Simplifying very deep convolutional neural network architectures for robust speech recognition

THE UNIVERSITY

of EDINBURGH

Joanna Rownicka, Steve Renals, Peter Bell

The Centre for Speech Technology Research, University of Edinburgh, United Kingdom

Objectives

- analyse to what extent 2D convolutions are suitable for robust speech recognition task;
- determine which components of very deep CNN (VDCNN) models are necessary to achieve state-of-the-art results.

Very Deep CNNs

- \blacktriangleright VDCNNs \Rightarrow designed for computer vision;
- recently applied also to ASR and other sequence to sequence tasks;
- parameter sharing causes the convolutional layer to have the equivariance to translation property;

Architectures

- \triangleright convolutions in time \Rightarrow equivariance to shifts in time;
- \triangleright convolutions in frequency \Rightarrow equivariance to shifts in frequency;
 - the same word at a different pitch can produce the same representation;
 - If the distortion is more apparent in some bands of the spectrum than in others, representations can be computed from the cleaner parts of the spectrum;
- we simplify the VDCNN models for noise robust speech recognition in terms of layers diversification;
- ▷ we experiment with downsampling and fully-connected layers.

Experimental setup

- static FBANK 11 x 40 feature map input
- minibatch SGD using Adam
- "Xavier" initialization for the weights
- batch normalization

Datasets

Aurora4 training set (15 h each)

conv 9x9, 256	conv 3x3, 128					
	conv 3x3, 128					
	maxpool 1x2	avgpool 1x2	maxpool 1x2	maxpool 1x2	conv 3x3, 128	
				conv 3x3, 128		
	conv 3x3, 128					
	conv 3x3, 128					
	maxpool 1x2	avgpool 1x2	maxpool 1x2	maxpool 1x2	conv 3x3, 64	
				conv 3x3, 64		
	conv 3x3, 64					
	conv 3x3, 64					
input 11 x 40						
0.111	VDCNN-	VDCNN-	VDCNN-	VDCNN-max-	VDCNN-	
CNN	max-4FC	avg	max	addconv	allconv	
22 014	20.114	6 114	6 114	7 614	7 614	# noromotoro
23.0IVI	20.111	0. I IVI	0.111	IVIO. /	V.OIVI	# parameters

Pooling

Using convolutional layers instead of pooling layers to downsample feature maps ⇒ learning the pooling

- \triangleright clean-condition \rightarrow equivalent to the SI-84 WSJ
- ▷ multi-condition → clean-condition training set recorded with a mismatched microphone and corrupted using six noise types at different SNR levels
- Aurora4 test sets (9 h)
 - $\triangleright A \rightarrow clean$
 - \triangleright B \rightarrow with 6 types of additive noise
 - \triangleright C \rightarrow recorded with a mismatched microphone
 - \triangleright D \rightarrow with 6 types of additive noise and recorded with a mismatched microphone
- ▶ MGB-3 training set \rightarrow 750 episodes (about 350 hours)
- ► MGB-3 test sets
- \triangleright MGB-3 dev set (5 h)
- ▷ MGB-1 test set (19 h)

Results: Aurora4

Model	Α	В	С	D	AVG	WERs [%] for the baseline
DNN	3.47	7.67	7.85	19.73	12.55	models (DNN, CNN,
CNN	3.33	6.89	6.59	17.92	11.34	VDCNN-max-4FC) and ou
VDCNN-max-4FC	2.43	5.92	5.74	16.26	10.09	VDCNN models (avg, ma
VDCNN-avg	2.75	5.88	7.27	16.46	10.29	max-addconv, allconv)
VDCNN-max	2.56	5.78	5.36	15.40	9.64	trained with alignments
VDCNN-max-addconv	2.50	6.02	6.95	16.35	10.26	generated from multi-condition training se
VDCNN-allconv	2.32	5.45	5.38	15.56	9.55	of Aurora4.

operation rather than fixing it.

Results: MGB-3

Model	WER				
	MGB3-dev	MGB1-test			
VDCNN-max-4FC	53.2	42.4			
VDCNN-avg	52.4	41.4			
VDCNN-max	52.5	41.4			
VDCNN-allconv	52.2	41.2			
VDCNN-allconv-4G	50.0	38.7			

WERs [%] for MGB-3 dev set and MGB-1 test set for the baseline model (VDCNN-max-4FC) and our VDCNN models (avg, max, allconv). The last VDCNN-allconv-4G model is rescored with a 4-gram LM. All models were trained on MGB-3 training data.

Conclusions

- Pooling layers are not necessary to achieve state-of-the-art results for speech recognition with VDCNNs.
- Using conv layers with increased stride can effectively enable the model to learn the necessary invariances.
- Removing fully-connected layers from a VDCNN architecture contributed most to the performance gains in our experiments, especially for noisy test data.

Model	Α	В	С	D	AVG
DNN/clnali	3.19	6.42	7.04	17.04	10.79
VDCNN-max-4FC/clnali	2.54	5.33	4.61	13.77	8.70
VDCNN-allconv/clnali	2.43	4.43	4.50	12.50	7.75

WERs [%] for different models trained with alignments generated from synchronized clean-condition training set of Aurora4.

Model	Α	В	С	D	AVG
DNN/clntr	2.71	43.00	24.06	58.66	45.48
VDCNN-max-4FC/cIntr	2.32	35.99	21.20	52.53	39.62
VDCNN-allconv/clntr	1.98	40.62	20.08	55.57	42.80

WERs [%] for the models trained with clean-condition training set.

Most performance gains per test set over the baseline Best model on average Our model consisting solely of fifteen 2D conv layers with the same kernels sizes throughout the network and a single softmax classification layer gives the best performance consistently on the Aurora4 and MGB tasks.

Acknowledgements

This work was supported by a PhD studentship supported by The DataLab Innovation Centre, Ericsson Media Services, and Quorate Technology.

[1] J. T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, "Striving for Simplicity: The All Convolutional Net," ICLR 2014.
[2] Y. Qian, M. Bi, T. Tan and K. Yu, "Very Deep Convolutional Neural Networks for Noise Robust Speech Recognition," in IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 24, no. 12, pp. 2263-2276, Dec. 2016.

Contact: j.m.rownicka@sms.ed.ac.uk