Our systems need to have wide language coverage:
- **Well resourced** English, Arabic, Spanish, German
- **Some resources** Portuguese, Russian, Farsi
- **Poorly resourced** Ukrainian, Latvian

Our standard systems use feedforward deep neural networks (DNNs) trained using cross-entropy followed by sequence training.
- Models are able to process live streams of speech in a continuous, online manner using the CloudASR platform which is optimised for fast decoding, allows rapid scalability, and is compatible with all neural network frameworks contained in the Kaldi toolkit.
- Single-language baseline models are generally trained on the GlobalPhone corpus, which comprises small quantities of read speech in many different languages.
- Systems adapted to TV data are trained on data from the BBC, Deutsche Welle, and Aljazeera, amongst others.

Lightly supervised alignment

To train models on data with some matching TV captions or script material, we need a method for aligning caption text with the audio data in a way which is robust to mismatches between the speech and the captions...

- We apply a two-pass factor transducer approach.
 - In the first pass, a single grammar transducer, G, is generated for each show.
 - In the second pass, WFSTs are generated dynamically per utterance by selecting surrounding text, and word skips are allowed giving robustness to deletions.
 - Important to set appropriate penalty for word skips to avoid excessive word removal.

Adapting to low-resource languages

We are investigating a range of techniques to train robust DNN models on small amounts of TV data per language:
- Multi-task networks
- Learning hidden unit contributions (LHUC) and cluster adaptive training (CAT) to create models shared across all languages
- Dirichlet output distributions
- End to end systems with connectionist temporal classification
- Multi-lingual training using shared IPA symbols

Text normalisation

- Text normalisation presents an issue for the SUMMA stream processing pipeline comprising speech recognition, punctuation insertion and machine translation.
- In speech recognition, phrases are normally output exactly as they are spoken, for example: "one hundred dollars"
- This creates a mismatch with machine translation systems trained purely on text, where the same token would appear as "$100" → may lead to poor quality translations
- Currently looking at methods to map between the verbal and written forms of these non-lexical tokens (which are common in TV broadcasts) that are not language dependent

Current results on SUMMA test sets

<table>
<thead>
<tr>
<th>Language</th>
<th>Word Error Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>English (MGB Challenge)</td>
<td>26.1</td>
</tr>
<tr>
<td>Arabic (MGB Challenge)</td>
<td>14.7</td>
</tr>
<tr>
<td>German</td>
<td>34.6</td>
</tr>
<tr>
<td>Russian</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Work is ongoing to transcribe test sets for the remaining languages

Results may differ when systems are used in an online mode within the SUMMA platform.