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Introduction

Most emotion recognition research focusses on two
descriptions of emotion, both of these have flaws;
•Categorical (happy, sad, angry, neutral)

Too coarse to describe real emotion
•Dimensional (arousal, valence, dominance)
Open to interpretation → unreliable annotations

We address this in three stages;
•Learning an abstract emotion space with MTL
•Using stimulation to improve interpretability
•Evaluation using expressive SPSS voices

Datasets

• IEMOCAP dataset [1] contains 12 hours of
scripted and improvised dyadic interactions from
10 actors. Each utterance has categorical and
dimensional labels from 3 annotators

• Usborne children’s audiobook dataset, used in
Blizzard 2017 [2], contains 6.5 hours of expressive
speech from a British female speaker

Emotion recognition

Standard categorical emotion recognition on IEMO-
CAP. Using narrowband spectrogram, or the mini-
malistic acoustic parameter set, eGeMAPS [3]

Table 1: Performance classifying; happy, sad, angry, neutral

Model Inputs Accuracy
Random N/A 24.14%
Most common N/A 33.00%
LSTM eGeMAPS LLDs 43.17%
TD-CNN Spectrogram 58.94%
DNN eGeMAPS functionals 72.77%
RNN-ELM [4] MFCCs, F0, VUV, zero-crossings 63.89%
CNN-MKL [5] ComParE 2016, video, word2vec 76.85%

•LSTM - recurrent neural network; ongoing work
•TD-CNN - time-distributed CNN; ongoing work
•DNN; for 4-class speech-only IEMOCAP, result is

state-of-the-art, dependent on the test set split

Figure 1: Time-distributed CNN architecture

Emotion space

•Multi-task learning (MTL) to train emotion space
•Emotion space is the final shared layer’s activations

Figure 2: MTL architecture showing emotion space

Stimulation [6]

•Regularisation method that encourages high
activations surrounding points in a prior map

•Prior map is a layout of classes on a unit-grid
• t-SNE embedding used as prior map (Figure 3b)
•Stimulation improves interpretability of emotion
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Figure 3: t-SNE embedding of eGeMAPS features for IEMOCAP
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Figure 4: Visualisation of activations without & with stimulation

Cross-corpus prediction

Create auxiliary features for SPSS style adaptation;
•Use recognition model trained on IEMOCAP
•From Usborne data, predict;
emotion space, categorical and dimensional labels
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Figure 5: Distribution of Usborne categorical emotion predictions

Emotive speech synthesis

•DNN synthesis using Merlin toolkit [7]
•Style adaptation using auxiliary features

• eGeMAPS - 88 acoustic parameters from waveform
•Dimensional - 3-dimensional emotion description
• eGrid - emotion space, stimulated in a 16 x 16 grid
•Categorical - 4-class emotion description
•Non-emotive - no auxiliary features

Table 2: Objective results of trained DNN synthesis voices

Objective metric
MCD BAP log F0 VUV
(dB) (dB) (RMSE) (error %)

eGeMAPS 5.631 0.314 44.356 14.254
Dimensional 5.850 0.327 50.439 14.864

eGrid 5.825 0.327 51.420 15.211
Categorical 5.820 0.324 52.372 14.493

Non-emotive 5.845 0.329 52.846 14.768

Listening test

•MUSHRA listening test, 16 screens, 20 participants
•Copy synthesis reference: 100 rating for all samples
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Figure 6: Ranksum test. Median rating & 95% confidence interval

Conclusion

•To mitigate issues with existing emotion
descriptions, we learn an emotion space using MTL

•Stimulation is added to improve interpretability
•Evaluation is performed with a perceptual test
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