Use of Graphemic Lexicons for Spoken Language Assessment

K. Knill, M.J.F. Gales, K. Kyriakopoulos, A. Ragni and Y. Wang {kate.knill,mjfg,kk492,ar527,yw396}@eng.cam.ac.uk

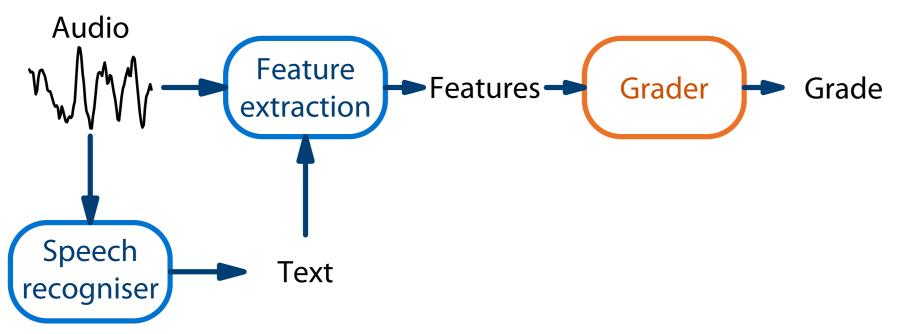
ALTA Institute / Department of Engineering, University of Cambridge

1. Introduction

Assessment of spoken English of non-native (L2) learners:

- \blacktriangleright Many people are learning English \rightarrow want official qualifications
- ► To help meet this demand:

Automatically assess unscripted responses of learners to prompts



Speech recognition is essential for assessment and error feedback
Challenge: how to achieve good recognition accuracy?

4. Spontaneous Spoken Language Assessment

- Predict mark using Gaussian Process (GP) grader
- Standard grader features derived from audio and ASR hypothesis
 - e.g. mean energy, mean speaking rate, proportion disfluencies
- \blacktriangleright As proficiency improves, pronunciations become more native \rightarrow add explicit pronunciation features to help assessment

Challenges:

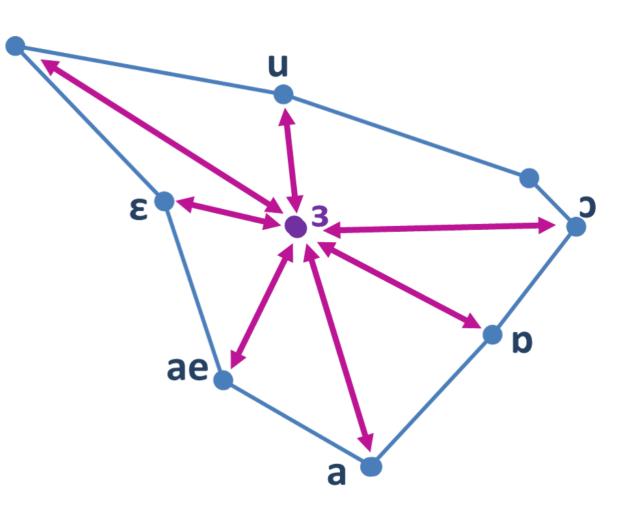
- \blacktriangleright large cross-speaker variations \rightarrow phone acoustic models not robust
- no reference text for spontaneous responses
- no reference native speaker speech of responses
- Solution: pronunciation distance features
 - define pronunciation of each phone relative to all other phones
 - full set of phone-pair distances characterises speaker's overall accent
- wide variations from e.g. L1, proficiency level, recording conditions
- spontaneous responses increase difficulty disfluencies etc
- 'off-the-shelf' systems don't work well
- limited training data \rightarrow 'Limited Resource Language (LRL)'
- \blacktriangleright Lower proficiency level \rightarrow larger L1 affect on pronunciations
 - mismatch with pronunciation lexicons based on native speaker accents
 - very costly (infeasible?) to tune lexicons to L1s
- Proposal: use graphemic lexicons
 - consistent improvements over phonetic systems for LRLs e.g. Babel
 - BUT English is highly irregular so graphemic systems generally worse
 - can this be used in pronunciation assessment?

2. Graphemic Lexicons

Phonetic Lexicon

ABE'S	ey^l b^M z^F
ABLE	ey^l b^M ax^M l^F
$ABOUT_\%partial\%$	ae^l b^M aw^M t^F
$ABOUT_\%partial\%$	ax^l b^M aw^M t^F

more robust to cross-speaker variability



- Phone distance features model
 - Context-independent phone level ASR time alignment
 - Each phone is modelled by a single multivariate Gaussian
 - Model set trained on all the speech from a speaker
 - Symmetric K-L divergence computed for each phone-pair
- ► Graphemic lexicon system replace phones with graphemes

5. Experimental Results: Automatic Assessment

Data from Business Language Tests (BULATS)

Graphemic Lexicon

ABE'Sa^I b^M e^M;A s^FABLEa^I b^M I^M e^FABOUT_%partial% a^I b^M o^M u^M t^F;P

- Root graphemes:
 - > 26 letters of alphabet
 - Hesitations modelled by graphemes /G00,G01/
- Attributes for context-dependent state tying:
 - word boundary information (I,M,F)
 - ► A apostrophe, P partial word
 - > /a,e,i,o,u/ assigned to the vowel class
 - > /vowel,y/ to the vowely class

3. Experimental Results: Automatic Speech Recognition

Data from Business Language Tests (BULATS)

- ► Up to 1 minute spontaneous responses to prompts
- ASR training data: 100 hours Gujarati L1 English speech
- ► Test sets: 225 speakers, A1-C grades
 - Gujarati L1 'Gujarati' and 6 mixed L1s 'Mixed'

- ► Grader training data: 1000 speakers Gujarati L1 English speech
- ► Test sets: as for ASR plus read speech and short prompt sections

▶ Pron features: 47 phones/1081 distances, or 26 graphemes/326 distances

Decoder	Gujarati		Mixed	
(word)	%PER	%GER	%PER	%GER
Ph	25.8	24.9	33.9	32.9
Gr	29.0	23.7	36.6	30.8

► GER is lower than PER

PER increases with grapheme decode

Test Set ASR Grd		Grader PCC			
		Std	Pron	Std+Pron	
Gujarati	Ph	Ph	0.843	0.838	0.872
	Gr	Gr	0.832	0.771	0.849
	Gr	Ph	0.841	0.804	0.857
Mixed	Ph	Ph	0.852	0.806	0.852
	Gr	Gr	0.859	0.734	0.853
	Gr	Ph	0.863	0.804	0.870

Standard features robust to L1 and phone/grapheme recognition

Decode

Stacked hybrid DNN-HMM acoustic model with trigram LM (HTK)

Test Set	Ph/Gr	% WER	
		Viterbi	CNC
Gujarati	Ph	34.3%	33.7%
	Gr	33.3%	32.5%
	$Ph \oplus Gr$	-	31.6%
Mixed	Ph	48.6%	47.5%
	Gr	47.2%	46.1%
	$Ph \oplus Gr$	-	44.2%

- Graphemic system yields lower WER
- Phonetic and graphemic systems are complementary

Pron. distance features less robust to L1 and grapheme-based models

6. Conclusions

- Non-native learner English: 'limited resource language':
 - large variation in spontaneous speech due to L1, proficiency etc
 limited amount of training data
- Reduce lexical model mismatch with graphemic lexicon:
 - improves recognition performance
 - standard automatic grader performance equivalent to phonetic system
- Pronunciation distance features:
- introduced to assess spontaneous speech pronunciations
 graphemic-only system worse than phonetic system
 phonetic features from graphemic output is successful