Kinematics of the Domino Layer

The geometrical properties of the domino laying vehicle are shown in the diagram above. The drive and trolley wheels are drawn in blue, with the deposited domino in red. Our aim is to lay the dominoes in a circle of radius r_{d} around the origin O. To do this, we need to find the radii r_{i} and r_{o} traced out by the inner and outer drive wheels. We can then set the speeds of the two drive motors according to the ratio r_{i} / r_{o}.

We start by expressing the x and y coordinates of the domino in terms of the lengths $d_{p}, d_{t w}$ and z, and the radius r_{m} traced out by the midpoint of the front wheels:

$$
\begin{align*}
x & =d_{p}+d_{t w} \cos \theta+z \cos (\phi-\theta) \tag{1}\\
y & =r_{m}-d_{t w} \sin \theta+z \sin (\phi-\theta) \tag{2}\\
r_{d} & =\sqrt{x^{2}+y^{2}} \tag{3}
\end{align*}
$$

d_{p} and $d_{t w}$ can be measured directly on the robot, while ϕ and z follow trivially from the measurements d_{l} and d_{t} :

$$
\begin{equation*}
\phi=\tan ^{-1}\left(d_{t} / d_{l}\right) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
z=\sqrt{d_{l}^{2}+d_{t}^{2}} \tag{5}
\end{equation*}
$$

That leaves just θ. Inspecting the diagram, and noting that the trolley wheel, like the drive wheels, is travelling in a circle around O (hence the 90° annotations at the trolley wheel), we see that:

$$
\begin{align*}
\theta & =\pi-\alpha-\beta \tag{6}\\
\alpha & =\tan ^{-1}\left(r_{m} / d_{p}\right) \tag{7}\\
\beta & =\cos ^{-1}\left(d_{t w} / \sqrt{r_{m}^{2}+d_{p}^{2}}\right) \tag{8}\\
\Rightarrow \theta & =\pi-\tan ^{-1}\left(r_{m} / d_{p}\right)-\cos ^{-1}\left(d_{t w} / \sqrt{r_{m}^{2}+d_{p}^{2}}\right) \tag{9}
\end{align*}
$$

This fully defines the forward kinematics. Starting from the the robot dimensions (d_{p}, $d_{t w}, d_{t}$ and d_{l}), and the front wheel midpoint radius r_{m}, we can calculate the deposited domino radius r_{d} using equations (9), (1), (2) and (3), in that order.

Solving the inverse kinematics - i.e. starting from r_{d} and arriving at r_{m} - is much more difficult, as is often the case in real world mechanics. Rather than attempt a closed form solution, we instead provide a Matlab/Octave program that finds r_{m} numerically, using the forward kinematics to try different values of r_{m} until we arrive at one that gives the desired r_{d}. Once we have r_{m}, the required front wheel speeds follow trivially from the measured distance d_{w} between the front wheels:

$$
\begin{align*}
r_{i} & =r_{m}-d_{w} / 2 \tag{10}\\
r_{o} & =r_{m}+d_{w} / 2 \tag{11}\\
\text { WheeISpeedRatio } & =r_{i} / r_{o} \tag{12}
\end{align*}
$$

