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MOTIVATION MULTI-TASK ARCHITECTURE

e An ensemble with target diversity can give good combination gains.
e Improve recognition efficiency by training a student to emulate the ensemble.
e How to propagate information across different output targets?
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e Train a single student model to emulate the ensemble behaviour.

¢ Avoid mapping by using Multi-Task (MT) student.
e Multi-task CE training;:

e Standard CE training;:
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e Standard Teacher-Student (TS) training;: ST = S‘ Z 0 (s ) log P ( O W, :>
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e Use only student model during recognition. o ¥, E‘)

e Requires student’s and teacher’s outputs to have the same interpretations.

OUTPUT TARGET DIVERSITY EXPERIMENTS

e Datasets:

—207V: IARPA Babel Tok Pisin

* 3 hours VLLP training set, 1000 PDT states
— AMI: Augmented multi-party interaction

* 81 hours IHM training set, 4000 PDT states
— HUB4: English broadcast news

* 144 hours training set, 6000 PDT states
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b—a+h o ctb Ccte b ctc c—brel la—bta e Student and teachers have the same architecture.
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e Output targets are defined by a Phonetic Decision Tree (PDT) SINGLE MODEL PERFORMANCE

se="T (c) Single model WER (%)
¢ Generate ensemble by using a different PDT for each model. Dataset | mean Dbest worst std fiev cross-WER (%)
Models 1 to discriminate bet different sets of state clust 207V 48.3 48.0 484 0.17 28.4
e Models learn to discriminate between different sets of state clusters. AMI 260 959 D6 0.13 159
e Computational cost of ensemble combination: HUB4 93 92 94 0.10 70

hypothesis combine NN f;;ward 1att1ce]\c41ecode e Measure diversity using cross-WER:
frame combine M 1 1 M o
teacher-student 1 1 cross-WER = M (M — TZ:WER (H", H")
POSTERIOR MAPPING ENSEMBLE PERFORMANCE
— Combined WER (%)

| Pls! Ot,(pl)- P(s°[s'| Dataset | ensemble  hypothesis frame student

0 P! |- 70 separate 458 460 46,6

Plsio,, @' 207V MT 477 478 473

pls]o, @ p(s®|s? MT-TS 45.7 45.7  46.3

0 P’ |- (s 7) separate 24.5 246 24.6

P|(si|o,, ®’| AMI  MT 25.4 255 251

' ' MT-TS 24.3 244 246

separate 8.7 8.7 9.0

HUB4 | MT 9.1 9.1 8.8

MT-TS 8.8 8.7 8.9

e Single-output student can learn from teachers with different PDTs.

e When PDTs differ, train student by minimising logical context KL-divergence: o Multi-task student is able to match the ensemble performance.

FRE-TS = — >: >: >: AP (c|oy, @) log P (c|oy, ©)
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e Under mild assumptions, the criterion reduces to:

M
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e Proposed teacher-student method when output targets ditfer.

(S@ | Oy, CI)m) log P (S@ } Oy, @) ¢ Proposed multi-task teacher-student method.
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o P (s7|s") maps posteriors between PDTs.
o Can estimate P (s°|s™) from forced alignments.
e Student PDT size can be chosen independently of teacher PDTs.



