# Future Word Contexts in Neural Network Language Models



X. Chen, X. Liu, A. Ragni, Y. Wang, M.J.F. Gales {xc257,ar527,yw396,mjfg}@eng.cam.ac.uk

ALTA Institute / Department of Engineering, University of Cambridge

#### **1.** Introduction

- Language model aims to compute probability of sentence  $\mathbf{w}_1^L$  $P(\mathbf{w}_{1}^{L}) = P(w_{1}, w_{2}, w_{3}, ..., w_{L})$
- Unidirectional language model (uni-LM) The Cat Sat On The Mat Estimate P(Sat|The Cat) Only history information used Bidirectional language model (bi-LM) The Cat Sat On The Mat Estimate P(Sat|The Cat, On The Mat) Future word context also used
- Recently, bi-RNNLM outperform uni-RNNLM. However, bi-RNNLM

- 5. Lattice Rescoring of su-RNNLMs
- ► Lattice generated by 2-gram LM



► Lattice rescored by uni-RNNLM with 3-gram aprox.



► Lattice rescored by su-RNNLM with 3-gram aprox. and 1 succeeding word



- Difficult to implement and slow to train
- Difficult for lattice rescoring, n-best rescoring was used
- ► In this work, su-RNNLM proposed to address these two issues

#### 2. Unidirectional and bidirectional RNNLM

#### Unidirectional RNNLM



## $\mathbf{h}_{t-1}$ : model past history $\mathbf{w}_1^{t-1}$ Sigmoid, GRU and LSTM can be used as recurrent units $P(\mathbf{w}_1^L) = \prod P(w_t | \mathbf{w}_1^{t-1}) \approx \prod P(w_t | \mathbf{h}_{t-1})$

#### Bidirectional RNNLM



ojection layer Hidden layer Output layer

 $\tilde{\mathbf{h}}_{t+1}$ : model future context  $w_{t+1}^L$  $Z = \sum_{\mathbf{w}_{1}^{L} \in \Theta} \prod_{t=1}^{L} P(\mathbf{w}_{t} | \mathbf{h}_{t-1}, \tilde{\mathbf{h}}_{t+1})$ infeasible to compute  $P(\mathbf{w}_1^L) \approx \frac{1}{Z} \prod_{t=1}^L P(w_t | \mathbf{h}_{t-1}, \tilde{\mathbf{h}}_{t+1})$ 

#### **3.** Interpolation of LMs

1) Uni-LMs interpolation - linear interpolation  $P_{uni}(w_k|w_1^{k-1}) = \lambda_1 P_{ng}(w_k|w_1^{k-1}) + (1-\lambda_1)P_{nn}(w_k|w_1^{k-1})$ 2) Bi/Uni-LMs interpolation - log-linear interpolation  $P(\mathbf{w}_1^L) \propto P_{\mathit{uni}}(\mathbf{w}_1^L)^{\lambda_2} P_{\mathit{bi}}(\mathbf{w}_1^L)^{1-\lambda_2}$  $\propto \prod P_{\mathit{uni}}(\mathit{w}_t|\mathbf{w}_1^{t-1})^{\lambda_2} P_{\mathit{bi}}(\mathit{w}_k|\mathbf{w}_1^{k-1},\mathbf{w}_{t+1}^L)^{1-\lambda_2}$ 

#### **6.** Experimental Results

- ► Setup
- AMI IHM corpus
- Kaldi recipe for acoustic model construction

#### $t{=}1$ t=1

- Unidirectional RNNLM is correct only if
- a) infinite data, perfect training
- b) correct history representation
- Bidirectional RNNLM
- a) product of expert framework
- b) "optimal" reverse RNNLM
- But, bidirectional RNNLM awkward
- a) train
- b) lattice rescoring  $\longrightarrow$  n-best rescoring used instead



•



prefix tree

n-best list

### 4. RNNLM with Succeeding Words (su-RNNLM)

- ▶ 14M words for all LM training (4-gram LM, RNNLMs)
- ► WERs of uni-, bi, and su-RNNLMs with 100-best rescoring.

| LM       | #succ    | train speed | (pseudo) | dav  | eval |
|----------|----------|-------------|----------|------|------|
|          | words    | (w/s)       | PPL      | dev  |      |
| ng4      | -        | -           | 80.4     | 23.8 | 24.2 |
| +uni-rnn | _        | 4.5K        | 66.8     | 21.7 | 22.1 |
| +su-rnn  | 0        | 4.5K        | 66.8     | 21.7 | 22.1 |
|          | 1        | 4.5K        | 25.5     | 21.5 | 21.8 |
|          | 3        | 3.9K        | 21.5     | 21.3 | 21.6 |
|          | 5        | 3.8K        | 21.3     | 21.3 | 21.6 |
|          | 7        | 3.8K        | 21.3     | 21.4 | 21.6 |
|          | $\infty$ | 0.8K        | 22.4     | 21.2 | 21.4 |

- Fraining of su-RNNLM is much faster than bi-RNNLM  $(\infty)$ ▶ su-RNNLM outperform uni-RNNLM (0.4%-0.5%) ▶ su-RNNLM slightly worse than bi-RNNLM (0.1%-0.2%)
- ► WERs of uni- and su-RNNLMs with lattice rescoring

|          | #succ | dev  |      | eval |      |
|----------|-------|------|------|------|------|
|          | words | Vit  | CN   | Vit  | CN   |
| ng4      | -     | 23.8 | 23.5 | 24.2 | 23.9 |
| +uni-rnn | -     | 21.7 | 21.5 | 21.9 | 21.7 |
| +su-rnn  | 1     | 21.6 | 21.3 | 21.6 | 21.5 |
|          | 3     | 21.3 | 21.0 | 21.4 | 21.1 |



Hidden layer Output layer Projection layer

$$P(\mathbf{w}_{1}^{L}) = \frac{1}{Z} \prod_{t=1}^{L} P(w_{k} | \mathbf{w}_{1}^{t-1}, \mathbf{w}_{t+1}^{t+2}) \approx \frac{1}{Z} \prod_{t=1}^{L} P(w_{t} | \mathbf{h}_{t-1}, \mathbf{w}_{t+1}^{t+2})$$

Recurrent net used for complete history information Feedforward net to model a fixed and finite number of succeeding words Lattice rescoring can be applied on su-RNNLMs Consistent improvement obtained from confusion network decoding ▶ su-RNNLM with 3 succeeding words gave 0.5%-0.6% WER reduction

#### 7. Conclusions

Future information is useful for language modeling Proposed su-RNNLM is easy to implement and fast to train Su-RNNLMs suitable for lattice rescoring, consistent WER gain obtained Accepted ASRU2017 paper can be found: https://arxiv.org/abs/1708.05592