Multimodal Imaging Perspectives on Language in the Brain

#### Friedemann Pulvermüller

MRC Cognition and Brain Sciences Unit, Cambridge friedemann.pulvermuller@mrc-cbu.cam.ac.uk

#### Structure of the talk

- What do we want to know?
- Strengths and limitations of imaging techniques
- The importance of temporal information
  - localising cognition in time
  - revealing spatio-temporal patterns
  - uncovering functional dynamics
- Integration of results from multimodal neuroimaging

#### What do we want to know?

What do we want to know about a cognitive process  $c_i$ ?

- Where in the brain does c<sub>i</sub> occur?
   In which (set of) brain area(s) a<sub>i</sub>?
- When, relative to other processes, does c<sub>i</sub> occur?
   At which point in time (in which time range) t<sub>i</sub>?
- *How* is c<sub>i</sub> realised in neural tissue?
   As which (type of) neuronal circuit n<sub>i</sub>?
- Why is c<sub>i</sub> realised as n<sub>i</sub> in a<sub>i</sub> at t<sub>i</sub>?
  What are the underlying neuroscientific laws?

What can neuroimaging tell us about a cognitive process C<sub>i</sub>?

- Where in the brain does c<sub>i</sub> occur?
  In which (set of) brain area(s) a<sub>i</sub>?
- When, relative to other processes, does c<sub>i</sub> occur?
   At which point in time (in which time range) t<sub>i</sub>?

What can neuroimaging tell us about a cognitive process  $C_i$ ?

- Where?
  - Activation of which (set of) brain area(s)  $a_i$  does cooccur with  $c_i$ ?
- When?
  - Activation at which time point (in which time range)  $t_i$  does co-occur with  $c_i$ ?

### Neuroimaging methods



Posner & Raichle 1999

### Neuroimaging methods

| Туре      | hemodynamic r               | neurophysiological                 |
|-----------|-----------------------------|------------------------------------|
| Name      | fMRI, PET                   | MEG, EEG                           |
| reflects  | metabolites<br>in the blood | activity of<br>nerve cells         |
| precision |                             |                                    |
| in space  | <i>millimetres</i> seconds  | centimetres<br><i>milliseconds</i> |
| in time   |                             |                                    |

### Language processing loci inferred from metabolic imaging results



Price, J Anat 2000

### fMRI provides a static picture of cortical activation



## This activation likely has a *time course*



# Spatio-temporal dynamics (hypothetical)



The importance of *temporal information* 

- Neurophysiological brain processes are extremely fast.
  - Activity can spread throughout the brain within milliseconds
- Cognitive processes can be near-simultaneous.
  - Lexical, semantic and syntactic processes occur within a fraction of a second (Marslen-Wilson & Tyler, 1980)

fMRI does not follow fastchanging neurophysiological activity and cognitive processes



The Haemodynamic Response Function (HRF) acts as a low pass filter of the neurophysiological brain response

MEG and EEG can reveal the fast spreading of neural activity

They directly measure neurophysiological changes caused by post-synaptic potentials in large neuronal populations

- Electroencephalography (EEG): potential changes
- Magnetoencephalography (MEG): magnetic field changes

### Example: Biophysics of the MEG

- Activity in sulci close to the scalp surface is picked up
- Activity on gyri and in deep structures can be invisible



MEG and EEG: brain imaging in time and space

- neuromagnetic changes in the brain can be tracked with millisecond precision
- to estimate the locus of cortical activation, the MEG must be recorded through numerous sensors

### State-of-the-art MEG devices include up to ~300 gradio/magnetometers

306-channel MEG system Vectorview, Elekta-Neuromag, Helsinki, Finland



### MEG/EEG: How can we localise in space?

The localisation challenge: von Helmholtz' Inverse Problem

• A surface topography can always be explained by more then one (set of) underlying source(s)

von Helmholtz H. Über einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. *Annals of Physics and Chemistry* 1853; 89: 211-233, 353-377. Are there strategies to overcome the *Helmholtz Inverse Problem*?

