

Multiple-Level Models for Multi-Modal Interaction

Martin Russell¹, Antje S. Meyer², Stephen Cox³, Alan Wing² ¹School of Engineering, University of Birmingham ²School of Psychology, University of Birmingham ³School of Computing, University of East Anglia

Outline of talk

- Motivation for multi-modal interaction
- Multiple-level representations to explain variability
- Multiple-level representations to integrate modalities
- Issues in combining modalities
- Example: speech and gaze
- Proposed research
- Conclusions

Motivation

- Linguistic utterances rarely unambiguous, but communication succeeds
 - Shared world knowledge
 - Common discourse model
 - Speech augmented with eye-gaze and gesture

Psycholinguistic perspective

 In psycholinguistic theories the processes of retrieving and combining words are far better described than the processes of using world and discourse knowledge, eye gaze or gestures

Computational perspective

- *Automatic* spoken language processing lacks knowledge and theory to explain ambiguity
 - Assumes direct relationship between word sequences and acoustic signals
 - Variability treated as noise
- No established framework to accommodate complimentary modalities

Challenges

- Psycholinguistics needs:
 - Better understanding of how speakers and listeners use eye gaze and gesture to augment the speech signal
- Computational spoken language processing needs:
 - Better treatment of variability in spoken language
 - Better frameworks for augmenting speech with other modalities
- Both need fruitful interaction between psycholinguistics and computational spoken language processing

Example: acoustic variability

- Sources of acoustic variability not naturally characterised in the acoustic domain:
 - Speech dynamics
 - Individual speaker differences
 - Speaking styles

A model of acoustic variability

- Introduce intermediate, 'articulatory' layer
- Speech dynamics modelled as trajectory in this layer
- Trajectory mapped into acoustic space
- Probabilities calculated in acoustic space

Combining modalities

• Examples:

- Lip-shape correlates with speech at the acoustic level...
- $-\ldots$ but this is not the case in general
- Correlation between speech and eye-movement (when it exists) likely to be at conceptual level

Multiple-level models

- Different levels of representation needed:
 - To model causes of variability in speech
 - To capture relationship between speech and other modalities
- Candidate formalisms already exist:
 - Graphical models,
 - Bayesian networks,
 - layered HMMs

Example: speech and gaze

Results from 'map task' experiment

Spoken Language and HCI Grand Challenge: slide 12

Results from map task

Spoken Language and HCI Grand Challenge: slide 13

Results from map task

Spoken Language and HCI Grand Challenge: slide 14

Results from map task

Object naming

↑ Planning to phonological level

gaze

Phonetic, articulatory planning PLUS advanced planning for next object

speech onset

lag

From ESRC Meyer, Wheeldon

Spoken Language and HCI Grand Challenge: slide 16

time

Object naming

Fer.

Lessons from psychology

• Gaze-to-speech lags

More lessons...

Gaze duration

Speech and gaze

In general, a speaker who looks at an object might:

- a) Name the object,
- b) Say something about the object
- c) Say something about a different topic altogether
- d) Say nothing at all
- There will be a delay (200-300ms for object naming) between finishing looking at an object and talking about it
- The delay will be less if the object was discussed previously

Speech and gaze (continued)

- Alternatively, gaze might provide an important cue for classifying the 'state' of a communication (e.g. meeting)
 - Monologue (all eyes on one subject)
 - Discussion (eyes move between subjects)

Proposed research

- **Goal**: Improved understanding of user goals and communication states through integration of speech, gaze and gesture
 - Integrated, multi-disciplinary project, involving psycholinguistics, speech and language processing, and mathematical modeling

Proposed research (1)

- Experimental study of speech, gaze and gesture in referential communication and matching tasks, to determine:
 - How speakers' and listeners' gaze are coordinated spatially and in time
 - Functional significance of eye gaze and gesture information (by allowing or preventing mutual eye contact between the interlocutors)
 - Importance of temporal co-ordination of speaker and listener gaze

Proposed research (2)

- Development of multiple-level computer models for integration of speech, gaze and gesture, for
 - Improved understanding of user goals
 - Improved classification of communication states (meeting actions)

Summary

- Speech in multi-modal interfaces
- Multiple-level models for:
 - Characterising variability within a modality
 - Characterising relationships between modalities
- Proposal for collaborative research in psycholinguistics and speech technology

CETaDL meeting room

Spoken Language and HCI Grand Challenge: slide 26