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Introduction

Dementia
• General term for a broad category of decline in
mental ability

• Starts with subtle word finding difficulties, a
decline in thinking or memorising; aggravates over time
and ultimately leads to loss of communication.

• Challenging to diagnose due to the lack of reliable
bio-markers, overlapping symptoms with normal
ageing and low accuracy of existing cognitive
("pen-and-paper") screening tools

• Effect on language ([1, 2]) includes:loss of
vocabulary , impoverished and simplified
syntax/semantics, and overuse of semantically
empty words

• Conversation analysis (CA) [3] (an approach to
study social interaction/communication ability) has
been used for people with dementia (e.g. [4, 5]), but it
requires audio/video recording, transcribing, and a
qualitative analysis (carried out by an expert);
time-consuming and relatively expensive and not
applicable for large scale use

Research questions

• Is it feasible to develop an automatic tool to
help doctors in diagnosing dementia? What kind of
speech, text and ML technologies and tools
can be used for designing such a system?

• Task is to classify between two types of memory
diseases with very similar symptoms:
neudegenerative dementia (ND) and
functional memory disorder (FMD)

• To what extent it is feasible to use an avatar
front-end to elicit conversational diagnostic features?

Dementia detection system

• Diarisation (who talks when) (SHoUT toolkit)
• Automatic speech recognition (ASR) (Kaldi toolkit)
• Feature extraction (NLTK python + Praat toolkit)
• Machine learning classifier (SVM from Scikit-learn

python)

Figure 1: Block diagram of dementia detection system

Experiment

Data
• A) Neurologist-patient conversations:Audio

files and transcriptions of interviews of 15 FMD and
15 ND participant-doctor consultations

• B) Avatar-patient conversations:Audio files and
transcriptions of conversations of 6 FMD and 6 ND
participant with the Avatar.

Features
• Conversation Analysis inspired[3]: 20 features,

e.g. patient answered me for who’s most concerned
question, average number of empty words (CA is an
approach to study social interaction/ communication
ability of people which has been used recently for
people with dementia (e.g. [4, 5])

• Acoustic: 12 features, e.g. silence, intonation,
pitch, H1-H2

• Lexical (Part of Speech): 12 features, e.g.
number of verbs, nouns adverbs, etc

Avatar system
• Avatar head animation: Botlibre

(https://www.botlibre.com).
• Avatar voice: Pre-recorded human voice

Figure 2: Prototype avatar

Results

A.Speech recognition

Table 1: Speech recognition results.
System Train Test WER

Baseline_hum hum hum 55.7%
Baseline_ava ava ava 77.0%
Cross domain hum ava 65.0%

MAP adaptation Map on hum ava 58.7%
Combining data hum+ava ava 46.2%

B.Diarisation

DER: Diarisation Error Rate, a common metric to mea-
sure the performance of a diarisation tool , including the
missing speaker error: EMISS, false alarm:EFA, and speaker
error:ESPKR. W-DER: Word diarisation error, extending the
diarisation error to the words recognised by the ASR.

Table 2: DER and W-DER
Data EMISS EFA ESPKR DER W − DER

hum_dia 2.7% 14.9% 12.8% 30.4% 5.7%
ava_dia 11.6% 6.9% 11.1% 29.6% 16.8%

C.Classification and feature selection

Table 3: Classification accuracy;‘_man’:using gold-standard
transcript instead of ASR-produced transcripts;‘CA’:
CA-style features;‘AC’:acoustic features;‘LX’:lexical fea-
tures;‘T10’:top 10 informative features.

Train/Test CA AC LX ALL T10
A 96.7% 83.3% 66.7% 76.7% 100%
B 76.7% 60.0% 50.0% 76.7% 90.0%
C 58.3% 66.7% 83.3% 66.7% 75.0%
D 72.7% 63.6% 63.6% 81.8% 72.7%
E 63.6% 54.5% 63.6% 90.9% 72.7%

A: hum_man/hum_man
B:hum/hum
C:ava_man+hum_man/ava_man
D:ava_man+hum_man/ava
E:ava+hum_man/ava

D.Differences between the two conversations

Figure 3: Histogram of the average turn length.

Conclusions and further work

Challenges
• Spontaneous speech resulting in ASR with high

WER
• Background noise, mic far from patient
• Challenging diarisation task, high DER
• Large number of overlapping segments
• Lack of feedback from the Avatar , resulted in

long turn responses
Conclusions

• We have proposed a fully automatic system for
detecting dementia

• Feasible of replacing the neurologists with the
Avatar

• Low cost of the potential tool to stratify patients
with memory complaints

Future work
• Expanding to include more feature set
• Improving the ASR, diarisation and feature

extraction
• Improving the Avatar to make it more responsive
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