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1. Introduction

5. Adaptation

» Adaptation on Gaussian components of mixture model
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» DNNSs are commonly treated as “black-box” models
» Hard to interpret and group DNN parameters
» Make regularisation and adaptation challenging
» Deep activation mixture models (DAMMSs) are proposed to

» Improve network regularisation and interpretation
» Allow novel network adaptation schemes

» A compact set of parameters to adapt {“5(/5)7 Es(ls)}lg/g

2. Hidden Unit Reorganisation » Allow robust and rapid adaptation

> EE() can be rewritten using unit variance and correlation coefficient
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» Parametrise o, and p;

o) — exp

to satisfy the positive-definite constraint

(6"), o = tanh (5)

» Reorganise units of each hidden layer to form a grid

» Avoid the arbitrary ordering of hidden units

» Enable activation functions to be related in regions of the network
» Each unit / is represented as a point s; in the grid space

» Data and setup

» 144-hour English broadcast news dataset (LDC97S44, LDC98S71)
» DNN-HMM hybrid ASR framework

» 5 hidden layers with 1024 units for both DNN and DAMM systems
| DLl » 46 Gaussian components to form DAMM mixture models
Proep PR [ =40, Unsupervised utterance-level adaptation

3. Network Topology

4 Residual model

Mixing weights: w® S wg) =1; w,(gl) > 0,Vk

Scaling factor: g

» Grid-output example of mixture and residual models

Activation output

(¢) Mixture+residual

(b) Residual

(a) Mixture

» CE performance comparison [WER (%)]
» How to relate different activation funcitons?
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» Adaptation of mean, variance and correlation coefficient on CE DAMM
» Dynamic scaling factor g(/) and mixing weights wl!)

g\ — sigmoid w!!) — softmax System .Adapt ot Dev  Eval
» Interpret Gaussian component as phoneme or ... Tiean variance correahon
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» Add small “noise” to GMM contour
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» MPE performance comparison

» More effective to adapt covariance matrix than mean vector

» Highly restricted mixture model v.s. powerful residual model System .Adapt —— Dev Eval
o | mean variance correlation
» How to train mixture model to the maximal extent? _ _
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» Training criterion with residual-model regularisation DAMM v v v 11.1 9.8
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» Isolating training mode
Algorithm 1 Isolating Training Mode of DAMM.
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» Up to 3% rel. WER reduction by adaptation

7. Conclusions

1: for/ :=1to L do

2. initialise ') = 0,0

3. update Omix » Propose DAMM for network regularisation and adaptation

4 (llll;date O:res » Extend L2 regularisation to approach a dynamic surface, not zero
5: end for

6: finetune 6.

» Novel adaptation scheme to modify the dynamic surface




