
Modular Construction of Complex Deep Learning
Architectures in HTK

Florian Kreyssig, Chao Zhang and Phil Woodland
Cambridge University Engineering Department

Abstract

I Extensions of HTK’s Artificial Neural Network (ANN) acoustic
model capabilities are presented

I New Layer-Types such as CNN, GRU and LSTM layers are
introduced to HTK

I Input-Features can now be combined in a range of different
ways and are not necessarily concatenated

I PyHTK provides user-friendly python interface to set up an
architecture

Building Blocks: Layer Types

I Fully-Connected Layers are supported as in HTK 3.5 [1]
I 2D-Convolutional Layers defined by:

I Number of Input/Output Feature Maps
I Stride, Padding, Kernel-Size

I Max- and Average-Pooling Layers
I Recurrent Layers:

I Simple RNN-Layers, GRU and LSTM layers are supported
I LSTM-definition is very flexible in terms of bias-vectors and

peep-holes
I are trained using Truncated Backpropagation through time

and Frame-Level shuffling, leading to less biased gradients
I Activation-Only Layer

I Combines Input-Features, adds bias-vector if required and
applies Activation-Function

I can be used to build ResNet-Blocks (see Figure 2)
I Bias-Only Layer

I Applies Activation-Function to a trainable vector
I Can be used for scaling outputs of layers

Building Blocks: Activation Functions

I ReLU, Soft-ReLU, Sigmoid, TANH and parameterised versions
I Scaled Exponential-Linear Unit (SELU) and Softmax

Building Blocks: Input-Feature Combinations

I Element-wise Addition as used in ResNets
I Element-wise Multiplication for Gating
I Element-wise MAX Operations
I Concatenation as in HTK 3.5
I Each Input-Feature can be scaled by the value of an output

node of another layer as used in Attention-Models

PyHTK

I Simple config-file is used to define the neural network
I The network can easily be assembled from the previously

described building blocks
I For recurrent layers, the number of unfolded time-steps For

training can be defined separately for each layer and network
is then automatically unfolded (see Figure 1)

I Recurrent layers can also operate at lower frame-rate as in [2]
I Recurrent layers can be bi-directional

LSTM2 (t-3)

LSTM2 (t-2)

LSTM2 (t-1)

LSTM2 (t)

Output Layer

LSTM1 (t-3

LSTM1 (t-2)

LSTM1 (t-1)

LSTM1 (t)

t - 3

t - 2

t - 1

t

LSTM1

LSTM2

Output Layer

t

Figure 1: Unfolding a deep recurrent neural network

Experimental Setup and Results

I A range of Models, explained in the next section, are evaluated
on TIMIT dataset

I Labels over 854 tri-phone states are derived from 48 phone
labels which are mapped to the standard set of 39 phones for
testing (after decoding)

I Models were decoded on the full test set using a bigram phone
language model

I All models used 24 log-Mel filter bank coefficients with their ∆
and ∆∆ values as input features, except the CNN which used
40 without any ∆.

Architecture Width PER
7L-RELU-MLP 500 21.43
9L-SELU-MLP 250 20.80
21L-(FC)ResNet 250 20.37
CNN 2048 for FC 20.12
3L-RELU-RNN 1024 18.54
3L-RELU-BDRNN 750 18.15
5L-RELU-RNN 750 17.48
Table 1: Phoneme error rates (PER) for the

full TIMIT testset

Models

I 21L-(FC)ResNet
I ResNet Block was created by appending two

fully-connected(FC) layers with an ActivationOnly-Layer that
performs the addition operation on the inputs see Figure 2

I 9 blocks, preceded were used to create 21-Layer ResNet
I 9L-SELU-MLP

I 9-Layer MLP could be trained without pre-training or skip
connection

I CNN
I Conv(9x9)+MaxPool+Conv(4x3)+DNN3

I 3L-RELU-RNN
I PER of 18.54%

I 3L-RELU-BDRNN
I two Bi-Directional Layers followed by one uni-directional

layer
I 5L-RELU-RNN

I Pre-trained by training three and then four layers for one
epoch each, with copying of the parameters of the recurrent
layers

I Noticeable improvement came from using ∼5x larger
L2-regularization for the two pre-training epochs than for the
succeeding epochs

x

h1 =
ReLU(Wx+b)

h2 = Wx+b

+
a =

ReLU(x+h2)

Figure 2: ResNet-Block

References

C. Zhang, P. C. Woodland, ”A General Artificial Neural Network
Extension for HTK.”, in Proc. Interspeech’15.

V. Peddinti and Y. Wang and D. Povey and S. Khudanpur, ”Low
latency acoustic modeling using temporal convolution and
LSTMs”, in IEEE Signal Processing Letters, 2017.

G. Klambauer and T. Unterthiner, and A. Mayr and S. Hochreiter,
”Self-Normalizing Neural Networks”, arXiv preprint
arXiv:1706.02515, 2017.

UK Speech 2017, September 10-11 — Cambridge, UK E-Mail: flk24@cam.ac.uk


