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Abstract

I Extensions of HTK’s Artificial Neural Network (ANN) acoustic
model capabilities are presented

I New Layer-Types such as CNN, GRU and LSTM layers are
introduced to HTK

I Input-Features can now be combined in a range of different
ways and are not necessarily concatenated

I PyHTK provides user-friendly python interface to set up an
architecture

Building Blocks: Layer Types

I Fully-Connected Layers are supported as in HTK 3.5 [1]
I 2D-Convolutional Layers defined by:

I Number of Input/Output Feature Maps
I Stride, Padding, Kernel-Size

I Max- and Average-Pooling Layers
I Recurrent Layers:

I Simple RNN-Layers, GRU and LSTM layers are supported
I LSTM-definition is very flexible in terms of bias-vectors and

peep-holes
I are trained using Truncated Backpropagation through time

and Frame-Level shuffling, leading to less biased gradients
I Activation-Only Layer

I Combines Input-Features, adds bias-vector if required and
applies Activation-Function

I can be used to build ResNet-Blocks (see Figure 2)
I Bias-Only Layer

I Applies Activation-Function to a trainable vector
I Can be used for scaling outputs of layers

Building Blocks: Activation Functions

I ReLU, Soft-ReLU, Sigmoid, TANH and parameterised versions
I Scaled Exponential-Linear Unit (SELU) and Softmax

Building Blocks: Input-Feature Combinations

I Element-wise Addition as used in ResNets
I Element-wise Multiplication for Gating
I Element-wise MAX Operations
I Concatenation as in HTK 3.5
I Each Input-Feature can be scaled by the value of an output

node of another layer as used in Attention-Models

PyHTK

I Simple config-file is used to define the neural network
I The network can easily be assembled from the previously

described building blocks
I For recurrent layers, the number of unfolded time-steps For

training can be defined separately for each layer and network
is then automatically unfolded (see Figure 1)

I Recurrent layers can also operate at lower frame-rate as in [2]
I Recurrent layers can be bi-directional
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Figure 1: Unfolding a deep recurrent neural network

Experimental Setup and Results

I A range of Models, explained in the next section, are evaluated
on TIMIT dataset

I Labels over 854 tri-phone states are derived from 48 phone
labels which are mapped to the standard set of 39 phones for
testing (after decoding)

I Models were decoded on the full test set using a bigram phone
language model

I All models used 24 log-Mel filter bank coefficients with their ∆
and ∆∆ values as input features, except the CNN which used
40 without any ∆.

Architecture Width PER
7L-RELU-MLP 500 21.43
9L-SELU-MLP 250 20.80
21L-(FC)ResNet 250 20.37
CNN 2048 for FC 20.12
3L-RELU-RNN 1024 18.54
3L-RELU-BDRNN 750 18.15
5L-RELU-RNN 750 17.48
Table 1: Phoneme error rates (PER) for the

full TIMIT testset

Models

I 21L-(FC)ResNet
I ResNet Block was created by appending two

fully-connected(FC) layers with an ActivationOnly-Layer that
performs the addition operation on the inputs see Figure 2

I 9 blocks, preceded were used to create 21-Layer ResNet
I 9L-SELU-MLP

I 9-Layer MLP could be trained without pre-training or skip
connection

I CNN
I Conv(9x9)+MaxPool+Conv(4x3)+DNN3

I 3L-RELU-RNN
I PER of 18.54%

I 3L-RELU-BDRNN
I two Bi-Directional Layers followed by one uni-directional

layer
I 5L-RELU-RNN

I Pre-trained by training three and then four layers for one
epoch each, with copying of the parameters of the recurrent
layers

I Noticeable improvement came from using ∼5x larger
L2-regularization for the two pre-training epochs than for the
succeeding epochs
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Figure 2: ResNet-Block
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