#### MEG/EEG Source Estimates

1. Equivalent Current Dipole (ECD) applicable only for one main source 2. Multiple dipole solutions arbitrary decision on number/loci of sources 3. Minimum Norm (MN) Estimate (eg, L1/L2 norm) explains a topography by the source constellation with the least amount of source activity; blurring 4. Anatomically constrained MN estimate source space restricted to grey matter

### MEG/EEG: Why do we need it?

- To learn *when exactly* an event in the brain occurs (*localisation in time*; example: word recognition)
- To learn in *which sequence* cortical areas become active (*spatio-temporal dynamics*; example: Δt (ST-IF))
- To learn *how* the cortex becomes active (*functional dynamics*; example: synchroneous oscillatory dynamics in the gamma band)

#### Example 1: Localisation in time

- When exactly does a cognitive brain process occur?
- The case of word recognition as reflected by the Mismatch Negativity (MMN)

### MMN enhanced in word context (MEG)



/K0/



Pulvermüller, Kujala, Shtyrov, Simola, Tiitinen, Martinkauppi, Alku, Alho, Ilmoniemi, Näätänen, Neuroimage 2001

ms

# Word recognition point ~ peak latency of sup. temporal source



Pulvermüller, Shtyrov, Ilmoniemi & Marslen-Wilson, in preparation

# Example 2: Spatio-temporal dynamics

• In which order do cortical areas become active when a given cognitive process occurs?

## Spatio-temporal brain dynamics underlying word processing

# Minimum Norm Estimates of cortical sources activated by words



Pulvermüller, Shtyrov & Ilmoniemi, Neuroimage 2003



Pulvermüller, Shtyrov & Ilmoniemi, Neuroimage 2003

## When hearing words, area *A* becomes active at time *t*



Pulvermüller, Shtyrov & Ilmoniemi, Neuroimage 2003

# Example 3: Fast functional dynamics

- In which way do cortical networks become active when a given cognitive process occurs?
- The case of synchronous neural oscillations in the gamma band (> 20 Hz) as a basis of word processing

# Gamma band activity elicited by words and pseudowords



Pulvermüller et al., *Psycoloquy* 1994; *Neuroreport* 1995; *Electroencephalogr. Clin. Neurophysiol.* 1996; *Prog. Neurobiol.* 1997

# MEG/EEG: strengths and limitations

- track neurophysiological activity
- imaging in both time (millisecond precision) and space (centimetre accuracy)
- limited spatial conclusions

Integration of fMRI and MEG/EEG results

Strategy 1: Using fMRI hotspots to restrict source solutions

e.g., Ahlfors et al., J Neurophysiol 1999

Strategy 2: Building a neural network model and fit it to both fMRI and MEG/EEG results

> Arbib et al., *Hum Brain Mapp* 1995 Horwitz et al., *Hum Brain Mapp* 1999, 2002, *Neural Networks* 2000

Integration of fMRI and MEG/EEG results

Strategy 3:

Correlating MEG/EEG sources with fMRI localisation

### Spatio-temporal dynamics: word reading



McCandliss, Cohen & Dehaene, Trends Cognit Sci 2003; Hauk, Pulvermüller et al., in prep.

Integration of fMRI and MEG/EEG results

Strategy 4:

Comparing MEG/EEG source estimates with fMRI localisation



#### Conclusion

MEG/EEG and fMRI investigations are important for studying the spatio-temporal brain dynamics related to language processes Why do we need MEG/EEG in the investigation of cognitive processes?

- to precisely localise cognitive processes in time
- to determine spatio-temporal dynamics of brain activity
- to study functional dynamics

#### Thanks to:

#### Dr. Yury Shtyrov Dr. Olaf Hauk





#### Thanks to:

Olaf Hauk, Yury Shtyrov, Ingrid Johnsrude, William Marslen-Wilson (MRC-CBU Cambridge)
Bettina Mohr (APU Cambridge)
Risto Ilmoniemi, Risto Näätänen, Vadim Nikulin (U Helsinki)