# The University of Birmingham 2017 SLaTE CALL Shared Task Systems

Mengjie Qian, Xizi Wei, Peter Jančovič and Martin Russell

Department of Electronic, Electrical and Systems Engineering, University of Birmingham

# Introduction

The 2017 SLaTE Spoken CALL Shared Task [1] was led by the University of Geneva with support from the University of Birmingham and Radboud University. **Aim:** label prompt and response pairs as "accept" or "reject". **Data:** recordings of English responses from German-speaking Swiss teenagers interacting with the CALL-SLT system [2]. A development set, ST-DEV, of 5222 recordings and a test set, ST-TST, of 996 recordings were released. System structure:



# Text Processing

The baseline text processing system uses a reference grammar and it gets D score of 2.358 and 1.694 on the Kaldi and Nuance baseline ASR output, respectively.

## Pre-processing

- 1. Remove superfluous words
- "ah, beh, mm, uh, um, ..." or "hello, hi, ok, and, yes, oh, ..."
- 2. Remove repetition
- i would like tickets for tomorrow tomorrow  $\rightarrow$  repeated words
- can i have a ticket for friday night can i have a ticket for friday night  $\rightarrow$





Figure 1: Structure of the system.

# Scoring Metric

Comparing the system's judgement with the language and meaning gold standards, each response falls into one of the five categories described in Table 1.

| English      | Meaning      | Judgment | Category                 |
|--------------|--------------|----------|--------------------------|
| $\checkmark$ | $\checkmark$ | Accept   | Correct Accept (CA)      |
| $\checkmark$ | $\checkmark$ | Reject   | False Reject (FR)        |
| X            | $\checkmark$ |          |                          |
|              | ×            | Reject   | Correct Reject (CR)      |
| ×            | ×            |          |                          |
| ×            | $\checkmark$ | Accept   | Plain False Accept (PFA) |
| $\checkmark$ | ×            | Accept   | Gross False Accept (CFA) |
| X            | X            | ПССР     | GIUSS FAISE ACCEPT (GFA) |

#### Table 1: Categories of Results

The evaluation of the overall quality of the systems is performed using a differential response score, D.

 $D = \frac{CR/(CR + FA)}{FR/(FR + CA)} = \frac{CR(FR + CA)}{FR(CR + FA)},$ (1)where  $FA = PFA + k \cdot GFA$ , with k being a weighting factor that causes gross false accepts to have a more prominent effect (k = 3).

repeated sentence

• i have i want a ticket for trafalgar square  $\rightarrow$  repeated meaning

## **Expanded Reference Grammar**

We expanded the reference grammar in the baseline text processing system using the similar method described in paper [3].

| PromptTempl | late i_want GERMAN ENGLISH |
|-------------|----------------------------|
| Text        | Frag : Ich möchte GERMAN   |
| Response    | do you have ENGLISH        |
| Response    | i ( want   would like )    |
|             | ENGLISH ?please            |
| EndPromptTe | emplate                    |

#### Figure 3: Response template.

A few response templates were created according to ST-DEV transcriptions and these templates were applied to different situations to create full responses list for different prompts.

## Fusion

**Step1:** Format input data (output of text processing), convert 2-class (Accept, Reject) data into a matrix.

$$T = \begin{bmatrix} R \ R \ A \ R \ A \ \dots \end{bmatrix} \Rightarrow score(x) = \begin{bmatrix} 0 \ 0 \ 1 \ 0 \ 1 \ \dots \\ 1 \ 1 \ 0 \ 1 \ \dots \end{bmatrix} \Rightarrow \log(score(x) + \epsilon)$$

**Step2:** Use linear logistic regression to train weights on K systems.

## Automatic Speech Recognition

The provided baseline ASR is a hybrid deep neural network - hidden Morkov model (DNN-HMM) built using Kaldi. In cross-validation evaluations, this system achieved an average WER of 14.03%.

## **Training Data Selection**

- ST-DEV: 5222 recordings, 4.8 hours, age ranging between 12 to 15 years.
- AMI: adults meeting recordings, 16.07 hours, mostly non-native speakers, 100% vs. 50% vs. 20%.
- PF-STAR German: German children aged 10-13, 3.38 hours of read speech.

## Acoustic Model

- Linear Discriminant Analysis (LDA) + Maximum Likelihood Linear Transform (MLLT)
- feature-space MLLR (**speaker-id** = **utterance-id** vs. global speak-id)
- DNN adaptation

**Step3:** Apply weights on test data.

 $score_{c}(x) = \sum_{i=1}^{K} w_{c,i} \cdot score_{c,i}(x)$ 

**Step4:** Choose class which has higher score.

 $class(x) = \arg\max_{c} score_{c}(x)$ 

# Submissions

For the final evaluation on ST-TST we submitted results from three systems:

- <u>Submission 1</u> consists of our best ASR system, plus the expanded TP. The optimal parameters of ASR were estimated over 10-fold cross-validation experiments.
- <u>Submission 2</u> is the result of fusing the outputs of six separate systems using linear logistic regression [4]. The systems all use our expanded TP with four variants of the ASR from Submission 1, the Kaldi baseline ASR and Nuance ASR.
- <u>Submission 3</u> combines Nuance ASR with the expanded TP.

Submission 1, 2 and 3 achieved D scores of 4.71, 4.766 and 2.533, respectively [5].

# References



### Figure 2: Structure of the ASR system.

## Language Model

• back-off 3-gram language model trained on all the ST-DEV transcriptions Results

• 9.27% WER average over 10-fold cross-validation experiments on ST-DEV ■ 15.63% WER on ST-TST

[1] Claudia Baur, Johanna Gerlach, Emmanuel Rayner, Martin Russell, and Helmer Strik. A shared task for spoken CALL?

In Proc. Language Resources and Evaluation Conf. (LREC), 2016.

#### [2] Claudia Baur.

The Potential of Interactive Speech-Enabled CALL in the Swiss Education System: A Large-Scale Experiment on the Basis of English CALL-SLT. PhD thesis, Université de Genève, 2015.

[3] Emmanuel Rayner, Claudia Baur, Cathy Chua, and Nikolaos Tsourakis. Supervised learning of response grammars in a spoken CALL system. In Proc. Workshop on Speech and Language Technology in Education (SLaTE), 2015.

#### [4] Niko Brümmer.

Focal multi-class: Toolkit for evaluation, fusion and calibration of multi-class recognition Scores-Tutorial and user manual.

Software available at http://sites. google. com/site/nikobrummer/focalmulticlass, 2007.

#### [5] Spoken CALL shared task official website. https://regulus.unige.ch/staging\_spokencallsharedtask/.