Building Virtual Communities with eScience

Andy Parker
Director, Cambridge eScience Centre
What is e-Science?

"e-Science is about global collaboration in key areas of science, and the next generation of infrastructure that will enable it."

John Taylor, Director General of the Research Councils, OST

"e-Science will refer to the large scale science that will increasingly be carried out through distributed global collaborations enabled by the Internet. Typically, a feature of such collaborative scientific enterprises is that they will require access to very large data collections, very large scale computing resources and high performance visualisation delivered to the individual user scientists."

Research Councils Website
What is the Grid?

• The Grid will allow virtual organisations to collaborate in a transparent manner:
 – Remote automatic job submission to all VO resources by intelligent scheduling system
 – Access to distributed data via metadata tagging
 – very high bandwidth connectivity to allow realtime access to large remote data collections
 – High quality video conferencing and remote visualisation

• Requires large computing facilities connected by high quality network.
– provide national grid resource
– through industrial and pilot projects
– advance grid middleware
– act as information centres
Access Grid

Each Centre has an Access Grid Node - high specification video conferencing
Cambridge eScience

Centre for Mathematical Sciences
Cambridge eScience Centre
Cambridge Computational Biology Institute
National Institute for Environmental eScience

CeSC Industrial Partners:
IBM, Sun Microsystems
Microsoft Research
Unilever, Siemens Medical Solutions
Macmillan Cancer Relief
BAE Systems, Rolls Royce
Cambridge Computational Biology Institute

• Link Cambridge expertise in medicine, biology, mathematics and the physical sciences.
• World centre that will develop new knowledge and its application to health, quality of life and wealth creation.
• Research topics: New MPhil Course
 – basic genetics of bacteria
 – developmental biology
 – evolutionary biology
 – complex cell biology of human disease
 – systems biology.
• Multidisciplinary approach using advanced informatics techniques:
 Supported by CeSC and major driver of the Campus Grid
National Institute for Environmental eScience

- The NIES is located with CeSC and shares facilities and staff
- Director: Martin Dove of Dept. of Earth Sciences.
- NIES activities:
 - "Newton Institute" style workshops in Env. Sci. areas
 - Demonstrator projects using Grid technologies
Telemedicine on the Grid
The West Anglia Cancer Network

- Cancer Centre
 - Addenbrooke’s/ Papworth

- Cancer Units
 - Bedford
 - Peterborough
 - West Suffolk
 - Harlow
 - Hinchingbrooke
 - King’s Lynn
Requirements

- Multi-site videoconferencing
- Access to pathology & radiology images
 - Live microscopy
 - DICOM
- Access to remotely stored patient records through organisational LANs
3D Image Visualization

- 3D Volume rendered images
- Access to mass imaging data
- Visualization of complex medical imaging
Telemedicine has been adopted by most cancer MDTs in Cambridge, and is also used for training, management and general communications by the participating trusts.

Telemedicine has been rolled out to 5 other Cancer Networks, and a National Programme is under discussion.

Telemedicine is proposed for use in CancerGrid, for running clinical trials, as part of a broader data management project.

Collaboration with DEST project - Prof Burrage, Queensland
Grid Technology in Molecular Sciences
The WWMM schematic

Browser

XMLQuery

Domain Metadata

XForms

Portal

Globus

High Performance Computational Node

Globus

Computational archive

Globus

Molecular Data

Server

Other WWMM ServerBrowsers

Metadata+trust annotated WWMM/CML entry

Metadata-driven Decision-making

Annotated publication

Annotated results

Query+metadata
EM Scattering project

Surface current in a tube illuminated by radar

- Collaborative project with BAE Systems to investigate radar reflection from aircraft
- BAE design aircraft shapes
- Cambridge mathematicians calculate EM scattering from rough surfaces for complex shapes on HPCF
EM Scattering project

- Link engineering simulations at BAE with EM scattering calculations in Cambridge with Grid based feedback loop

Distributed simulation
Visualisation
Security

Globus
HPCF
AccessGrid
Reflection data
CAD
Design
EM Grid visualization

Use portal to execute scattering code or launch the visualisation software.
View isosurfaces, ie surfaces of equal intensity in 3D
EM Grid visualization

Alternatively view colour contour plots
Reveal high-intensity areas by steering a cutting plane interactively along the structure, in a virtual 'fly-through'
CosmoGrid

The COSMOS consortium, led by Prof Stephen Hawking, employs large-scale supercomputer resources to advance our knowledge of the origin and structure of our universe.

COSMOS, the National Cosmology Supercomputer, is an SGI Altix 3800 (128 IA64 cpus, 128Gb memory, 10Tb storage) housed in Cambridge.
Cosmos consortium

- Formation of a galaxy cluster
Environment from the molecular level:

An e-science proposal for modelling the atomistic processes involved in environmental issues
Molecular models

Quantum mechanics with plane-wave basis functions

Quantum mechanics with localised basis functions

Models with empirical potentials

Integration of methodologies can combine all advantages

Achievable length/time scale
Example of radioactive waste containment

• Issues:
 • Scale up in space and time
 • Access to simulated data
 • Visualisation of results
 • Commercial security
CeSC supports the GridPP project to handle Petabytes of data per year from the Large Hadron Collider.

Cambridge is a Core node on the new LHC Computing Grid.

Interactive analysis in Cambridge of ATLAS data worldwide.
GridPP

- PPARC funded project (£17M) to enable data analysis for the Large Hadron Collider experiments.
- Links with EU DataGrid and Grid projects in the USA

LHC under construction at CERN: will generate a few Petabytes of data every year from 2007

1 TeV proton-proton collider

1Pb = 1000 Gb = 1 km stack of DVDs
The Atlas Experiment

- 150 participating institutes worldwide
- 1700 scientists and engineers involved
- Observe 40 million collisions per second
- 1000 tracks per collision
- >1 Petabyte of data/year

Typical physicist
Grid for Astrophysics:
Federated databases
Real-time telescope operations
Virtual Observatory

(http://www.astrogrid.ac.uk)
Astronomical Drivers: Pre-Discovery Mining

- Investigating the progenitors of sources that show variability
 - Dark matter revealed by microlensing events
 - Planets revealed by stellar variability
 - Formation of neutron stars revealed by GRB's
 - Death of massive stars revealed by Type II SN

Conclusions

- The Grid started in academic supercomputing
- The key features:
 - Instant access to worldwide collections of reliable data
 - Effective use of large distributed computing systems
 - Collaborative environments
- Grids are now rolling out in industry and the public sector - anywhere with distributed teams needing to share large amounts of data of any sort.