier than 1 and end later than T . One way to do this is to

add “before initial” and “after end” states. Assume the trajectory extends similarly

but that the trajectory values before c1 and after cT are not observed. Thus we

marginalize over the unobserved trajectory values, but the extra states still have a

(possibly weak) coupling to the observed values via these unobserved values.

6. Allow a special initial local contribution from time 1 to time K, and a special final

local contribution from time T − K to time K. Allow these contributions to be

arbitrary, i.e. PLC is an arbitrary positive semi-definite K ×K matrix and bLC is an

arbitrary vector, both learned from data. The first few and last few states are now

ignored. This adds O(K2) extra model parameters. Note that further special local

contributions are needed if we wish to cope with the case of short utterances (those

with T < K).

As a reminder K = KL +KR is the sum of the left and right extents of a given window or

collection of windows. The choice of solution above only affects the first and last K elements

of b and the K ×K submatrices in the top left and bottom right of P , as can be seen by

examining the formula for conditioning and marginalization for Gaussian distributions (e.g.

as given by Bishop (2006, chapter 2)). In this sense solution 6 may be viewed as the most

general.
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We default to using solution 2 due to its simplicity. In preliminary experiments with

solutions 1, 2 and 3, we found only minor differences in TSLP and MCD performance.

This may be partly because, for median alignments derived from system S, the first state

in all utterances corresponded to a particular leaf which only ever appeared at the start of

utterances and almost always only lasted one frame, so a restricted form of solution 6 was

effectively already being used. The situation with the final state was not quite as clear cut.

For solution 5 the effect of the additional states before θ1 on the observable trajectory

is likely to diminish as we go further back in time, and similarly for the additional states

after θT . This means that we may view the state sequence as essentially infinite.

For solutions 2 and 3, which condition on unobserved trajectory values, it is possible

to view the state sequence as extended in a similar way to solution 5, and again we may

conceptually consider the state sequence to be infinite. However now only the KR extra

states before θ1 and the KL extra states after θT have any effect. Viewed from this per-

spective, the trajectory HMM acoustic model defined in §3.3.2 appears to be missing some

local contributions, and this situation is rectified by using the model defined in §5.2.

All of the above proposed solutions except 5 result in a probabilistic model that is

a conditional exponential family. The model parameters bqd and τqd for each leaf q and

window d are natural parameters corresponding to feature functions fqd and gqd, and the

difference between solutions 1, 2, 3 and 4 is just in the precise form of the feature functions

fqd and gqd. For example fqd and gqd are given by (3.45) and (3.46) for solutions 1 and

2. The solution 6 effectively adds additional feature functions and corresponding model

parameters but may still be viewed as a conditional exponential family.

As an alternative to the above proposed solutions for modelling end effects, we can

instead condition on the actual values of the first few frames and last few frames, treating

the prediction of these values as outside the scope of the model. This has the advantage that

we can compare different models on how they perform for the majority of the trajectory

(according to whatever is our chosen metric) without worrying that a difference in how

well they cope with end effects will affect the comparison fundamentally. This has the

disadvantage that in principle it is no longer possible to synthesize audio for a new utterance,

and that in practice we probably do care about having a good model for the first few and

last few frames. Note that the first few and last few states are now ignored.

Solutions 2 and 3, and the condition-on-the-actual-values solution presented in the

previous paragraph, are also applicable to an autoregressive acoustic model. In this case

the only issue is with initial end effects, not final end effects, since an autoregressive acoustic

model effectively already marginalizes over all possible future unobserved trajectory values.

Solution 5 is also applicable to the LGLAR acoustic model, but exact analytic parameter

estimation is no longer possible, so an approach such as gradient ascent or variational Bayes

would be required for parameter estimation.
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