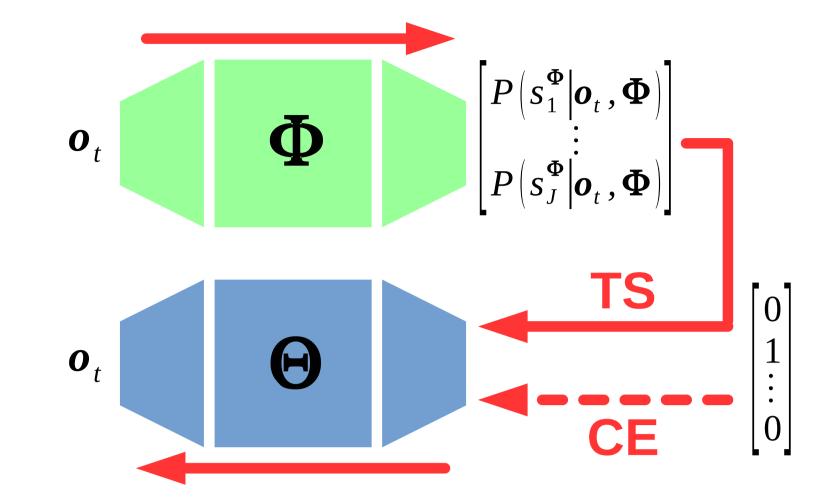
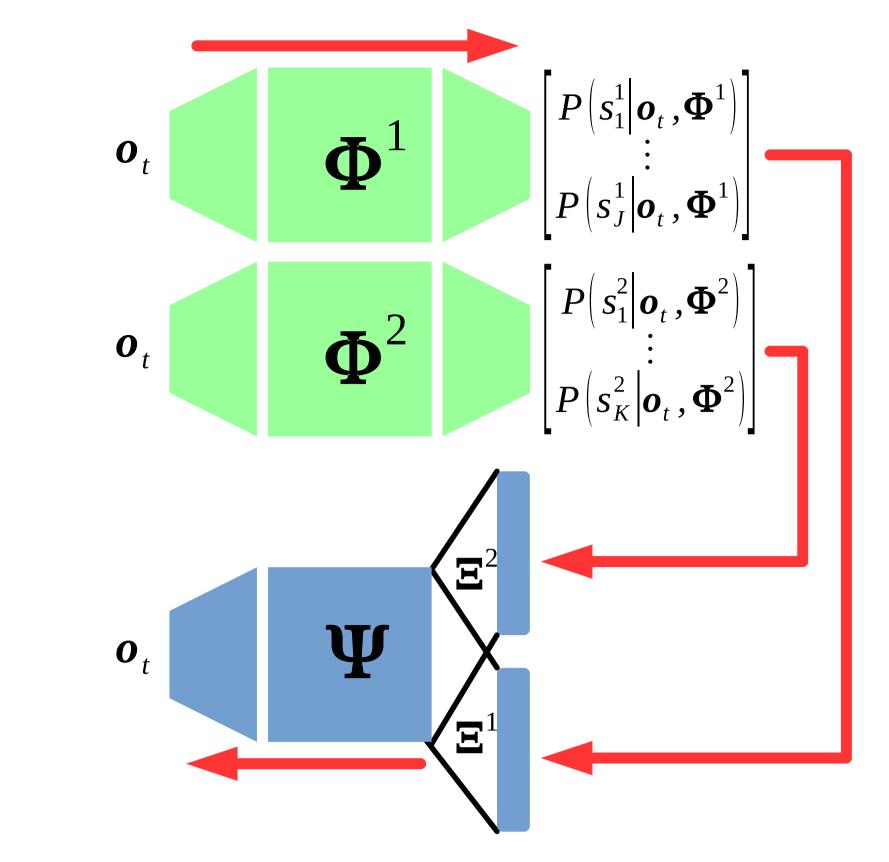


ASR teacher-student training and ensemble target diversity


Jeremy H. M. Wong and Mark J. F. Gales

Department of Engineering, University of Cambridge jhmw2@cam.ac.uk, mjfg@eng.cam.ac.uk

