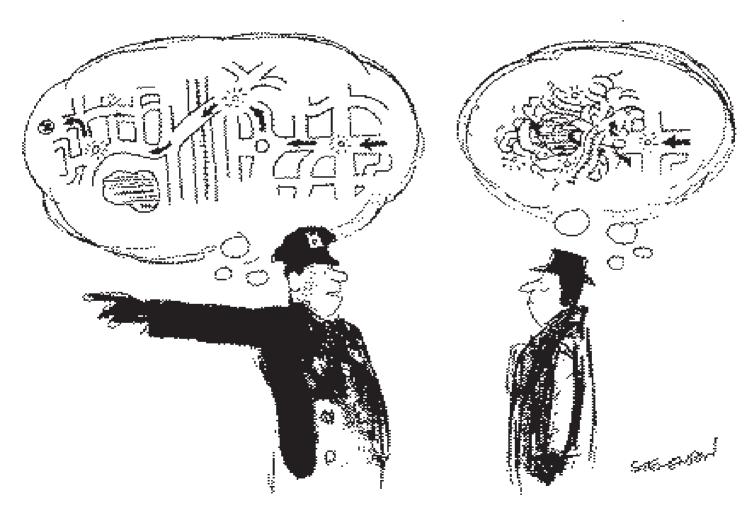
The cognitive science of interactive language

Garrod, Anderson, Pickering & Moore

Universities of Glasgow & Edinburgh

Individuals vs. systems

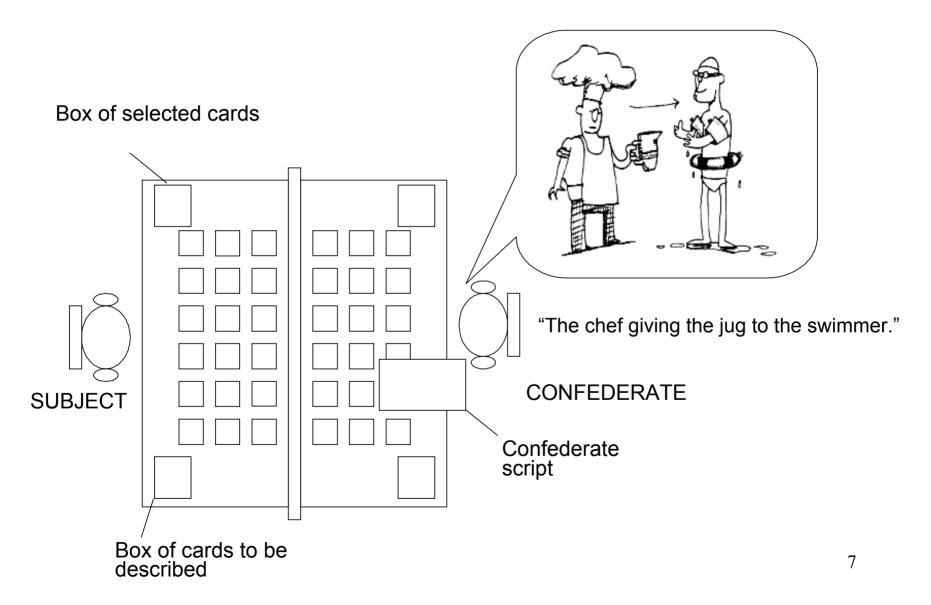
- Vast majority of research into human cognition (and cognitive neuroscience) is concerned with the individual
- But a systems-level approach is very important and practically relevant
 - Human-human interaction
 - Human-computer interaction


Interactive language

- Natural language dialogue is fundamental to interaction
 - Involves linguistic but also non-linguistic aspects (gestures, pictures, etc.)
- Understanding dialogue involves
 - Cognitive neuroscience, psychology, linguistics
 - Computer scientists, electrical engineers, etc.

Views of interaction

- Traditional view
 - Interaction just "adds noise"
- Our view
 - Natural cognitive systems did not evolve in isolation
 - They evolved by developing mechanisms for interaction
- Challenge
 - To understand natural interactive mechanisms
 - Through behavioural and neuroscientific experimentation, modelling, etc.


Information *alignment* rather than information *transfer*

Alignment

- In successful conversations, interlocutors eventually share relevant knowledge
 - Their "mental models" converge
- Alignment may occur via extensive reasoning about each others' minds
 - working out what they know and what they don't
- Or it may occur via fairly automatic "priming" mechanisms
 - Interlocutors tend to repeat each others' word choices, grammatical choices, etc.

Studying interactive alignment

The study of dialogue

- Dialogue clearly more basic than monologue
- But current mechanistic accounts of language use are concerned with monologue
 - Comprehension and production of isolated words and sentences, reading texts ...
- For example, EEG/fMRI studies of word recognition in isolation
 - Contrasts with a social cognitive neuroscience of language
- Generalizes far beyond language
 - e.g., interactive problem solving

Computational applications

- Importance of dialogue systems
 - Direction-giving systems, travel/entertainment booking systems
 - But hampered by non-interactive approaches to cognition
 - Such systems will benefit enormously from cognitive/neuroscientific approaches to language over the next 2 decades or so
 - Relevance of planning in sensory-motor domains
 - Integration of linguistic and non-linguistic planning
 - Relevance of animal as well as human work

Eye-tracking technology

- An example of a sophisticated methodology that can be employed during natural interaction
- Allows moment-by-moment investigation of the processes in interactive language use
 - Recent work investigates where people look while speaking and listening
 - But almost no work investigating dialogue
 - e.g., synchronization between interlocutors

Towards a research programme

- Controlled scientific investigation of natural interaction using hybrid methods
 - Analysing speech, eye movements
 - Integration of cognitive neuroscientific methods
 - Computational modelling
- Replace study of isolated utterances with a study of *situated* interaction, drawing upon the multimodal context
 - Facial and manual gestures
 - Physical surroundings

Research questions & approaches

- Dialogue and alignment of attention
 - Dialogue-based 'visual world paradigm' experiments
- Computational modeling of the alignment process
- Defining the dialogue-monologue continuum
- Role of feedback, reciprocity, social factors in interactive alignment
 - e.g., investigate effects of group size on discussions using sophisticated multi-speaker monitoring equipment