Modelling semantics

developing a cognitively plausible, data-driven approach

Objective

- Develop a model of semantics that is wide-coverage, cognitively plausible and computationally useful
- Data-driven approach:
 - technically feasible, empirically grounded, scale, potential for practical utility
 - but linguistic and cognitive motivation?

Semantics in computational linguistics

Compositional semantics

- `deep' grammars
- shallow/intermediate grammars
- Lexical semantics
 - manually constructed ontologies: e.g., WordNet
 - data-driven: e.g., clustering
- Combined, data-driven approaches
 - Lin et al, Curran, Lapata
 - but surprisingly little work

Integrated approaches

- Compositional semantics the dog doesn't like peppermint the'(x, dog'(x), h1), not'(like'(e,x,y)), bnpq(y, peppermint'(y), h2)
- Open-class predicates correspond to region(s) in semantic `space'
 - peppermint' unary predicate
 - like' three regions event, experiencer, stimulus

Polysemy: bank

Polysemy: twist

Vector-space models from corpora

- Hypothesis: semantic space can be derived from textual context in corpora
 - Relationship to classical lexical semantics? polysemy, synonymy, antonymy, metonymy etc
 - Relationship to psycholinguistic experiments? Quantifiable predictions?
 - Task-based evaluation: word/phrase prediction?

From distribution to semantics

- Robust morphological, syntactic and compositional semantic processing
- Iterated sense disambiguation with respect to derived soft clusters
- Document structure, anaphora resolution etc

Some text corpora issues

- Spoken language vs written language
 - speech transcription, quantity of data, disfluencies etc
- Personal vs non-personal settings
 - shared context, background knowledge
- Individual experience: compare balanced and longitudinal corpora

Summary

- Develop a model of semantics that is cognitively and linguistically plausible while practically tractable and useful
 - Exploit text corpora to provide scale
 - Exploit and further develop tools for largescale text processing
 - Investigate how balanced corpora relate to individual experience
 - Evaluate against human experiments

Potential participants include

- Cambridge: Copestake, Briscoe, Marslen-Wilson
- Sheffield: Lapata
- Edinburgh: Keller, Pickering