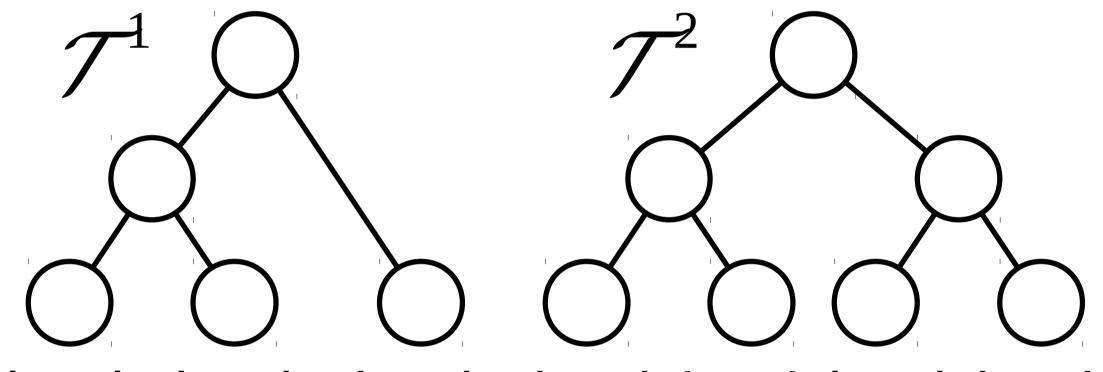

MOTIVATION

• An ensemble with target diversity can give good combination gains. • Improve recognition efficiency by training a student to emulate the ensemble. • How to propagate information across different output targets?

TEACHER-STUDENT TRAINING

MULTI-TASK ARCHITECTURE

• Train a single student model to emulate the ensemble behaviour. • Standard CE training:


$$\mathcal{F}_{\text{CE}} = -\sum_{t} \sum_{s \in \mathcal{T}} \delta(s, s_{t}^{*}) \log P(s | o_{t}, \Theta)$$

• Standard Teacher-Student (TS) training:

$$\mathcal{F}_{\text{TS}} = -\sum_{t} \sum_{s \in \mathcal{T}} \sum_{m=1}^{M} \lambda_m P(s | \boldsymbol{o}_t, \boldsymbol{\Phi}^m) \log P(s | \boldsymbol{o}_t, \boldsymbol{\Theta})$$

- Use only student model during recognition.
- Requires student's and teacher's outputs to have the same interpretations.

OUTPUT TARGET DIVERSITY

• Avoid mapping by using Multi-Task (MT) student. • Multi-task CE training:

$$\mathcal{F}_{ ext{MT}} = -\sum_{t}\sum_{m=1}^{M}\sum_{s^m \in \mathcal{T}^m} \delta\left(s^m, s^{m*}_t
ight) \log P\left(s^m \Big| oldsymbol{o}_t, oldsymbol{\Psi}, \widehat{oldsymbol{\Xi}}
ight)$$

• Multi-task teacher-student training:

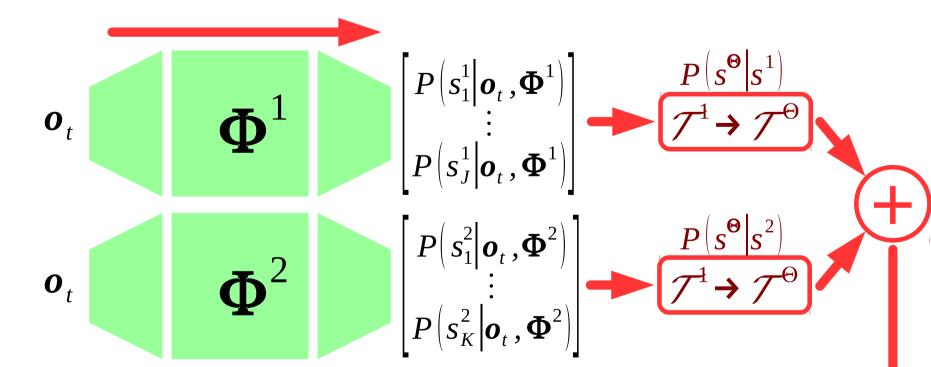
$$\mathcal{F}_{ ext{MT-TS}} = -\sum_{t} \sum_{m=1}^{M} \sum_{s^m \in \mathcal{T}^m} P\left(s^m | \boldsymbol{o}_t, \boldsymbol{\Phi}^m\right) \log P\left(s^m | \boldsymbol{o}_t, \boldsymbol{\Psi}, \widehat{\boldsymbol{\Xi}}
ight)$$

EXPERIMENTS

- Datasets:
- 207V: IARPA Babel Tok Pisin
- *3 hours VLLP training set, 1000 PDT states
- -AMI: Augmented multi-party interaction *81 hours IHM training set, 4000 PDT states
- HUB4: English broadcast news
- *144 hours training set, 6000 PDT states

a-a+b	a-b+a	c-c+a	c-a+a	b-a+b	c-c+a	a-a+b
a - a + c	a-b+c	b-c+c	c-c+b	$\lfloor a - b + c \rfloor$	b-a+c	a - a + c
b-a+b	c-c+b	C-C+C	$\lfloor b - c + c \rfloor$		<i>c</i> - <i>b</i> + <i>c</i>	a-b+a
<i>c</i> - <i>a</i> + <i>a</i>	c-b+c	b-a+c	•		c-c+c	

• Output targets are defined by a Phonetic Decision Tree (PDT)


 $s_c = \mathcal{T}(c)$

• Generate ensemble by using a different PDT for each model.

- Models learn to discriminate between different sets of state clusters.
- Computational cost of ensemble combination:

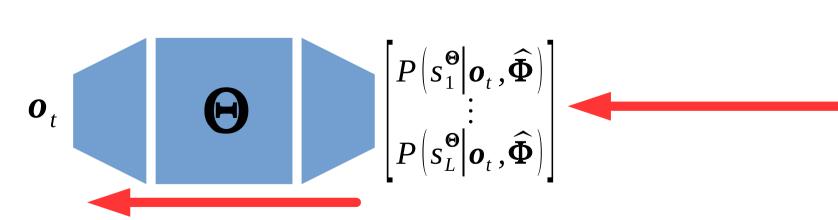
	NN forward	lattice decode
hypothesis combine	M	M
frame combine	M	1
teacher-student	1	1

POSTERIOR MAPPING

• Ensemble size = 4

• Student and teachers have the same architecture.

SINGLE MODEL PERFORMANCE


	Single model WER (%)				
Dataset	mean	best	worst	std dev	cross-WER (%)
207V	48.3	48.0	48.4	0.17	28.4
AMI	26.0	25.9	26.2	0.13	15.2
HUB4	9.3	9.2	9.4	0.10	7.0

• Measure diversity using cross-WER:

$$\text{cross-WER} = \frac{1}{M\left(M-1\right)} \sum_{m=1}^{M} \sum_{n \neq m} \text{WER}\left(\mathcal{H}^{m}, \mathcal{H}^{n}\right)$$

ENSEMBLE PERFORMANCE

		Combined WER (%)			
Dataset	ensemble	hypothesis	frame	student	
	separate	45.8	46.0	46.6	
207V	MT	47.7	47.8	47.3	
	MT-TS	45.7	45.7	46.3	
	separate	24.5	24.6	24.6	
AMI	MT	25.4	25.5	25.1	
	MT-TS	24.3	24.4	24.6	
	separate	8.7	8.7	9.0	
HUB4	MT	9.1	9.1	8.8	
	MT-TS	8.8	8.7	8.9	

• When PDTs differ, train student by minimising logical context KL-divergence:

$$\mathcal{F}_{ ext{RF-TS}} = -\sum_{t} \sum_{c \in \mathcal{C}} \sum_{m=1}^{M} \lambda_m P\left(c | \boldsymbol{o}_t, \boldsymbol{\Phi}^m\right) \log P\left(c | \boldsymbol{o}_t, \boldsymbol{\Theta}\right)$$

• Under mild assumptions, the criterion reduces to:

 $\mathcal{F}_{\text{RF-TS}} = -\sum_{t} \sum_{s^{\Theta} \in \mathcal{T}^{\Theta}} \sum_{m=1}^{m} \lambda_{m} \sum_{s^{m} \in \mathcal{T}^{m}} P\left(s^{\Theta} | s^{m}\right) P\left(s^{\Theta} | \boldsymbol{o}_{t}, \boldsymbol{\Phi}^{m}\right) \log P\left(s^{\Theta} | \boldsymbol{o}_{t}, \boldsymbol{\Theta}\right)$

- $P(s^{\Theta}|s^m)$ maps posteriors between PDTs.
- Can estimate $P(s^{\Theta}|s^m)$ from forced alignments.

• Student PDT size can be chosen independently of teacher PDTs.

• Single-output student can learn from teachers with different PDTs. • Multi-task student is able to match the ensemble performance.

CONCLUSIONS

• Proposed teacher-student method when output targets differ. • Proposed multi-task teacher-student method. **REFERENCES**

[1] J. Wong and M. Gales, "Student-teacher training with diverse decision tree ensembles", *Interspeech*, Sep 2017

[2] J. Wong and M. Gales, "Multi-task ensembles with teacher-student training", ASRU, Dec 2017